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ABSTRACT. The goal of this article is to study some basic algebraic and combinatorial properties of “gener-
alized n-series” over a commutative ring R, which are functions s : Z≥0 → R satisfying a mild condition.
A special example of generalized n-series is given by the q-integers qn−1

q−1
∈ Z[q]. Given a generalized

n-series s, one can define s-analogues of factorials (via n!s =
∏n

i=1 s(n)) and binomial coefficients. We
prove that Pascal’s identity, the binomial identity, Lucas’ theorem, and the Vandermonde identity admit s-
analogues; each of these specialize to their appropriate q-analogue in the case of the q-integer generalized
n-series. We also study the growth rates of generalized n-series defined over the integers. Finally, we
define an s-analogue of the (q-)derivative, and prove s-analogues of the Poincaré lemma and the Cartier
isomorphism for the affine line, as well as a pullback square due to Bhatt-Lurie.
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1. INTRODUCTION

1.1. Summary. Recent work of Bhatt, Drinfeld, Lurie, Morrow, Scholze, and others (see, e.g., [BMS18,
BS19, Sch17, Dri21, Dri22, BL22]) has shown that q-deformations of classical number-theoretic and
algebro-geometric concepts play a central role in arithmetic geometry. The basic premise behind the
theory of q-deformations is the idea that the q-integers [n]q = qn−1

q−1 display many similarities to the
ordinary integers. This idea has a rich history: the key ideas date back to Euler and Jacobi, and a q-
analogue of the derivative originates with Jackson in 1909 (see [Jac09]). We refer the reader to the book
[KC02] for a detailed exposition of q-deformed mathematics.

The theory of formal group laws supplies a simultaneous generalization of both ordinary integers and
q-integers (see Recollection 4.3.1 for a quick summary of the basics of formal group laws, and [Haz78,
Rav86] for a detailed treatment). Namely, every formal group law F over a ring R defines a sequence of
power series ⟨n⟩ over R for every integer n ∈ Z. In the case of the the additive formal group law x+ y,
we have ⟨n⟩ = n; and in the case of the multiplicative formal group law x + y + xy, one can identify
⟨n⟩ = [n]q . The goal of this article is to explore whether certain aspects of q-deformed mathematics (such
as q-analogues of basic combinatorial formulae, and properties of the q-de Rham complex of [Sch17])
admit generalizations to arbitrary formal group laws. The primary motivation behind our investigation is
the unpublished observation of Arpon Raksit that homotopy-theoretic methods naturally suggest studying
“F -analogues” of the q-deformations arising in the aforementioned work of Bhatt-Morrow-Scholze.1

Our primary observation is that one does not need the structure of a formal group law to define and
study these “F -analogues”. Instead, the following significantly weaker structure suffices:

Definition (Definition 2.1.4). Fix a ring R (always assumed commutative with unit). A generalized
n-series (GNS) over R is a function s : Z≥0 → R such that:

(1) s(0) = 0,
(2) s(n) is not a zero-divisor for any n > 0,
(3) s(n− k) | s(n)− s(k) for all n > k > 0.

For instance, the map s : Z≥0 → Z[[q − 1]] sending n 7→ [n]q = qn−1
q−1 defines a GNS.

In the body of this article, we show that this simple definition is sufficient for proving several ana-
logues of classical combinatorial identities, and is also enough to study an “s-deformation” of the classi-
cal algebraic de Rham complex. The results of this article do not rely on any sophisticated tools: rather,
the purpose is to demonstrate the efficiency of Definition 2.1.4. The work done in this article seems
closely related to Bhargava’s [Bha00], but we have not attempted to make a comparison.

If n ≥ 0, let n!s =
∏n

k=1 s(k), and let
(
n
j

)
s
= n!s

j!s(n−j)!s
denote the s-analogues of the factorial

and binomial coefficient, respectively. Our main combinatorial results are the following; for the full
statement of some of these results, we refer the reader to the body of the text.

Theorem A. Fix a GNS s over R. The following hold:

(1) Pascal’s identity (Proposition 2.1.3):(
n

k

)
s

=

(
n− 1

k − 1

)
s

+
s(n)− s(k)

s(n− k)

(
n− 1

k

)
s

.

(2) An s-analogue of the binomial and q-binomial theorems; see Theorem 2.3.7.
(3) Lucas’ theorem (Proposition 2.4.8): suppose that s(1) = 1 and

s(a+ b) ≡ s(a) + s(b) (mod s(a)s(b))

1Since the actual homotopy theory does not play any role in this paper, we refer the interested reader to Remark 4.3.25 below
for more.
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for all a, b ∈ Z>0. Then, for any prime p and any nonnegative integers n1, n0, k1, k0 such that
n0, k0 < p, we have(

n1p+ n0

k1p+ k0

)
s

≡
(
n1

k1

)(
n0

k0

)
s

(mod s(p)).

(4) An analogue of the Vandermonde and q-Vandermonde identities; see Theorem 2.5.4.

In Section 3, we study the growth rate of generalized n-series over Z. For instance, we show in
Theorem 3.3.1 that if s(n) is a strictly increasing generalized n-series over Z which is not a scalar
multiple of n 7→ [n]q for any q ∈ Z>0, then s(n) = Ωa(a

n) for all a ≥ 0.
As one might expect given our motivation above, one important class of examples of generalized

n-series arises via formal group laws. Recall (see Recollection 4.3.1) that a formal group law over a
commutative ring R is a two-variable power series x +F y ∈ R[[x, y]] such that (x +F y) +F z =
x+F (y +F z) and x+F y ≡ x+ y (mod (x, y)2). If n ≥ 0 is an integer, the n-series of F is defined
via the formula

[n]F (t) =

n︷ ︸︸ ︷
t+F t+F · · ·+F t ∈ tR[[t]].

Let ⟨n⟩F = [n]F (t)
t . Suppose (for simplicity) that R is torsionfree. Then, the function Z≥0 → R[[t]]

sending n 7→ ⟨n⟩F defines a GNS over R[[t]] (Proposition 4.3.4).
One can define the F -de Rham complex of the affine line A1 = SpecR[x] as the cochain complex

FΩ□,A1 =
(
R[[t]][x]

∇F−−→ R[[t]][x]dx
)
, xn 7→ ⟨n⟩Fxn−1dx.

This was first defined by Arpon Raksit in unpublished work. Many analytic properties of the usual
(q-)derivative continue to hold for the F -derivative: for instance, we show (see Corollary 4.3.15) that
there is an explicit power series F log(x) which recovers the q-logarithm when F is the q-integer GNS,
and which satisfies the property that ∇F (F log(x)) = 1/x. Using this analogue of the q-logarithm, we
prove a generalization of the Cartesian square of [BL22, Lemma 3.5.18] in Theorem 4.4.10.

Our main results regarding the F -de Rham complex can be summarized as follows:

Theorem B (Theorem 4.3.21). Let R be a torsionfree (say) commutative ring, and let F be a formal
group law over R.

(1) Let R[[t]]⟨x⟩F denote the ring R[[t]][x, xn

[n]F ! ]n≥0. Then the Poincaré lemma holds: the coho-
mology of the complex FΩ□,A1 ⊗R[[t]][x] R[[t]]⟨x⟩F is concentrated in degree zero, where it is
isomorphic to R[[t]].

(2) The Cartier isomorphism holds: after setting ⟨p⟩F = 0, the ith cohomology of the complex
FΩ□,A1 is isomorphic to the ith term of a Frobenius twist of FΩ□,A1 .

(3) There is an analogue of the décalage isomorphism of [BO78, BS19] for FΩ□,A1 .

This result in fact admits a generalization to arbitary GNS (not just ones which arise from formal
group laws), but the statement is slightly more complicated; see Section 4.2. As with the combinatorial
results above, Theorem 4.3.21 is not technically involved; however, it is supposed to serve as a blueprint
for a more general program that we outline at the end of Section 4.3. In particular, we expect (see
Conjecture 4.3.23) that the assignment R[x1, . . . , xn] 7→ (FΩ□,A1)⊗R[[t]]n should extend to a functor
from the category of commutative R-algebras to the ∞-category of E∞-R[[t]]-algebras.

