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Abstract -
Distributed systems are central to countless appli-

cations in the modern world. These applications can
have tens to thousands of components interacting mak-
ing it difficult to identify the source of performance
problems. Distributed tracing is widely used to eluci-
date the interactions within a distributed system; how-
ever, instrumenting system codebases can be tedious,
and collecting tracing data generates overhead. Opti-
mally, minimal instrumentation is added to regions of
the codebase that explains the majority of the system’s
performance variation. We present a prototype appli-
cation that highlights regions of performance uncer-
tainty in a system, guiding developers to where instru-
mentation would most increase predictability. Using
aggregate trace data, spans are ranked by uncertainty
metrics, which are primarily the standard deviation
and coefficient of variation of the exclusive latencies of
an operation across multiple traces. We developed our
prototype in Python and applied it to trace data ex-
tracted from HotROD. We evaluated our tool on four
test scenarios where we injected latency into services
in HotROD. Our tool highlights the service(s) with in-
jected latency in all four test cases.
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1 Introduction

Distributed systems are an integral component of
our modern world. They span from broader systems
such as cellular networks to specific services such as
Google or Facebook. These services often involve
various interacting components – indeed, they can
easily contain thousands of microservices – so de-
velopers that wish to modify, regulate, or alter the
distributed system must be aware of the interactions
between these components and how altering one may

affect others. This is similarly important for address-
ing errors in the system. To do so, they must be
able to reduce their uncertainty, or the lack of abil-
ity to predict an outcome of an interaction (such as
end-to-end latency) with given information.

To decrease uncertainty for a system with so many
components, developers must increase the amount of
information that they have. In obtaining this infor-
mation, developers rely on distributed tracing, which
gives them insight into the interactions comprising a
distributed system by tracking system calls and logs.
This facilitates the modification and regulation of the
system, which is particularly important in projects
where several developers regulate specific applica-
tions in a codebase, as is seen in industrial-level
projects. No one developer can possibly be aware
of the countless interactions, yet these developers
may need to make modifications to their specific mi-
croservices that could affect other components of the
system. Tracing data allows developers to view the
communication and system calls amid these services
to better approach their specific areas.

Another common issue for distributed systems is
diagnosis of issues in system performance. Trac-
ing allows for insight into these systems for various
developers, allowing them to understand the inter-
actions within the system and the ramifications of
modifications that they may make, such as altering
a component in a microservice. Localizing resource
bottlenecks, cache misses, and other issues can be
determined with the information found in trace data.

However, acquiring tracing data generally requires
manual instrumentation of the system. This can be
problematic since it may be difficult for developers
to determine where instrumentation should be placed
to be both meaningful and useful to them for system
regulation and/or modification. For instance, they
might miss instrumenting an important resource bot-
tleneck that could have informed them on a critical
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latency issue. Conversely, they may instead instru-
ment areas that are of little use to the developers and
oversaturate logs with unimportant information that
they will then have to sift through. These issues arise
from improper placement of trace points, which is
discussed in further detail in 2.4.
Definition 1.0.1 (Trace Points). A trace point is an
instance of instrumentation at a particular point in a
distributed system codebase, such as a log.
Definition 1.0.2 (Spans). “The span is the primary
building block of a distributed trace, representing an
individual unit of work done in a distributed system.
Each component of the distributed system contributes
a span — a named, timed operation representing a
piece of the workflow” [1] whose boundaries are de-
termined by trace points.

In this paper, we present a project that aims to
aid developers in the placement of trace points to
effectively reduce uncertainty in regards to system
latency. We developed an algorithm that processes
span-based trace data and ranks spans by their degree
of uncertainty they contribute. As such, this points
developers to areas that may benefit from greater in-
strumentation.

Thus far, our Python prototype has been moder-
ately successful at identifying spans with highly vari-
able latencies (caused, for instance, by intermittent
errors) in a variety of cases given the trace data pro-
duced by requests to a simplified distributed system
simulation. Of the four scenarios tested, the protoype
identified the spans with the injected uncertainty in
all four cases.

2 Background
2.1 Our Tools

As mentioned in the introduction section (see 1),
tracing is an essential component to debugging when
it comes to distributed systems because microservices
are so scattered across the different nodes in the sys-
tem that it becomes impossible to immediately find
the causation of an error, latency, or a memory over-
flow. With a tracing tool that visualizes spans, we
are able to sort requests in a logical hierarchy and
see them side-by-side in chronological order, see the
timestamp and location of errors, and visualize the
logs that are recorded as spans are running. The dis-
tributed tracing visualization tool that we primarily
use in our research is Jaeger (see Figures 1 and 2).

Figure 1. Example of Jaeger’s visualization of
spans in a Gantt Chart

Figure 2. Jaeger’s data visualization for trace
data from HotROD

Jaeger, created at Uber [2], is an open-sourced,
end-to-end distributed tracing visualization tool that
is capable of monitoring distributed-system-based
microservices. Being language-independent, Jaeger
can track RPCs (remote procedure calls) between mi-
croservices in all components of a distributed system,
and is used at the industrial level in services, in-
cluding Uber. Jaeger can visualize spans as well as
logs and errors in distributed programs as they run in
real-time. Some particularly useful features for this
project include root cause analysis, latency optimiza-
tion, and distributed transaction monitoring. Most
importantly, however, Jaeger is also used to extract
much of the trace data we use, as the visual repre-
sentations, while important, can be difficult to digest
when generalized to the complexity of the great ma-
jority of distributed systems.

We commenced our experiments on application
simulations that provided support with Jaeger. The
simulation we used was one developed by the Jaeger
team called HotROD. HotROD simulates a service
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similar to Uber: upon user request, the application
finds drivers nearby and orders a ride. It then shows
the estimated time for the ride to arrive. HotROD is
easy to test on, and we also found in its code that the
way it simulates errors is very predictable and thus
straightforward to work with.

2.2 Previous Work

Numerous applications have been previously de-
veloped with the goal to assist developers in pro-
cessing trace data for instrumentation. Some ap-
proaches include selectively storing trace data to keep
more relevant or useful information for debugging.
Techniques for such software include approaches as
unique as machine learning, as employed in Sifter [3]
to determine more anomalous or edge-case request
paths in trace data, while projects such as VAIF [4]
rely on custom data structures seek to enable the logs
most relevant for analyzing performance issues. Both
Sifter and VAIF decrease the amount of data develop-
ers would need to sift through to identify anomalies or
performance issues. Isolating relevant data is often
crucial as discovering issues can otherwise quickly
become a needle-in-a-haystack problem. Exhaus-
tively saturating a codebase with trace points would
be tedious, generate incompatible levels of overhead,
and the sheer data produced could not be practically
or effectively analyzed manually by a human devel-
oper. Here, VAIF in particular emphasizes the sig-
nificance of the placement of trace points and logs in
the role of localizing potential issues in the system.

In addition to paring back tracing data, approaches
such as graph-based microservice trace analysis
(GMTA) [5] improves data recovery, workflow anal-
ysis, and user interactions with its graph-based data
structure for storing trace information. GMTA ef-
ficiently processes incoming trace data on-the-fly
in a way that is easily and effectively scalable for
industrial-scale microservice-based systems. Rely-
ing on a unique data structure could be an important
insight for distributed tracing.

One central goal in various projects regarding trace
data is critical path analysis (CPA).

Definition 2.2.1 (Critical Path). A critical path is
the longest path in a directed acyclic graph (DAG). In
trace data, this represents a singular path that accounts
for the end-to-end latency of a request path.

Critical paths are a key approach to optimizing
systems as they define the maximum length to re-
quest latencies. Thus, to optimize a request latency,
the developer would want to focus on optimizing el-
ements along the critical path. Each trace of the
system will contain a critical path, which can be de-
termined algorithmically with relative ease, such as
by a recursive function [6]. However, the critical
path’s structure, length, and other properties may vary
widely across separate requests; developers seeking
to achieve service-level objectives for request laten-
cies may be unable to identify specific regions of the
codebase to optimize. CPA seeks to create a compre-
hensive, system-wide interpretation of critical paths.
Rather than extracting the critical path of one trace,
CPA tools such as CRISP [7] and The Mystery Ma-
chine [8] utilize aggregate trace data from thousands
of requests to distill a more complete picture of the
system. Moreover, using aggregate data can pro-
vide a model for system interactions that individual
traces, being request-specific, cannot. The Mystery
Machine, for instance, can define various relation-
ships between thread segments in a system as defined
by their consistency across traces.