1.2. Table of commonly-used notation. This article will introduce some notation which will be used
heavily throughout. For the reader’s convenience, we have summarized the commonly-used ones in the
table below.
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Symbol Definition Location in text
R[1/s] R[s(1)−1, s(2)−1, · · · ] (1)
cs(n, k)

s(n)−s(k)
s(n−k) (2)

(x+ y)ns Characterized by specific conditions Definition 2.3.5
Cs(n, k)

s(n+k)−s(n)−s(k)
s(n)s(k) Notation 2.4.4(

n
j

∣∣∣∣m
k

)
s

∑
m<i1<i2<···<ij≤m+n

(∏j
ℓ=1 cs(iℓ, iℓ − k + j − ℓ)

)
Definition 2.5.2

⟨n⟩F (t) [n]F (t)
t for a FGL F (x, y) Recollection 4.3.1

ℓF (t), EF (t) Logarithm and exponential of a FGL Recollection 4.3.1
F log(x) t

ℓF (t) log(x) Corollary 4.3.15
G♯,F

m “F -divided power hull” of zero section of Gm Definition 4.4.5

1.3. Acknowledgements. The first author is grateful to Ben Antieau and (especially) Arpon Raksit for
discussions on this topic, as well as Michael Kural for his help in proving the main result of Section 4.4 in
the case of the multiplicative formal group law. The first author was supported by the NSF GRFP under
grant DGE-2140743. The second author is grateful to Pavel Etingof for suggesting that an s-analogue of
the q-binomial theorem might exist. Finally, both authors are grateful to the directors and organizers of
PRIMES-USA for the opportunity to collaborate, as well as for comments on this article!
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2. THE s-BINOMIAL COEFFICIENTS

2.1. A generalization of binomial coefficients. Recall that the binomial coefficient
(
n
k

)
is defined by(

n

k

)
=

n!

k!(n− k)!
.

The q-factorial and q-binomial coefficients are defined by

[n]!q = [1]q · [2]q · · · · · [n]q,
(
n

k

)
q

=
[n]!q

[k]!q[n− k]!q
,

where [n]q = (qn − 1)/(q − 1) ∈ Z[[q − 1]]. The similarity of these two definitions hints that it might
be interesting to study a simultaneous generalization of the usual and q-binomial coefficients, where
the sequence of elements n ∈ Z and [n]q ∈ Z[[q − 1]] are replaced by a sequence of elements in a
commutative ring satisfying certain conditions.

Definition 2.1.1. Let R be a ring, and let s : Z≥0 → R be a function such that s(0) = 0 and for all
n > 0, s(n) is not a zero-divisor. For integers n ≥ k ≥ 0, we define the s-factorial n!s by

0!s = 1, n!s =

n∏
k=1

s(k),

and the s-binomial coefficient
(
n
k

)
s

by (
n

k

)
s

=
n!s

k!s(n− k)!s
.

Remark 2.1.2. In general, this quotient is undefined in R; however, it is always defined in the localiza-
tion

(1) R[1/s] := R[s(1)−1, s(2)−1, s(3)−1, . . . ].

We will soon restrict to the case where the s-binomial coefficients are elements of R.

The s-binomial coefficient need not satisfy any nice properties, since there are no restrictions placed
on s. Our first observation is the following.

Proposition 2.1.3. Let R be a ring and let s : Z≥0 → R be a function that satisfies the following
conditions:

(1) s(0) = 0,
(2) s(n) is not a zero-divisor for any n > 0,
(3) s(n− k) | s(n)− s(k) for all n > k > 0.

Then, for all integers n ≥ k ≥ 0, the s-binomial coefficient
(
n
k

)
s

is an element of R, and the s-binomial
coefficients satisfy an “s-Pascal identity”: For all n > k > 0,(

n

k

)
s

=

(
n− 1

k − 1

)
s

+
s(n)− s(k)

s(n− k)

(
n− 1

k

)
s

.
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Proof. Indeed, observe that in the localization R[1/s], we have:

s(n)− s(k)

s(n− k)

(
n− 1

k

)
s

=
s(n)− s(k)

s(n− k)

(n− 1)!s
k!s(n− k − 1)!s

=
s(n) · (n− 1)!s
k!s(n− k)!s

− s(k) · (n− 1)!s
k!s(n− k)!s

=
n!s

k!s(n− k)!s
− (n− 1)!s

(k − 1)!s(n− k)!s

=

(
n

k

)
s

−
(
n− 1

k − 1

)
s

.

It remains to show that
(
n
k

)
s
∈ R for all n ≥ k ≥ 0. We will use induction on n.

The base case is clear, since
(
0
0

)
s
= 1 ∈ R. For the inductive step, assume that for some fixed n and

for all k with n − 1 ≥ k ≥ 0,
(
n−1
k

)
s
∈ R. Let k be an integer such that n ≥ k ≥ 0. If k = 0, then(

n
k

)
s
= 1 ∈ R. Otherwise, we can apply the s-Pascal identity:(

n

k

)
s

=

(
n− 1

k − 1

)
s

+
s(n)− s(k)

s(n− k)

(
n− 1

k

)
s

.

By the inductive hypothesis, the two s-binomial coefficients on the right-hand side are in R, and by
condition (c) in the theorem statement, s(n)−s(k)

s(n−k) ∈ R. Therefore,
(
n
k

)
s
∈ R. This completes the

induction proof. □

Motivated by Proposition 2.1.3, we are led to the following:

Definition 2.1.4. Let R be a ring. A generalized n-series (GNS) over R is a function s : Z≥0 → R such
that the following conditions are true:

(1) s(0) = 0,
(2) s(n) is not a zero-divisor for any n > 0,
(3) s(n− k) | s(n)− s(k) for all n > k > 0.

If s is a generalized n-series, we will define

(2) cs(n, k) :=
s(n)− s(k)

s(n− k)
.

Example 2.1.5 (Integers). The inclusion s : Z≥0 → Z is clearly a GNS over Z.

Example 2.1.6 (q-integers). Consider the function s : Z≥0 → Z[[q − 1]] given by s(n) = [n]q . This
defines a GNS: the first two conditions are satisfied, since [0]q = 0, [n]q ̸= 0 for n > 0, and Z[[q − 1]] is
an integral domain. For the third condition, note that

[n]q − [k]q =
qn − 1

q − 1
− qk − 1

q − 1
=

qn − qk

q − 1

= qk
(
qn−k − 1

q − 1

)
= qk[n− k]q.

Therefore, s is a GNS over Z[[q−1]], and we can apply Proposition 2.1.3 to conclude that
(
n
k

)
q
∈ Z[[q−1]]

for all n ≥ k ≥ 0. The s-Pascal identity reduces to the well-known q-Pascal identity:(
n

k

)
q

=

(
n− 1

k − 1

)
q

+ qk
(
n− 1

k

)
q

.



GENERALIZED n-SERIES AND DE RHAM COMPLEXES 7

Remark 2.1.7. One can extend the definition of the s-binomial coefficients to allow arbitrary integers k
by defining

(
n
k

)
s
= 0 when k < 0 or k > n. Using this extended definition, the s-Pascal identity remains

true when k = 0: (
n− 1

−1

)
s

+
s(n)− s(0)

s(n− 0)

(
n− 1

0

)
s

= 0 + 1 · 1 = 1 =

(
n

0

)
s

.

This relies on the condition s(0) = 0. The fact that Pascal’s identity fails for k = 0 if s(0) ̸= 0 is one
motivation for including condition (1) in the definition of GNS.

2.2. Number-theoretic properties of generalized n-series. In this section, we prove some number-
theoretic properties of generalized n-series, which will be useful later in this article. The main result of
this section is the following:

Theorem 2.2.1. Let s be a generalized n-series over a ring R. Then, for all a, b, n ∈ Z≥0,
(1) a | b =⇒ s(a) | s(b),
(2) a ≡ b (mod n) =⇒ s(a) ≡ s(b) (mod s(n)),
(3) the ideals (s(a), s(b)) and (s(gcd(a, b))) are equal.

If s(1) is a unit in R, then for all a, n ∈ Z≥0,
(4) a is a unit in Z/n =⇒ s(a) is a unit in R/s(n).

Remark 2.2.2. In the case R = Z, the equivalence of ideals in Theorem 2.2.1 is equivalent to

gcd(s(a), s(b)) = ±s(gcd(a, b)).

We will prove Theorem 2.2.1 as a sequence of lemmas. Fix a generalized n-series s over a ring R.

Lemma 2.2.3. Let a, b ∈ Z≥0. Then, a | b implies s(a) | s(b).

Proof. We will use induction. Base case: s(a) | s(0) because s(0) = 0. Inductive hypothesis: Let
n ∈ Z>0, and assume that s(a) | s(a(n − 1)). Then, by the divisibility condition in the definition of
generalized n-series,

s(a) | s(a(n− 1)) = s(an− a) | s(an)− s(a),

so s(a) | s(an). □

Lemma 2.2.4. Let a, b, n ∈ Z≥0. If a ≡ b (mod n) then

s(a) ≡ s(b) (mod s(n)).

Another way to state this lemma is that s induces a well-defined function from Z/n to R/s(n).

Proof. By the definition of congruence, n | a− b, so s(n) | s(a− b) by Lemma 2.2.3. The definition of
generalized n-series requires that

s(a− b) | s(a)− s(b),

so s(n) | s(a)− s(b), which means that s(a) ≡ s(b) (mod s(n)). □

Lemma 2.2.5. Suppose that s(1) is a unit in R. If a, n ∈ Z≥0 such that a is a unit in Z/n, then s(a) is
a unit in R/s(n).

Proof. Let b be the multiplicative inverse of a modulo n. Then, ab ≡ 1 (mod n). By Lemmas 2.2.3 and
2.2.4,

s(a) | s(ab) ≡ s(1) (mod s(n)).

So in the ring R/s(n), s(a) divides s(1), which is a unit (because it is a unit in R). Therefore, s(a) is a
unit in R/s(n). □

Lemma 2.2.6. Let a, b ∈ Z≥0. Then, we have the following equivalence of ideals:(
s(gcd(a, b))

)
=
(
s(a), s(b)

)
.
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Proof. Let d = gcd(a, b). By Lemma 2.2.3, s(d) | s(a) and s(d) | s(b), so s(a), s(b) ∈ (s(d)). This
means that (

s(d)
)
⊇
(
s(a), s(b)

)
.

For the other direction, we can use Bézout’s identity to write d = am+ bn for some m,n ∈ Z. Taking
this equation modulo a gives d ≡ bn (mod a). By Lemma 2.2.4, s(d) ≡ s(bn) (mod s(a)). Therefore,
Lemma 2.2.3 implies that

s(d) ∈ s(bn) +
(
s(a)

)
⊆
(
s(a), s(b)

)
,

and hence
(
s(d)

)
⊆
(
s(a), s(b)

)
. This shows that the two ideals are equal. □

2.3. The s-binomial theorem.

Recollection 2.3.1. The binomial theorem and the q-binomial theorem are the following two identities:

(x+ y)n =

n∑
k=0

(
n

k

)
xn−kyk,

(x+ y)nq =

n∑
k=0

(
n

k

)
q

qk(k−1)/2xn−kyk,

where (x+ y)nq is defined by

(x+ y)nq =

n−1∏
k=0

(x+ qky) = (x+ y)(x+ qy) · · · (x+ qn−1y).

Note that the x+ y in the parentheses is part of the notation, and cannot be treated as a sum; see [KC02]
for this notation.

Remark 2.3.2. For readers who are familiar with the q-Pochhammer symbol, (x+y)nq = xn(−y/x; q)n,
and (a; q)n = (1 + (−a))nq .

We will now state and prove an analogue of the binomial theorem for the s-binomial coefficients.
We begin by defining an analogue of the symbol (x + y)nq . To motivate the definition, recall that the
q-analogue (x+ y)nq is the unique polynomial in Z[[q − 1]][x, y] such that the following properties hold:

• The q-derivative with respect to x of (x + y)nq is [n]q(x + y)n−1
q . This is analogous to the fact

that the classical derivative of (x+ y)n with respect to x is n(x+ y)n−1.
• (x+ y)0q = 1.
• If y = −x, then (x+ y)nq is 0 for all n > 0.

To define an s-analogue (x + y)nq in a similar way, we need an s-derivative; we will greatly expand on
this notion in Section 4.

Definition 2.3.3. Let s : Z≥0 → R be a GNS. The s-derivative is the R-linear map ∇s : R[x] → R[x]
given on monomials by ∇s(x

n) = s(n)xn−1.

Remark 2.3.4. When n = 0, we have ∇s(x
0) = s(0)x−1. This is not defined in R[x] unless s(0) = 0,

which is always true when s is a GNS. Continuing Remark 2.1.7, this observation is another reason for
requiring s(0) = 0 in the definition of GNS.

We can now define (x+ y)ns :

Definition 2.3.5. Let s be a GNS over R, so that R[1/s] = R[s(1)−1, s(2)−1, . . . ]. Define (x+ y)ns for
n ∈ Z≥0 to be the unique polynomial in R[1/s][x, y] such that the following three conditions hold:

(1) (x+ y)0s = 1,
(2) (x+ (−x))ns = 0 for all n > 0,
(3) ∇s,x(x+ y)ns = s(n)(x+ y)n−1

s .
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Here, ∇s,x : R[1/s][x, y] → R[1/s][x, y] is the operator given by the “s-derivative with respect to x”: it
is simply the R[1/s][y]-linear extension of the s-derivative ∇s : R[x] → R[x] to R[1/s][x, y].

Lemma 2.3.6. The symbol (x+y)ns in Definition 2.3.5 is well-defined: it exists and is unique. Moreover,
(x+ y)ns is a homogeneous polynomial of degree n.

Proof. We will use induction on n. For the base case n = 0, observe that (x+ y)0s = 1 by condition (1).
For the inductive step, fix n > 0, and suppose that for all k < n, (x + y)ks is well-defined and

homogeneous of degree k. We can s-antidifferentiate s(n)(x+y)n−1
s using the R[1/s][y]-linear operator

Is,x : R[1/s][x, y] → R[1/s][x, y] defined on monomials by Is,x(x
k) = s(k+1)−1xk+1. By definition,

this operator produces polynomials with no term of x-degree 0. Although the s-antiderivative

f(x, y) = Is,x(s(n)(x+ y)n−1
s )

is homogeneous of degree n (since the operator Is,x increases x-degree by 1) and satisfies condition (3), it
might not equal (x+y)ns because it does not have to satisfy condition (2). Since f(x, y) is homogeneous
of degree n, f(x,−x) is a scalar multiple of xn, say axn. Then, the polynomial

g(x, y) = f(x, y)− a(−y)n

satisfies

∇s,xg(x, y) = ∇s,xf(x, y) = s(n)(x+ y)n−1
s

and

g(x,−x) = f(x,−x)− a(−(−x))n = axn − axn = 0.

It follows that (x+ y)ns exists, and one possible value for it is g(x, y), which is homogeneous of degree
n.

It remains to show that (x + y)ns is unique. We know that any polynomial h(x, y) that satisfies
the conditions of (x + y)ns must match g(x, y) in every term with positive x-degree, because their s-
derivatives with respect to x are both s(n)(x + y)n−1

s . Therefore, h(x, y) − g(x, y) is a scalar multiple
of yn, say byn. Setting y = −x gives b(−x)n = h(x,−x) − g(x,−x), which is 0 by condition (2), so
b = 0. Therefore, h(x, y) = g(x, y). This proves that (x+ y)ns is unique and is equal to g(x, y). □

Recall from Section 2 that we originally defined the s-binomial coefficients as elements of the ring
R[1/s] = R[s(1)−1, s(2)−1, . . . ], and later proved (using the s-Pascal identity) that if s is a GNS, then
all the s-binomial coefficients are elements of R. We will do something similar for (x + y)ns below,
and we will use the s-binomial theorem as a lemma in the proof that (x + y)ns ∈ R[x, y]. Here is the
s-binomial theorem:

Theorem 2.3.7 (s-binomial theorem). Let s be a GNS over R. Then, as elements of R[1/s][x, y], we
have:

(x+ y)ns =

n∑
k=0

(
n

k

)
s

xn−kyk(0 + 1)ks .

Proof. We will use induction on n, and the inductive step will mainly consist of applying the s-antidifferentiation
operator Is,x from the proof of Lemma 2.3.6 to both sides. For the base case, observe that if n = 0, both
sides are 1.

For the inductive step, fix n > 0, and assume that the s-binomial theorem is true for n− 1:

(x+ y)n−1
s =

n−1∑
k=0

(
n− 1

k

)
s

xn−k−1yk(0 + 1)ks .
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Multiplying both sides by s(n), applying Is,x, and using R[1/s][y]-linearity gives:

Is,x(s(n)(x+ y)n−1
s ) = s(n)

n−1∑
k=0

(
n− 1

k

)
s

Is,x(x
n−k−1)yk(0 + 1)ks

=

n−1∑
k=0

s(n)

s(n− k)

(
n− 1

k

)
s

xn−kyk(0 + 1)ks .