In addition to the use of aggregate data, the tool
CRISP offers another important insight via the in-
troduction of two metrics: inclusive and exclusive
latencies. Inclusive and exclusive latencies are de-
fined as follows for an operation (span):
Definition 2.2.2 (Inclusive Latency). The inclusive
latency of a span, S, is “the wallclock time elapsed
in the S itself, plus the wallclock time elapsed in the
transitive closure of all other operations S calls. This
is also purely the duration of execution of S.” [6]
Definition 2.2.3 (Exclusive Latency). The exclusive
latency of a span, S, is “the wallclock time spent in
S itself.” In CRISP, the exclusive latency “neglects
the time spent in S‘s children operation(s), say T, if
T appears on the critical path.” [6] For our purposes,
T’s latency is neglected even where it does not appear
on the critical path.

An illustration of exclusive latency can be found
in Figures 3 and 4. In both figures, the zigzagging
arrows represent RPC send and receives. In Figure
3, we see the parent-child relationship between spans
S and T. In Figure 4, Span S is segmented by the
moments where it sends and receives the RPC to span
T; the exclusive latency is the sum of the durations
S1+S3 whereas S2 is neglected in this metric.
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RPC

Span S

Span T

Figure 3. Children-parent relationship between
spans A and B.

S1 S2

RPC

S3

Span T

Inclusive Latency

Figure 4. Segment-based interpretation of spans
S and T. Here, the exclusive latency of operation
S is the sum of the orange intervals.

The purpose of exclusive latency in particular is
the extract the amount of wallclock time that the ex-
ecution of S alone accounts for, thereby localizing
latency issues. For instance, we can infer that high
uncertainty in the exclusive latency of S originates
solely from S. In contrast, high variability in the in-
clusive latency of S could be attributable to the exe-
cution of a child span of S, where S is waiting for a
response from its child operation prior to resuming
its own execution. This is a valuable insight that is
central to our own project.

2.3 Event-Based vs. Span-Based Models

Trace data is conventionally organized through the
span-based model of tracing [9]. This is the model
seen throughout numerous tracing softwares, such
as Zipkin, Jaeger, and Dapper [10, 2, 11]. How-
ever, some softwares, such as X-Trace [12], opt for an
event-based model.

A span-based model operates on intervals of time,
encapsulating function executions. However, there
are numerous limitations to this approach. An article
on The Medium [13] remarks on this:

“Spans represent time durations, but the span
model gives no specific advice on what durations
to measure. Mentally, it has its origin in the

(synchronous remote) procedure call programming
model, in which spans nicely map to function calls:
a function or code block is entered (span starts) and
then left (span finishes), in the meanwhile we record
on the span what happened. As soon as the program-
ming model is a bit different, there is no trivial way
to map it to spans.

“What if the remote procedure call is asyn-
chronous? Shall we finish the span when the request
is sent and open a new one for the reply? What if,
in the meanwhile, the execution context is transferred
to another processing unit and the reply is processed
there?

“What if the programming model is messaging?
Should the span start when the message is produced
or when it is dequeued? Should one or two spans
represent the sending and receiving of a message?
How about one-to-many communication like publish
and subscribe?”

Figure 5. Pseudocode example of span model
implementation in RPC mechanism. Adapted
from [9].

Instead, we can turn to the event-based model. An
event is defined as follows:
Definition 2.3.1 (Event). An event is a single, or-
dered piece of data produced by a single trace point.

As per Definitions 1.0.2 and 2.3.1, spans are com-
prised of three components – an event at the start,
an event at the end, and the interval of time between
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these two events. The last of these three can always be
inferred from the other two, so a solely event-based
model can always represent everything that a span
can. However, the converse is not true; events allow
for finer articulation in trace data due to the ability
to add annotations and logged events to demarcate
algorithm progress, errors, cache misses, and other
single-point occurrences of note. As such, a span,
which is required to contain a single unbroken in-
terval, is not as expressive as events may be. Addi-
tionally, events have a strict ordering, thus allowing
interactions to be defined much more rigidly (such
as through Lamport’s definition of happens-before
relationships [14]). Spans, in contrast, may overlap.

Indeed, a comprehensive 2014 analysis [9] rig-
orously showed that events are more expressive of
system interactions in end-to-end tracing in every as-
pect, although spans do have the advantage of greater
mindshare and more simplistic human interpretation.
For instance, the visualization software we use for our
project (Jaeger) is tailored only for the span model.

The same 2014 analysis suggests the use of a
joint model, incorporating spans into instrumentation
where possible but using events wherever greater ex-
pressiveness is required to convey information. The
paper’s solution requires a library that supports in-
strumenting both spans and events; the current library
we are using, the Opentracing API for Go, does not
support logged events, although we are searching for
workarounds.

For our purposes, we use spans to encapsulate op-
erations and full microservice executions. Although
internal logged events could provide details, our de-
pendence on simplified distributed systems means
that no such logs will be present. This preserves the
simplistic, easy-to-identify (for the interpretation of
human developers) structure of the distributed system
in the trace data while allowing Jaeger to still visual-
ize our tools’ trace data in at least some capacity. Ad-
ditionally, most industry tracing infrastructures only
support the span-based model, so it is the ideal route
for this project. Nevertheless, an event-based model
remains an intriguing avenue.

2.4 Motivation

One crucial aspect of instrumentation is the place-
ment of trace points. If instrumentation neglects

proper placement, a developer may not have any trace
points at an important bottleneck and instead have
trace points in other areas less relevant to system
performance, thus missing crucial information. On
the contrary, if instead the system is oversaturated
with trace points, the developers viewing the resul-
tant trace data may have to sift through a great deal
of extraneous data before finding the relevant logs;
additionally, instrumentation could take much longer
due to the large number of trace points in this case.

Optimal placement for trace points is informed
largely by the usefulness of those trace points to a
human developer for reaching desired goals for a dis-
tributed system. These goals generally include mini-
mizing latency and/or critical path latency, minimiz-
ing/identifying errors, and satisfying service-level
objectives (SLOs). Thus, to be useful, a trace point
must be able to inform a developer accordingly. Ide-
ally, trace points should identify problematic areas
such as errors/anomalies, common cache misses, ar-
eas responsible for significant amounts of latency,
and the like.

In our case, optimal positioning for trace points
are those that most decrease uncertainty. Therefore,
we must localize areas with the highest uncertainty
and advise developers to place trace points there. To
do so, we will employ aggregate trace data of the
system, similar to CRISP, and using exclusive latency
should allow an algorithm to identify the specific
span executions accounting for the uncertainty across
various traces.

3 Design
3.1 Assumptions

For our design, we assume the following regarding
our trace data:

• There are no asynchronous spans.

• No clock skew occurs. This is an appropriate as-
sumption for HotROD as HotROD runs entirely
on an a single, local machine. However, this as-
sumption is not generalizable to real distributed
systems.

• Spans/operations pause their execution when
waiting for responses from their children. This
assumption should hold true for single-threaded
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services and simplifies the cases needed to de-
termine exclusive latency. Part of the reason for
this simplification is that we want our prototype
to function on trace data from minimally instru-
mented systems. For us, this translates to only
receiving topological information of the spans
in the request paths with no internal logs.

• RPC latency is 0; for a minimally instrumented
system, we do not have enough information to
determine the RPC latency in any manner, so
this assumption seeks to simplify any potential
issues here.

3.2 Extracting Uncertainty

To assist a developer in placement, we must be
able to determine the span executions accounting for
the most uncertainty in a system. We wish to provide
these suggested placements based on comprehensive,
system-wide data so that the optimal placement is ap-
plicable to various request types. As such, we will use
aggregate trace data to localize areas of uncertainty,
as inspired by CRISP and The Mystery Machine (see
2.2) and the broader insights in to the system this
allows.

Additionally, localizing uncertainty to a particular
span relies on exclusive latency (see 2.2), as this al-
lows us to causally determine the source of latencies.
We can only group these latencies across traces by
the operation names of the spans as we do not have
internal logs for the spans to classify them further.

Ultimately, however, we must direct developers to
areas with the highest uncertainties. To perform this,
we must develop metrics for uncertainty. We define
these as given in Definition 3.2.1.

Definition 3.2.1 (Uncertainty). The uncertainty of a
span is a statistical measure of spread (variance) of
the span’s exclusive latency across multiple traces.
In this project, we primarily rely upon the standard
deviation of the exclusive latencies. However, stan-
dard deviations may appear very large but instead
be attributable to natural variation of a very large
mean exclusive latency. To avoid misperception of
the statistic, the coefficient of variation – that is, the
standard deviation divided by the mean – is also cal-
culated so that the developer may compare relative
uncertainties.

Upon determining the uncertainties of the various
spans, we can rank these spans for the user by uncer-

tainty so that developers can determine which spans
to prioritize for instrumentation.