Notice that
s(n)

s(n− k)

(
n− 1

k

)
s

=
s(n)(n− 1)!s

s(n− k)k!s(n− k − 1)!s
=

n!s
k!s(n− k)!s

=

(
n

k

)
s

.

This implies that

Is,x(s(n)(x+ y)n−1
s ) =

n−1∑
k=0

(
n

k

)
s

xn−kyk(0 + 1)ks .

The right-hand side almost looks like the right-hand side of the s-binomial theorem that we are trying to
prove, but the upper limit of the summation is n − 1 instead of n. To fix this, add yn(0 + 1)ns to both
sides, giving

Is,x(s(n)(x+ y)n−1
s ) + yn(0 + 1)ns =

n∑
k=0

(
n

k

)
s

xn−kyk(0 + 1)ks .

We just have to show that the left-hand side is equal to (x+ y)ns .
Let g(x, y) be the left-hand side. The s-derivative with respect to x of g(x, y) is s(n)(x + y)n−1

s ,
because Is,x is an s-antiderivative operator (a right inverse of ∇s,x) and yn(0 + 1)ns is constant with
respect to x. This is equal to the s-derivative of (x + y)ns , so g(x, y) matches (x + y)ns in all terms
with positive x-degree. Both g(x, y) and (x+ y)ns are homogeneous of degree n, so the only terms with
x-degree 0 are the yn terms. The coefficient of yn in g(x, y) is (0 + 1)ns because Is,x never produces
terms with x-degree 0. The yn term of (x + y)ns is (0 + y)ns , which is yn(0 + 1)ns by homogeneity, so
the coefficient of yn in (x+ y)ns is also (0 + 1)ns . Therefore, g(x, y) = (x+ y)ns , so

(x+ y)ns =

n∑
k=0

(
n

k

)
s

xn−kyk(0 + 1)ks .

This is what we needed to show for the inductive step. □

To complete this subsection, we will show that the coefficients of (x + y)ns are elements of R for all
GNS s over R and all n ∈ Z≥0. This means that the s-binomial theorem is really an equivalence of
polynomials in R[x, y], and can be stated without using the larger ring R[1/s][x, y].

Proposition 2.3.8. Let s be a GNS over a ring R. For all nonnegative integers n, we have (x + y)ns ∈
R[x, y].

Proof. It suffices to show that (0+1)ns ∈ R for all nonnegative integers n, because using the s-binomial
theorem, we could conclude that

(x+ y)ns =

n∑
k=0

(
n

k

)
s

xn−kyk(0 + 1)ks ∈ R[x, y].

Setting x = −1 and y = 1 in the s-binomial theorem, we get

0 = ((−1) + 1)ns =

n∑
k=0

(
n

k

)
s

(−1)n−k(0 + 1)ks ,
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so

(3) (0 + 1)ns =

n−1∑
k=0

(
n

k

)
s

(−1)n−k−1(0 + 1)ks .

This is a recurrence relation for (0 + 1)ns .
To prove that (0 + 1)ns ∈ R, we will use induction on n. For the base case, note that (0 + 1)0s = 1

which is an element of R. For the inductive step, note that if (0 + 1)ks ∈ R for all k < n, then by the
recurrence relation 3 and the fact that the s-binomial coefficients are in R (Proposition 2.1.3),

(0 + 1)ns =

n−1∑
k=0

(
n

k

)
s

(−1)n−k−1(0 + 1)ks ∈ R.

This completes the induction. □

Remark 2.3.9. Using the recurrence relation 3, it can be shown that

(−1)n(0 + 1)ns
n!s

=

n∑
ℓ=1

 ∑
k1+k2+···+kℓ=n

 ℓ∏
j=1

−1

kℓ!s

 ,

where the inner sum is over all ordered ℓ-tuples (k1, k2, . . . , kℓ) of positive integers that sum to n.
Combining the inner and outer sums, the right-hand side can be viewed as a sum over compositions
(ordered partitions) of n. Isolating (0 + 1)ns gives

(0 + 1)ns =
∑

π composition of n

(−1)n−|π|
(

n

π1, π2, . . . , π|π|

)
s

.

The summand is an s-multinomial coefficient, defined by(
n

k1, k2, . . . , kn

)
s

=
n!s

k1!s · k2!s · · · · · kn!s
,

and |π| denotes the length of π.

2.4. The s-Lucas theorem.

Recollection 2.4.1. Lucas’s theorem says that for all primes p and all integers n1, n0, k1, k0 ∈ Z≥0 such
that n0, k0 < p, (

n1p+ n0

k1p+ k0

)
≡
(
n1

k1

)(
n0

k0

)
(mod p).

There is a q-analogue of this identity, known as the q-Lucas theorem:(
n1p+ n0

k1p+ k0

)
q

≡
(
n1

k1

)(
n0

k0

)
q

(mod [p]q).

This identity is also true if p is composite, as long as we replace the modulus [p]q with the cyclotomic
polynomial Φp(q). Notice that the first binomial coefficient on the right-hand side of the q-Lucas theorem
is not a q-binomial coefficient.

Here is an s-analogue of Lucas’s theorem:

Theorem 2.4.2 (s-Lucas theorem). Let s be a GNS over R such that s(1) = 1 and

(4) s(a+ b) ≡ s(a) + s(b) (mod s(a)s(b))

for all a, b ∈ Z>0. Then, for any prime p and any nonnegative integers n1, n0, k1, k0 such that n0, k0 <
p, we have (

n1p+ n0

k1p+ k0

)
s

≡
(
n1

k1

)(
n0

k0

)
s

(mod s(p)).
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Remark 2.4.3. Define Φn(s) =
∏

d|n s(d)
µ(n/d), where µ denotes the Möbius function. Note that

Möbius inversion implies the identity s(n) =
∏

d|n Φn(s). One can prove a “composite version” of the
s-Lucas theorem where s(p) is replaced by Φn(s), but the statement is more complicated.

For the rest of this section, we fix the GNS s over R. To simplify the statement of the s-Lucas theorem,
we will use the following:

Notation 2.4.4. For integers a, b ∈ Z>0, we define

Cs(a, b) =
s(a+ b)− s(a)− s(b)

s(a)s(b)
∈ R[1/s].

The extra condition (4) in Theorem 2.4.2 is therefore equivalent to Cs(a, b) being defined in R for all
a, b ∈ Z>0.

Lemma 2.4.5. Suppose that Cs(a, b) is defined in R for all a, b ∈ Z>0. Then, for all integers m > 0
and n > k ≥ 0,

cs(mn,mk) ≡ 1 (mod s(m)).

Proof. By definition,

cs(mn,mk)− 1 =
s(mn)− s(mk)− s(mn−mk)

s(mn−mk)
= s(mk)Cs(mk,mn−mk).

By Lemma 2.2.3, s(m) | s(mk), so the right-hand side is divisible by s(m). Therefore, cs(mn,mk) −
1 ≡ 0 (mod s(m)). □

Remark 2.4.6. A consequence of this lemma is the interesting fact that if we define the “rescaled” GNS
sm(n) = s(mn) for each positive integer m, then Pascal’s identity for the sm-binomial coefficients
is the same as the usual Pascal’s identity when we reduce modulo s(m). This implies the following
congruence:

Lemma 2.4.7. Suppose that Cs(a, b) is defined for all a, b ∈ Z>0. For all integers m > 0 and 0 ≤ k ≤
n, (

n

k

)
sm

≡
(
n

k

)
(mod s(m)).

Proof. We will use induction on n. For the base case, observe that if n = 0 then k = 0, so both sides are
1. For the inductive step, assume that the desired claim is true when n is replaced by n− 1. Then:(

n

k

)
sm

=

(
n− 1

k − 1

)
sm

+ csm(n, k)

(
n− 1

k

)
sm

by the s-Pascal identity (Proposition 2.1.3),

=

(
n− 1

k − 1

)
sm

+ cs(mn,mk)

(
n− 1

k

)
sm

by definition of csm ,

≡
(
n− 1

k − 1

)
sm

+

(
n− 1

k

)
sm

by Lemma 2.4.5,

≡
(
n− 1

k − 1

)
+

(
n− 1

k

)
by inductive hypothesis,

=

(
n

k

)
(mod s(m)) by Pascal’s identity.

Therefore, by induction, this is true for all m ∈ Z>0. □

Theorem 2.4.2 is a consequence of a slight variant.
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Proposition 2.4.8 (Another s-Lucas theorem). Let s be a GNS such that s(1) = 1. Let p be prime and
let n1, n0, k1, k0 ∈ Z≥0 such that n0, k0 < m. Then,(

n1p+ n0

k1p+ k0

)
s

≡
(
n1

k1

)
sp

(
n0

k0

)
s

(mod s(p)),

where sp is the rescaled GNS from Remark 2.4.6.

Proof of Theorem 2.4.2. This is an immediate consequence of Proposition 2.4.8 and Lemma 2.4.7. □

Remark 2.4.9. Proposition 2.4.8 is just Theorem 2.4.2 but with
(
n1

k1

)
replaced by

(
n1

k1

)
sp

, and no require-

ment that Cs(a, b) be an element of R.

Before we prove Proposition 2.4.8 in full generality, we will prove the special case where n0 = k0 =
0. Then, we will use this case as a lemma in the proof of the general result.

Proof of Theorem 2.4.8 in the case n0 = k0 = 0. Writing out the definition of the s-binomial coefficient(
pn
pk

)
s
, we get (

pn

pk

)
s

=
s(pn)s(pn− 1) · · · s(pn− pk + 1)

s(pk)s(pk − 1) · · · s(1)
.

By Lemma 2.2.5, s(pn−j) is a unit modulo s(p) for all j not divisible by p. Together with Lemma 2.2.4,
this implies that we can cancel s(pn − j) with s(pk − j) (since they are congruent units modulo s(p)).
After all of this cancellation, we are left with(

pn

pk

)
s

=
s(pn)s(p(n− 1)) · · · s(p(n− k + 1))

s(pk)s(p(k − 1)) · · · s(p)
,

which is just
(
n
k

)
sp

. This means that(
pn

pk

)
s

≡
(
n

k

)
sp

(mod s(p)).

Combining this with the congruence of
(
n
k

)
sp

and
(
n
k

)
, we get(

pn

pk

)
s

≡
(
n

k

)
(mod s(p)),

which is the special case of Theorem 2.4.8 where n0 = k0 = 0. □

We will now extend this to any value of n0 in the valid range 0 ≤ n0 < p.

Proof of Theorem 2.4.8 in the case k0 = 0. We proved Proposition 2.4.8 above for n0 = 0, so let 0 <
n0 < p. Notice that the definition of s-binomial coefficients implies that

s(n− k)

(
n

k

)
s

=
n!s

k!s(n− k − 1)!s
= s(n)

(
n− 1

k

)
s

.

Therefore,

s(p(n1 − k) + n0)

(
pn1 + n0

pk

)
s

= s(pn1 + n0)

(
pn1 + n0 − 1

pk

)
s

.

Since n0 is a unit modulo p, we see that s(p(n1−k)+n0) is a unit modulo s(p). But s(p(n1−k)+n0)
is congruent to s(pn1 + n0) by Lemma 2.2.4. Since both are units, this implies that(

pn1 + n0

pk

)
s

≡
(
pn1 + n0 − 1

pk

)
s

(mod s(p)).
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A simple induction proof gives(
pn1 + n0

pk

)
s

≡
(
pn1

pk

)
s

(mod s(p)).

It follows that (
pn1 + n0

pk

)
s

≡
(
pn1

pk

)
s

≡
(
n1

k

)
=

(
n1

k

)(
n0

0

)
s

(mod s(p)),

which is exactly the s-Lucas theorem where k0 = 0. □

Finally, we will extend this by induction to any value of k0 between 0 and p− 1.

Proof of Theorem 2.4.8 in full generality. We will use induction on k0. We already proved the base case
k0 = 0 above. Suppose we have shown that the induction hypothesis(

pn1 + n0

pk1 + k0 − 1

)
s

≡
(
n1

k1

)(
n0

k0 − 1

)
s

(mod s(p))

is true for some k0 − 1 between 0 and p − 2 (or 0 < k0 < p). We will show that it is true with k0 − 1
replaced by k0. Notice that for all integers 1 ≤ k ≤ n,

s(k)

(
n

k

)
s

=
n!s

(k − 1)!s(n− k)!s
= s(n− k + 1)

(
n

k − 1

)
s

,

so

s(pk1 + k0)

(
pn1 + n0

pk1 + k0

)
s

= s(p(n1 − k1) + n0 − k0 + 1)

(
pn1 + n0

pk1 + k0 − 1

)
s

.

Reducing modulo s(p) gives

s(k0)

(
pn1 + n0

pk1 + k0

)
s

≡ s(n0 − k0 + 1)

(
pn1 + n0

pk1 + k0 − 1

)
(mod s(p)).

So

s(k0)

(
pn1 + n0

pk1 + k0

)
s

≡ s(n0 − k0 + 1)

(
pn1 + n0

pk1 + k0 − 1

)
≡
(
n1

k1

)
s(n0 − k0 + 1)

(
n0

k0 − 1

)
s

=

(
n1

k1

)
s(k0)

(
n0

k0

)
s

(mod s(p)).

Since 0 < k0 < p, s(k0) is a unit modulo s(p), so we can cancel it from both sides, and we get the
congruence we wanted. Therefore, the induction proof is complete. □

When the ring R is Z, there is a version of the s-Lucas theorem which allows p to be any natural
number, not just a prime; see Theorem 3.4.4.

2.5. The s-Vandermonde identity.

Recollection 2.5.1. The classical Vandermonde identity states that(
m+ n

k

)
=
∑
j

(
m

k − j

)(
n

j

)
;

this admits a q-analogue, known as the the q-Vandermonde identity:(
m+ n

k

)
q

=
∑
j

(
m

k − j

)
q

(
n

j

)
q

qj(m−k+j).
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To state an s-analogue of the Vandermonde identity, we need a definition.

Definition 2.5.2. For m,n, k, j ∈ Z with 0 ≤ j ≤ n and 0 ≤ k − j ≤ m, define(
n

j

∣∣∣∣∣∣∣∣mk
)

s

=
∑

I⊆(m,m+n]∩Z
|I|=j

(
j∏

ℓ=1

cs(iℓ, n− (k − j + ℓ))

)
,

where I = {i1 < · · · < ij}. We also set
(
n
j

∣∣∣∣m
k

)
s
= 0 for j < 0 or j > n.

Remark 2.5.3. For s(n) = n, the product inside the sum in Definition 2.5.2 is 1, so the sum is just the
number of subsets of (m,m + n] ∩ Z of size j, which is

(
n
j

)
. In that sense,

(
n
j

∣∣∣∣m
k

)
s

is an s-analogue of
the subset-counting definition of

(
n
j

)
which depends on two extra parameters m and k. The other type of

s-binomial coefficient
(
n
j

)
s

is an s-analogue of the algebraic definition of
(
n
j

)
.

Theorem 2.5.4 (s-Vandermonde identity). For all m,n, k ∈ Z≥0 with k ≤ m+ n,(
m+ n

k

)
s

=
∑
j

(
m

k − j

)
s

(
n

j

∣∣∣∣∣∣∣∣mk
)

s

,

where the sum is taken over all j ∈ Z such that 0 ≤ j ≤ n and 0 ≤ k − j ≤ m.

Question 2.5.5. As explained in [Sas18], the q-Vandermonde identity for
(
m+n
k

)
q

can be understood
as arising via a motivic cellular decomposition of the Grassmannian Grk(C

m+n). Is there a motivic
interpretation of Theorem 2.5.4? (A similar question can also be asked for the s-analogues of the other
combinatorial identities proved elsewhere in this article.)

The proof of Theorem 2.5.4 requires a preliminary lemma, which can be viewed as an analogue of
Pascal’s identity for

(
n
j

∣∣∣∣m
k

)
s
.

Lemma 2.5.6. For all m,n, k, j ∈ Z such that 0 ≤ k − j ≤ m,(
n

j

∣∣∣∣∣∣∣∣mk
)

s

=

(
n− 1

j

∣∣∣∣∣∣∣∣mk
)

s

+ cs(m+ n,m+ n− k)

(
n− 1

j − 1

∣∣∣∣∣∣∣∣ m

k − 1

)
s

.

Notice that this includes the cases j < 0 and j > n.