Our algorithm for our prototype is listed in Algo-
rithm 1.

Algorithm 1: Outline of pseudocode for de-
termining uncertainty measures for each span
across the various traces.
𝛼 → 𝛽=empty map of spans (𝛼) to lists of
latencies (𝛽);

for each trace 𝜏 do
for each span 𝑆 ∈ 𝜏 do

if 𝑆/∈ 𝛼 then
𝛼 ± 𝑆;

for each span 𝑇 ≠ 𝑆 ∈ 𝜏 do
if 𝑆 is 𝑇’s parent then

Update 𝑆 accordingly;

Calculate exclusive latency 𝜙𝑆 of 𝑆;
Add 𝜙𝑆 to list in 𝛽 corresponding to 𝑆
in 𝛼;

for each list of exclusive latencies ℓ ∈ 𝛽 do
Calculate uncertainty metrics;

Rank spans in 𝛼 by corresponding
uncertainty;

4 Evaluation
4.1 Implementation

To evaluate our algorithm, we constructed an app
implementation. We decided to base our app on
Python to expedite development of the prototype.
We used the streamlit library for app UI elements
and display.

To test our algorithm, we altered the HotROD code-
base to create four different scenarios with manually
injected latency (§ 4.2). For each scenario, we gen-
erated at least thirty requests using HotROD’s user
interface. We extracted these traces using one of
Jaeger’s APIs, which downloads all traces that con-
tain a specific span.

The following example code adds a log in a span for
the function FindNearest when no error has been
returned.
if err == nil {

s.logger.For(ctx).Info("FindNearest has executed without error",
zap.Int("connection_time",

200),
zap.String("overhead_information",

"the current overhead
is within the
normal range."))

}

The effect can be seen in Figure 6.
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Figure 6. Effect of code on HotROD trace data
as seen in Jaeger

4.2 HotROD Scenario Testing

The latencies that were manually programmed into
each scenario are detailed as follows:

Scenario 1: This scenario focuses on manipulat-
ing the latency of the operation GetDriver under
the service redis, which the service driver often
makes a series of calls to. Given how simple it is
given it only affects a single operation in a single
way, scenario 1 serves as a test of the most basic la-
tency issue that could happen to a system. To first
keep out any other potential variables that could im-
pact our result, redis|GetDriver (the format of a
span’s name as presented in Jaeger and our tool is
in the format of service name|operation name)
was set so that its normal latency would be around
100 milliseconds. This was done by editing the val-
ues RedisFindDelay and RedisFindStdDev from
HotROD’s config file to100 * time.Millisecond
and 0 * time.Millisecond, respectively, then ap-
plying these values to Golang’s native delay.Sleep()
function. The manually programmed latency in this
scenario was that redis|GetDriver had exactly
a 50% chance to experience an latency issue that
lengthens its latency to approximately 200 ms, while
during the other 50% of the time, it works flawlessly
and has a latency of 100 ms. This can be seen clearly
in Jaeger’s visualization, as shown in figure 7. This
also means that redis inevitably has a bimodal dis-
tribution in latency. The purpose of this scenario
was to test out how well our algorithm can detect la-
tency issues within each trace itself, which certainly
doesn’t cover how all latencies function. A manually
created latency issue that continuously influences the
same operation across multiple traces is presented
and tested in Scenario 2.

Scenario 2: Departing from scenario’s simpler
latency issue whose effects are only seen within a

Figure 7. The affected spans of Scenario 1 vi-
sualized in Jaeger.

single trace, scenario 2 focuses on a latency issue
that increases latency from one trace to the next. In
this scenario, the manually injected latency causes
each trace themselves to increases by around 100 ms
from the last by causing frontend to lag by 150
ms. For example, if the first generated trace has a
latency of 260 ms, then the next one would be 410
ms, the next 560 ms, as depicted by Jaeger in 8.
Therefore, the distribution of latencies in all the traces
in this scenario would be relatively equal. redis
is kept constant at 100 ms to eliminate unnecessary
variation. This scenario is different from the last one
in that its latency issue increases the latency of a
span trace after trace. It tests whether our algorithm
is able to differentiate trace-by-trace issues than the
kind from Scenario 1, where the issue causing the
latencies remains within the trace itself.

Figure 8. The affected spans of Scenario 2 vi-
sualized in Jaeger.

While Scenarios 1 and 2 are able to evaluate the
algorithm’s performance on detecting one single la-
tency that exists within the tool, it is important for
our algorithm to also be able to correctly identify and
locate multiple latencies. Therefore, scenario 3 and
4 were created to test out our algorithm’s ability in
tackling the challenge of two interconnected issues.

Scenario 3: In this scenario, each trace increases
100 ms from the last (the latency in Scenario 2) and
redis has 50% chance of being 500 ms, and the other
50% of chance being 1000 ms. Therefore, the two
latencies are independent of each other.

Scenario 4: Similar to Scenario 3, each trace in-
creases 100 ms from the last. Different from Scenario
3, however, a conditional was added. If and only if
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the length of the full trace is smaller than 800 ms,
will redis have the latency of 100 ms. Else, if the
length of the full trace is bigger than 800 ms, an extra
latency is added to redis, making it 200 ms. There-
fore, in this case, the two latencies are dependent on
each other in that one only happens if the other also
happens.

4.3 Results

Performance on Scenario 1:
As shown in Figure 9, our tool generates a ta-

ble that displays the ranked uncertainty measures for
each span within the trace. The table correctly high-
lights the span redis|GetDriver as the one with
the highest uncertainty overall, and therefore the one
that the user should prioritize placing trace points
in. Since the artificial latency was indeed injected
into redis|GetDriver, this demonstrates that our
algorithm has picked out the correct span to have the
developer focus on.

Figure 9. Uncertainty table of spans for Scenario
1.

As shown in the histogram in Figure 10, the bi-
modality of the latency in redis|GetDriver was
also correctly identified, as the histogram shows two
clear peaks without outliers. This demonstrates that
our algorithm not only has the ability to correctly
identify the span with the highest uncertainty but is
also capable of describing the specific pattern that
these spans have.

Performance on Scenario 2:
As shown in Figure 11, our algorithm identified
mySQL|SQL Select as the spans with the highest la-
tency. As shown from the information of the injected
latency, this is correct, displaying that our algorithm
correctly identified the spans that is the most uncer-
tain in the trace. Both latency issues within traces
themselves and latency issues from trace to trace has

Figure 10. Histogram of latency for
redis|GetDriver in Scenario 1

been correctly identified and highlighted.

Figure 11. Uncertainty table of spans for Sce-
nario 2.

Performance on Scenario 3:
Scenario 3 differs from the cases that were tested

before in that two artificial latencies were injected into
two separate span: in our case, redis|GetDriver
as well as mySQL|SQL Select. The algorithm
did correctly highlight redis|GetDriver, but had
issues correctly pointing out mySQL|SQL Select,
as shown in Figure 12. In the column of co-
efficient of variation of exclusive latency, the
span frontend|HTTP GET: /customer was high-
lighted. With Figure 13, we can notice that that this
span is actually a relatively nearby parent span of
mySQL|SQL Select. Although the algorithm does
not highlight all high-uncertainty spans in the case
where there are more than one latency issue happen-
ing, it is still able to locate a nearby parent span,
greatly shrinking the potential area for trace point
placement.

As can be seen from Figure 14, the bimodality of
redis|GetDriver was again accurately picked up
by our tool.

Performance on Scenario 4:
Scenarios 3 and 4 share the same latency issues,

which our algorithm picked up here in Scenario 4
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Figure 12. Uncertainty table of spans for Sce-
nario 3.

Figure 13. A section from a trace, shown in
Jaeger, displaying the nearby parent spans of
mySQL|SQL Select

Figure 14. Histogram of latency for
redis|GetDriver in Scenario 3.

with a fashion similar to how it processed Scenario 3:
as shown in Figure 15, redis|GetDriverwas high-
lighted, while a nearby parent span of mySQL|SQL
Select was also pointed out. However, our algo-
rithm was not able to pick up on the critical difference
between Scenarios 3 and 4 – that is, the fact that the
two latency issues in Scenario 4 were dependent on
each other.

Figure 15. Uncertainty table of spans for Sce-
nario 4.

Once more, as seen in Figure 15, the bimodality of
redis|GetDriver was accurately picked up by our

tool.

Figure 16. Histogram of latency for
redis|GetDriver in Scenario 4.

We can confirm that the artificial bimodality that
existed in Scenarios 1, 3, and 4 were indeed artificial
and does not stem from HotROD itself by observing
the histogram of the latencies of redis|GetDriver
in HotROD without any artificial latencies. Figure 17
presents this information. While it shows a general
bimodal trend, the peaks are each much wider than
those show in the previous histograms, therefore still
presenting a very different structure than any of the
artificially-injected latencies have made.