Proof. We will split up the sum in the definition of
(
n
j

∣∣∣∣m
k

)
s

into two sums, based on whether I contains
m+n or not. If m+n /∈ I , then I ranges over all j-element subsets of (m,m+n−1]∩Z. If m+n ∈ I ,
then we remove it, and we get a (j − 1)-element subset of (m,m + n − 1] ∩ Z. Then, we have to pull
out the ℓ = j term of the product, since ij = m+ n. So we have(
n

j

∣∣∣∣∣∣∣∣mk
)

s

=
∑

I⊆(m,m+n]∩Z
|I|=j

(
j∏

ℓ=1

cs(iℓ, iℓ − (k − j + ℓ))

)

=
∑

I⊆(m,m+n]∩Z
|I|=j

m+n∈I

(
j∏

ℓ=1

cs(iℓ, iℓ − (k − j + ℓ))

)
+

∑
I⊆(m,m+n−1]∩Z

|I|=j

(
j∏

ℓ=1

cs(iℓ, iℓ − (k − j + ℓ))

)

=
∑

I⊆(m,m+n−1]∩Z
|I|=j−1

cs(m+ n,m+ n− (k − j + j))

(
j−1∏
ℓ=1

cs(iℓ, iℓ − (k − j + ℓ))

)
+

(
n− 1

j

∣∣∣∣∣∣∣∣mk
)

s

= cs(m+ n,m+ n− k)

(
n− 1

j − 1

∣∣∣∣∣∣∣∣ m

k − 1

)
s

+

(
n− 1

j

∣∣∣∣∣∣∣∣mk
)

s

.
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Rearranging this completes the proof. □

Proof of Theorem 2.5.4. We will prove this by induction on n. For the base case, observe that if n = 0,
then all j in the range of summation satisfy 0 ≤ j ≤ 0, so either the sum is empty (if k − 0 > m) or its
only term is j = 0 (if k− 0 ≤ m). The conditions of the theorem force k ≤ m+n = m, so the sum has
exactly one term: ∑

j

(
m

k − j

)
s

(
n

j

∣∣∣∣∣∣∣∣mk
)

s

=

(
m

k

)
s

(
0

0

∣∣∣∣∣∣∣∣mk
)

s

.

We want to show that this is
(
m
k

)
s
. The definition of

(
0
0

∣∣∣∣m
k

)
s

gives the rather degenerate identity(
0

0

∣∣∣∣∣∣∣∣mk
)

s

=
∑

I⊆(m,m]∩Z
|I|=0

(
0∏

ℓ=1

cs(iℓ, iℓ − (k + ℓ))

)
=
∑
I⊆∅

1 = 1,

which completes the base case.
For the inductive step, suppose that the theorem is true with n replaced by n− 1. We will first apply

a version of the s-Pascal identity to
(
m+n
k

)
s

that has been “flipped” using the identity
(
n
k

)
s
=
(

n
n−k

)
s
:(

m+ n

k

)
s

=

(
m+ n

m+ n− k

)
s

=

(
m+ n− 1

m+ n− k − 1

)
s

+ cs(m+ n,m+ n− k)

(
m+ n− 1

m+ n− k

)
s

=

(
m+ n− 1

k

)
s

+ cs(m+ n,m+ n− k)

(
m+ n− 1

k − 1

)
s

.

The inductive hypothesis gives:(
m+ n− 1

k

)
s

+ cs(m+ n,m+ n− k)

(
m+ n− 1

k − 1

)
s

=
∑
j

(
m

k − j

)
s

(
n− 1

j

∣∣∣∣∣∣∣∣mk
)

s

+ cs(m+ n,m+ n− k)
∑
j

(
m

k − 1− j

)
s

(
n− 1

j

∣∣∣∣∣∣∣∣ m

k − 1

)
s

=
∑
j

(
m

k − j

)
s

(
n− 1

j

∣∣∣∣∣∣∣∣mk
)

s

+ cs(m+ n,m+ n− k)
∑
j

(
m

k − j

)
s

(
n− 1

j − 1

∣∣∣∣∣∣∣∣ m

k − 1

)
s

=
∑
j

(
m

k − j

)
s

((
n− 1

j

∣∣∣∣∣∣∣∣mk
)

s

+ cs(m+ n,m+ n− k)

(
n− 1

j − 1

∣∣∣∣∣∣∣∣ m

k − 1

)
s

)
.

By Lemma 2.5.6, this is equal to ∑
j

(
m

k − j

)
s

(
n

j

∣∣∣∣∣∣∣∣mk
)

s

,

which completes the induction. □
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3. GENERALIZED n-SERIES OVER Z

3.1. Lexicographically small nonnegative integer generalized n-series. When doing computations
with generalized n-series, it is useful to have some examples over Z that are lexicographically small
(close to 0 for small values of n). We will restrict to integer GNS that are always nonnegative. We have
already seen some examples of relatively small integer generalized n-series: s(n) = n and s(n) = [n]q .
Before looking at an algorithm for constructing lexicographically small GNS, we need a definition:

Definition 3.1.1. Let R be a ring, and let N ∈ Z≥0. A partial generalized n-series is a function
s : {0, 1, . . . , N} → R such that s(0) = 0, s(n) is not a zero-divisor for 0 < n ≤ N , and for all
0 ≤ k ≤ n ≤ N , s(n− k) | s(n)− s(k). An extension of a partial GNS s is a GNS which agrees with s
on the domain of s.

Given a partial GNS
s : {0, 1, . . . , N} → Z≥0

we can use a greedy algorithm to construct the lexicographically smallest nonnegative GNS s̃ which is
an extension of s.

Definition 3.1.2. Suppose we are given a partial GNS s : {0, 1, . . . , N} → Z≥0. Define a function
s̃ : Z≥0 → Z≥0 in the following way: s̃(n) = s(n) for 0 ≤ n ≤ N , and for each n > N we define
s̃(n) in terms of the previous values of s̃(k) to be the smallest positive integer that makes the restriction
s̃|{0,1,...,n} a partial GNS.

The fact that s̃ is well-defined is nontrivial. We have to show that at each step of the algorithm, s̃(n)
exists. We will actually prove a stronger theorem:

Theorem 3.1.3. Consider the following recursive construction of an arbitrary nonnegative GNS over Z:
Start with s(0) = 0, and for each N starting with 1 in increasing order, choose s(N) to be an arbitrary
integer such that s|{0,1,...,N} is a partial GNS. No matter what choices are made, it is always possible to
continue (there are never any contradictions).

Proof. Suppose we have a partial GNS s with domain {0, 1, . . . , N − 1}, and we want to choose s(N).
We have to show that there exists s(N) such that for all 0 < k < N , s(N − k) | s(N) − s(k). This
is equivalent to s(N) ≡ s(k) (mod s(N − k)), so we really have a system of linear congruences. This
system has a solution by the generalized Chinese Remainder Theorem as long as no two congruences
contradict each other. We want to show that if we reduce two of the congruences s(N) ≡ s(N −
k) (mod s(k)) and s(N) ≡ s(N − j) (mod s(j)) modulo gcd(s(k), s(j)), they become the same
congruence. That is, we want to show that

s(N − k) ≡ s(N − j) (mod gcd(s(k), s(j))).

By Lemma 2.2.6, gcd(s(k), s(j)) = ±s(gcd(k, j)). And since

N − k ≡ N ≡ N − j (mod gcd(k, j)),

the desired congruence must be true by Lemma 2.2.4. □

We have seen that many number-theoretical properties of the positive integers remain true for arbitrary
GNS. However, there are some important differences between s(n) = n and other GNS. For example, if
n = pjm with p ∤ m, then n/pj is a unit modulo p. This is generally false for other generalized n-series;
using Theorem 3.1.3, we can construct a counterexample.

Example 3.1.4. Let s be an extension of the partial GNS with domain {0, 1, . . . , 6} whose values are
0, 1, 2, 3, 10, 11, 12. One can check manually that this forms a partial GNS. For this GNS,

s(6)

s(2)
=

12

2
= 6 ≡ 0 (mod s(2)).
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3.2. An upper bound on lexicographically small nonnegative integer GNS. In this section, we will
write partial generalized n-series as lists of numbers, where the first item in the list is s(0). For example:

Example 3.2.1. Define a partial generalized n-series 0, 1, 3 via the function s : {0, 1, 2} → Z≥0 given
by 0 7→ 0, 1 7→ 1, 2 7→ 3. If we apply the algorithm of Definition 3.1.2 to the partial generalized n-series
0, 1, k where k ∈ Z>0, we get a generalized n-series 0, 1, k, 1, k, . . . , where the n-th term is 0 if n = 0,
1 if n is odd, and k if n is even and nonzero. If we start with a longer partial generalized n-series s, say
0, 1, 3, 4, then the generalized n-series s̃ starts with

0, 1, 3, 4, 9, 19, 552, 22081,

and the next few terms are

219440979, 2669857856653708, 6558922971496604200448626056129.