Figure 17. Histogram of latencies for
redis|GetDriver in the Control Scenario.

5 Limitations and Future Work

While our algorithm is able to straightforwardly
identify latencies, it operates based on a key major as-
sumption about spans that is not necessarily realistic
in some real life services that are based on distributed
systems. Our algorithm assumes that while a parent
span is waiting on child span, it does not do anything
itself besides potentially calling other children spans.
This assumption greatly simplifies the complexity of
the system’s dynamic, but can most certainly con-
tributes to the oversimplification of the issue in such
systems, especially those that occur on parent spans
as they are waiting for their children spans to finish.

The second limitation of our algorithm is that it
currently does not support synchronous analysis of
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distributed systems – analyzing the system as it is
currently running and adapting to the behaviour of
the system’s real-time changes. Our tool requires an
input of at least 30 traces for results to be statistically
significant, and only supports the analysis of existing
JSON files, which can decrease its capability to ac-
curately locate areas of uncertainty for systems that
are highly dynamic.

A third limitation of our algorithm is that although
it is meant to be used for any given distributed system,
it was tested only on HotROD, a simulated platform
that can be regarded as relatively simple. HotROD
has less than 20 services in total, and the way each
span connects to its parent and children spans is ex-
tremely straightforward. This limits the variations of
latencies issues that it supports, therefore, we were
not able to test an extensive set of differing latency
issues on our algorithm.

Additionally, there are further limitations that nar-
row the implementation choices of our program. For
instance, the program is unlikely to be particularly
useful if its decisions are made solely on the basis of
request paths generated by user requests. This is due
to the fact that user requests as well as traffic during
user requests may vary greatly, resulting in inconsis-
tencies that may confound the program. Thus, there
must likely be some component of the program that
can also generate and test request paths artificially.

Another issue is that, besides measures of over-
head, there is currently no conventionally-used metric
for the evaluation of the efficacy of a particular trac-
ing scheme that does not involve surveying human
developers. Since this efficacy varies from developer
to developer and codebase to codebase (accounting
for the different architecture types and API standards
that the program may encounter), establishing an ob-
jective metric in a universally applicable manner may
be difficult.

Another limitation of our algorithm is the fact that
it only works at its best when the latency issue(s)
in the system that is being analyzed is pronounced.
When we conducted tests on our four sets of artificial
latencies, we repeatedly changed the length of the
latencies in each set by factors of 10 and 100. Our
tool worked well in all repetitions, no matter the size
of the latencies that were being injected. However,
our tool’s accuracy only drastically increased as the

length of the latencies were multiplied by factors of
100 or more.

In seeking to address these issues, we have con-
sidered numerous avenues by which to potentially
expand upon our existing prototype. Foremost, in
addition to assisting developers by examining latency
anomalies, we could consider structural anomalies as
well. This would be particularly useful to address
cases where structural issues impact end-to-end la-
tency, even where they do not affect individual span
latencies.

Another possibility we could consider is alterna-
tive methods of representing trace data for process-
ing. For instance, the event-based model (as opposed
to the span-based model) would operate on the ba-
sis of distinct trace points as opposed to span-based
intervals. This model can be useful to reduce ambi-
guity that the span-RPC model may introduce, such
as unclear temporal relationships in parent-child re-
lationships. This would allow spans to contain logs
rather than having to rely on internal spans.

5.1 TrainTicket

HotROD is a rather simplistic model of a dis-
tributed system. More complex models, such as
TrainTicket, may provide better simulations of trace
data and issues that a distributed system may face.

TrainTicket is a mostly Java-based simulation of a
train booking service based on an architecture with 41
microservices — much more than the 4 implemented
in HotROD. Like HotROD, TrainTicket was also pro-
grammed to support span visualization with Jaeger,
enabling us to insert, delete, and test spans as well as
logs like we were able to with TrainTicker. However,
what makes TrainTicket an even better alternative to
HotROD is the fact that it is written in Java, instead of
Golang – the much less used and therefore supported
language.

5.2 EBPF

One possibility for the project is not merely to ad-
vise developers on the placement of trace points, but
additionally to insert trace points as well. This could
both automate instrumentation and be used to test
how well different placements improve predictability
of the request path latency.

10
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This could be approached using a tool called eBPF
(extended BPF). It is a tool that works quite analo-
gously to a virtual machine that is able to provide
users access to the memory of the Linux kernel.
The most important part of eBPF, though, lies in
its “probes.” BPF (and, in extension, eBPF) provides
users with probes that they are able to insert in any
place in a program. These probes are then able to col-
lect and transmit information around the environment
in which this specific piece of code was executed. For
example, one type of probes are uprobes (userspace
probes), which users can stick to any userspace pro-
gram for it to inject interrupting instruction so that
it can capture the arguments of the function it is in.
This technique is also the core logic of how many de-
buggers with trace points work. eBPF also provides
to its users many other types of probes that are suited
to record information in a wide variety of programs,
like kprobes that collect information from the kernel.
With its spectacular ability to hook probes and record
information, as well as its support for many languages
(including Golang and Java), eBPF is one of the first
testing techniques that we will be trying to implement
in the next stages of our project.

5.3 Machine Learning

Another tool that we have considered in machine
learning. This is a tool that could work perfectly for
a complex task such as ours. For instance, a machine
learning algorithm could be used to learn the intrica-
cies and standards of a particular distributed system
as well as learn the edge cases and errors, rendering
it an adaptable tool. The parallels between this task
and the applications of machine learning were also
identified previously by the creators of Sifter [3] for
more details).

However, we have largely set the idea of machine
learning aside due to the issue of practicality. Devel-
oping a machine learning model for our task would
require large amounts of training data. While the
developers of Sifter [3] used simulated tracing data
to train the program, this is often impractical as it
does not accurately simulate the request paths of real
distributed systems.

5.4 Content

Similarly to the issue with placement discussed in
2.4, if instrumentation neglects the content of trace
points, the developer may only receive temporal infor-
mation on the latency between servers in the system
whereas the true cause of a bottleneck may instead be
restricted memory; or, the developer may instrument
trace points to record every metric available, resulting
in once again needing to later sift through extraneous
data to determine the true cause of an anomaly. On the
other hand, if the developer has an abundance of ir-
relevant information regarding content stored in each
trace point, it will again be difficult to differentiate
the useful ones as the developer has to manually run
through a big volume of data to locate them. Record-
ing too much information down will also inevitably
create big overhead and slow down the program by
taking up too much memory.

The ideal content that a trace point should contain
is dependent on the performance issues that often ap-
pear, which can change throughout different sections
of the code. For example, a performance issue can be
“workload not getting the resources it needs to com-
plete in time” or “the resource is obtained but is not
fast enough to provide the desired response time.”
That is, “content” deals with problems such as re-
source usage, span genealogy, and metrics. Some
examples are:

• The address spaces that have the highest delays
in the system

• Important resources as well as who is using and
who is waiting for these resources

• Information about storage consumption, like
paging, migration, frames available, etc.

• The utilization of common storage

• Activities in the CPU, cache system, and RAM

Looking at options of reports like the ones above,
we know that we need trace points to return infor-
mation like the address spaces that have high delays,
and, connecting to that, which part of the application
is using this address space, as well as which parts of
application is currently waiting for this address space
to become empty and is thus being delayed.
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Currently, our prototype does not utilize span con-
tents, like internal logs or host information. Rather,
we rely upon span names to group behaviors. In the
future, we could additionally use internal logs or key-
value pairs if they are included in the spans to reduce
uncertainty without needing to add additional instru-
mentation. As such, advising developers on content
could be an intriguing avenue for our prototype.

6 Conclusion

Developers of distributed systems use distributed
tracing to provide visibility into the complex inter-
actions within the system. Oftentimes, they must
manually instrument their codebases and have diffi-
culty determining where to place instrumentation to
maximize utility. We presented a tool that utilizes
aggregate trace data from a distributed system to lo-
calize regions of high relative uncertainty by rank-
ing services according to uncertainty metrics, like
the standard deviation of exclusive latency. Our tool
is capable of accurately uncovering and highlight-
ing the services with the highest uncertainty within a
system, no matter if the issue causing the uncertainty
acts within traces or from one trace to another. In
addition, our tool is also able to accurately pick out
and visualize significant patterns within the distribu-
tion of exclusive latencies of the services within a
system. To further continue our research, we hope to
take measures such as implementing other statistical
uncertainty measures or incorporating other tracing
implementation tools like eBPF.
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