This seems to grow very fast when n increases, almost doubling the number of digits each term. As we
will see, s̃(n) is bounded by

s̃(n) < 122
n−4

, n ≥ 4, and

s̃(n) = Ωa(a
n), ∀a ≥ 0.

The upper bound (a special case of Theorem 3.2.5) is proved below, and the lower bound (a special
case of Theorem 3.3.1) is proved in the next subsection.

Let us first show that s̃ is strictly increasing.

Lemma 3.2.2. Let N ≥ 3, and let s : {0, 1, . . . , N} → Z≥0 be a strictly increasing partial generalized
n-series. Then, s̃ is also strictly increasing.

Remark 3.2.3. The condition N ≥ 3 is important, because we already saw that if s = 0, 1, 3 (so N = 2)
then s̃ = 0, 1, 3, 1, 3, . . . , which is not strictly increasing.

Proof. Notice that s(2) > s(1) ≥ 1. Let n > N . We will show that s̃(n) > s̃(n− 1). By Lemma 2.2.4,
s̃(n) ≡ s(1) (mod s(n − 1)), so either s̃(n) = s(1) or s̃(n) > s(n − 1). The first case cannot happen
because s̃(n) ≡ s(2) (mod s̃(n− 2)), and s̃(n− 2) ≥ s(2) > s(1). Therefore, s̃(n) > s̃(n− 1). □

Given the value of s̃(k) for all 1 ≤ k < n, there is an upper bound on s̃(n), as long as s̃ is strictly
increasing:

Lemma 3.2.4. Let s : {0, 1, . . . , N} → Z be a strictly increasing partial generalized n-series with
N ≥ 3. Then, for all n > N ,

s̃(n) < lcm{s̃(k) | 0 < k < n}.
Proof. Recall that the proof of the existence of s̃ (Theorem 3.1.3) constructs s̃(n) from s̃(k) for all
0 < k < n using the generalized Chinese Remainder Theorem. The congruences are x ≡ s̃(n − k)
(mod s̃(k)) for each 0 < k < n, so the generalized CRT proves the existence of a unique solution x
modulo L = lcm{s̃(k) | 0 < k < n}. Therefore, there exists a solution to the system of congruences
with 0 < x ≤ L. The smallest positive solution is s̃(n) by Definition 3.1.2, so s̃(n) ≤ L. We just have
to show that s̃(n) ̸= L.

Suppose for contradiction that s̃(n) = L. Then, by Lemma 2.2.4, L ≡ s̃(1) (mod s̃(n − 1)).
But by the definition of L, L is divisible by s̃(n − 1), so s̃(1) is also divisible by s̃(n − 1). Since
n− 1 > N − 1 > 1, s̃(1) < s̃(n− 1) by Lemma 3.2.2, which is a contradiction. □

Using the fact that the LCM of a set is at most its product, we can prove the following upper bound:

Theorem 3.2.5. Let s : {0, 1, . . . , N} → Z be a strictly increasing partial generalized n-series with
N ≥ 3. Then, for all n > N ,

s̃(n) < Π2n−(N+1)

,

where Π =
∏N

k=1 s(k).
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Proof. We will use strong induction. Suppose that n > N and for all k strictly between N and n,

s̃(k) < Π2k−(N+1)

.

By Lemma 3.2.4 and the inductive hypothesis,

s̃(n) < lcm{s̃(k) | 0 < k < n} ≤
n−1∏
k=1

s̃(k)

≤

(
N∏

k=1

s(k)

)(
n−1∏

k=N+1

Π2k−(N+1)

)

= Π ·
n−(N+2)∏

k=0

Π2k = Π ·Π
(∑n−(N+2)

k=0 2k
)

= Π ·Π2n−(N+1)−1 = Π2n−(N+1)

.

This completes the induction. □

Remark 3.2.6. Another way to think about this theorem is that the recursively defined sequence

an =

{
s(n) if 0 ≤ n ≤ N,∏n−1

k=1 ak if n > N

is exactly equal to Π2n−(N+1)

for all n > N , and we know that s̃(n) satisfies this recurrence but with the
equality replaced by < whenever n > N , so it should be true that s̃(n) < an for all n > N .

3.3. A lower bound on strictly increasing integer GNS. We proved an upper bound on the lexico-
graphically smallest extension of the partial GNS 0, 1, 3, 4 in the previous section, but we also stated a
lower bound. The purpose of this subsection is to prove this lower bound by proving a more general
result.

Theorem 3.3.1. Let s(n) be a strictly increasing generalized n-series over Z that is not a scalar multiple
of n 7→ [n]q for any q ∈ Z>0. Then, s(n) = Ωa(a

n) for all a ≥ 0.

In this theorem statement, we use the convention that [n]1 = n. To prove Theorem 3.3.1, we will use
the following lemma:

Lemma 3.3.2. Let s satisfy the conditions of Theorem 3.3.1, and fix a nonnegative integer a. Then, for
all sufficiently large n,

s(n+ 1) ̸= as(n) + s(1).

Proof. Let k ∈ Z≥0 such that s(k + 1) ̸= as(k) + s(1). Such a k must exist, because otherwise
s(n + 1) = as(n) + s(1) for all n ∈ Z≥0. This would imply by induction that s(n) = s(1)[n]q with
q = a for all n, which contradicts our assumption about s. Next, choose an integer N large enough so
that

s(N − k) > max{s(k + 1), as(k) + s(1)}.
This is always possible, because s : Z≥0 → Z is strictly increasing and therefore unbounded.

To prove the lemma, we will show that for all n ≥ N , we have s(n + 1) ̸= as(n) + s(1). Suppose
for contradiction that there exists n ≥ N with

s(n+ 1) = as(n) + s(1).

Taking this equation modulo s(n− k) and using Lemma 2.2.4 gives

s(k + 1) ≡ as(k) + s(1) (mod s(n− k)).
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But n ≥ N , so

s(n− k) ≥ s(N − k) > max{s(k + 1), as(k) + s(1)},

so the modulus is greater than both sides of the congruence, which means that it is an equality. This
contradicts the fact that s(k + 1) ̸= as(k) + s(1). □

Proof of Theorem 3.3.1. We want to show that s(n) = Ωa(a
n) for all a ≥ 0. It suffices to prove this for

a ∈ Z≥0. For each integer b with 0 < b < a, apply Lemma 3.3.2 with a replaced by b. This gives an
integer Nb such that for all n ≥ Nb,

s(n+ 1) ̸= bs(n) + s(1).

Let

N = max{Nb | 0 < b < a}.

We claim that for all n ≥ N , we have s(n+ 1) ≥ as(n) + s(1).
To see this, let n ≥ N . By Lemma 2.2.4,

s(n+ 1) ≡ s(1) (mod s(n)),

so s(n+ 1) = bs(n) + s(1) for some b ∈ Z. Since s is strictly increasing, b must be positive. We want
to show that b ≥ a. If b < a, then we defined Nb above, and n ≥ N ≥ Nb. So s(n+1) ̸= bs(n)+ s(1),
which is a contradiction. Therefore, b ≥ a, so

s(n+ 1) ≥ as(n) + s(1).

To complete the proof, notice that the claim implies (by induction) that for all n ≥ N , s(n) ≥
an−Ns(N), which means that s(n) = Ωa(a

n) as n → ∞. □

3.4. A more general s-Lucas theorem. The s-Lucas theorem (Proposition 2.4.8) is a congruence mod-
ulo s(p), where s is a GNS and p is prime. The q-Lucas theorem has a more general form which allows
p to be composite: (

n1p+ n0

k1p+ k0

)
q

≡
(
n1

k1

)(
n0

k0

)
q

(mod Φp(q)).

In this subsection, we will state and prove an s-analogue of the more general q-Lucas theorem in the case
n0 = k0 = 0.

Recall the s-analogue Φn(s) of the cyclotomic polynomial from Remark 2.4.3.

Theorem 3.4.1. If s is a GNS over Z, then Φn(s) ∈ Z for all n > 0.

We will prove that Φn(s) ∈ Z by showing that

Φn(s) =
s(n)

lcm{s(n/p) | p prime factor of n}
.

Here is a lemma:

Lemma 3.4.2. Let S be an arbitrary multiset of positive integers. Then,

lcm(S) =
∏

multiset A⊆S
A̸=∅

gcd(A)(−1)|A|−1

.

This lemma can be proved using the tools of elementary number theory. Notice that when s is a
two-element multiset {a, b}, this formula reduces to lcm(a, b) = ab/ gcd(a, b).
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Proof of Lemma 3.4.2. We can decompose the right-hand side into its prime-power factors. Let p be
a prime, and let T be the multiset {vp(a) | a ∈ S}, where vp(a) is the exponent of p in the prime
factorization of a. The exponent of p in the right-hand side of the equality we are trying to prove is∑

multiset B⊆T
B ̸=∅

(−1)|B|−1min(B),

because a GCD of powers of p is p to the power of the minimum exponent. We want to show that this
is equal to vp(lcm(S)), which is max(T ). Write T = {a1, a2, . . . , ak}, where k = |T | and a1 ≤ a2 ≤
· · · ≤ an. We will count the number of times each aj is counted in the sum. Since max(T ) = an, we
have to show that an is counted once and aj is counted 0 times for all 1 ≤ j < n.

Let 1 ≤ j ≤ n and let 1 ≤ k ≤ n. We want to count how many subsets B ⊆ T have minimum j
and cardinality n. Such a subset must include aj , but can have any combination of k − 1 elements aℓ
with ℓ > j. There are

(
n−j
k−1

)
choices for these remaining elements. Therefore, the number of times aj is

counted in the sum is
n∑

k=1

(−1)k−1

(
n− j

k − 1

)
=

n−1∑
k=0

(−1)k
(
n− j

k

)
.

Since
(
n−j
k

)
is zero for k > n− j, this is just the alternating sum of row n− j of Pascal’s triangle, which

is 0 if n− j > 0 and 1 if n− j = 0. Therefore, aj is counted 0 times for j < n and 1 time for j = n in
the sum ∑

B⊆P
B ̸=∅

(−1)|B|−1min(B),

so the sum is equal to an. This means that the exponents of p in the left-hand and right-hand sides
of the equality in the theorem statement are both an. Combining this fact for each prime p proves the
lemma. □

Proof of Theorem 3.4.1. Let P be the set of prime factors of n, and let

r(n) =
s(n)

lcm{s(n/p) | p ∈ P}
.

Notice that r(n) ∈ Z because Lemma 2.2.3 implies that s(n/p) | s(n) for all prime factors p of n. We
want to show that Φn(s) = r(n).

By the definition of r(n),
s(n)

r(n)
= lcm

{
s

(
n

p

) ∣∣∣∣ p ∈ P

}
.

By Lemma 3.4.2 with S = {s(n/p) | p ∈ P}, this is equal to∏
A⊆P
A̸=∅

gcd

{
s

(
n

p

) ∣∣∣∣ p ∈ A

}(−1)|A|−1

.

Lemma 2.2.6 and the fact that s is nonnegative imply that s preserves GCDs, so

gcd

{
s

(
n

p

) ∣∣∣∣ p ∈ A

}
= s

(
gcd

{
n

p

∣∣∣∣ p ∈ A

})
= s

(
n

lcm(A)

)
.

This implies that

s(n)

r(n)
=
∏
A⊆P
A̸=∅

s

(
n

lcm(A)

)(−1)|A|−1

.
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Dividing both sides by s(n) and taking the reciprocal of both sides gives

r(n) =
∏
A⊆P

s

(
n

lcm(A)

)(−1)|A|

.

(On the right-hand side, we removed the condition A ̸= ∅ and multiplied the exponent by −1.)
We have to count how many ways each divisor d of n can be written as lcm(A) for A ⊆ P . Since the

elements of A are distinct primes, lcm(A) is the product of the elements of A. Therefore, d = lcm(A)
is square-free, and given d there is a unique choice of A (the set of prime factors of d). So we get

r(d) =
∏
d|n

d square-free

s
(n
d

)µ(d)
,

using the fact that µ(d) is (−1)|A| if A is the set of prime factors of a square-free number d. Since
µ(d) = 0 for d not square-free, we can remove the restriction that d is square-free:

r(n) =
∏
d|n

s
(n
d

)µ(d)
=
∏
d|n

s(d)µ(n/d) = Φn(s).

This is what we wanted to show. □

Before proving the s-Lucas theorem for composite p, we will prove a lemma about Φn(s).

Lemma 3.4.3. Let s be a nonnegative integer GNS, let m ∈ Z>0, and let a, b ∈ Z≥0 such that

a ≡ b ̸≡ 0 (mod m).

Define
d = gcd(a,m) = gcd(b,m).

Then,
s(a)

s(d)
≡ s(b)

s(d)
(mod Φm(s)).

Additionally, both sides of this congruence are units modulo Φm(s). Equivalently, the function Z≥0 →
Z≥0 defined by a 7→ s(a)/s(gcd(a,m)) induces a well-defined function

(Z/m) \ {0} → (Z/Φm(s))×.

Proof. By Lemma 2.2.4,
s(a) ≡ s(b) (mod s(m)).

Since gcd(s(m), s(d)) = s(d), this implies that

s(a)

s(d)
≡ s(b)

s(d)

(
mod

s(m)

s(d)

)
.

Notice that

gcd

{
s(m)

s(d)

∣∣∣∣ d proper divisor of m
}

=
s(m)

lcm{s(d) | d proper divisor of m}

=
s(m)

lcm{s(m/p) | p prime factor of m}
= Φm(s).

In the second step of this chain of equalities, we used the fact that for every proper divisor d of m there
exists a prime factor p of m such that d | m/p. We also used Lemma 2.2.3. We can conclude that
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Φm(s) | s(m)/s(d) for all proper divisors d of m. In particular, for d = gcd(a,m) = gcd(b,m), we
have

s(a)

s(d)
≡ s(b)

s(d)
(mod Φm(s)).

To complete the proof, we just have to show that s(a)/s(d) is a unit modulo Φm(s). This is true
because Φm(s) | s(m)/s(d) implies that

gcd

(
Φm(s),

s(a)

s(d)

)
| gcd

(
s(m)

s(d)
,
s(a)

s(d)

)
=

gcd(s(m), s(a))

s(d)
=

s(d)

s(d)
= 1. □

Theorem 3.4.4 (“Composite version” of the s-Lucas theorem). Let m ∈ Z>0 and let n, k ∈ Z≥0. Then,(
nm

km

)
s

≡
(
n

k

)
sm

(mod Φm(s)).

Proof. By definition,(
nm

km

)
s

=
s(nm)s(nm− 1) · · · s(nm− km+ 1)

s(km)s(km− 1) · · · s(1)
=

∏km
j=1 s(nm− km+ j)∏km

j=1 s(j)
.

Our goal will be to cancel each s(nm − km + j) with the corresponding s(j) modulo Φm(s). The
problem is that in general, these are not units modulo Φm(s). To fix this, we will divide s(nm−km+ j)
and s(j) by s(gcd(j,m)):(

nm

km

)
s

=

∏km
j=1 s(nm− km+ j)/s(gcd(j,m))∏km

j=1 s(j)/s(gcd(j,m))
.

Since j ≡ nm− km+ j (mod m), we can apply Lemma 3.4.3 for all j not divisible by m, and we get
that

s(nm− km+ j)

s(gcd(j,m))
and

s(j)

s(gcd(j,m))

are congruent units modulo Φm(s).
Therefore, we can cancel s(nm− km+ j)/s(gcd(j,m)) with s(j)/s(gcd(j,m)) modulo Φm(s) for

every j not divisible by m. We get(
nm

km

)
s

=

∏km
j=1 s(nm− km+ j)/s(gcd(j,m))∏km

j=1 s(j)/s(gcd(j,m))

≡
∏k

ℓ=1 s((n− k + ℓ)m)/s(m)∏k
ℓ=1 s(ℓm)/s(m)

=

∏k
ℓ=1 s((n− k + ℓ)m)∏k

ℓ=1 s(ℓm)

=

(
n

k

)
sm

(mod Φm(s)).

We changed product indices from j to ℓ = j/m, because the terms with m ∤ j were canceled in the
second step. □

Remark 3.4.5. When m is prime, Theorem 3.4.4 reduces to the case n0 = k0 = 0 of the s-Lucas
theorem (Proposition 2.4.8).
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4. GENERALIZED n-SERIES AND DE RHAM COMPLEXES

4.1. Basic properties of the s-de Rham complex. In this subsection, we will define the “s-de Rham
complex” using the s-derivative of Definition 2.3.3. Recall that this is the R-linear map ∇s : R[x] →
R[x] given on monomials by ∇s(x

n) = s(n)xn−1. Write A1 = SpecR[x] to denote the affine line over
R.

Definition 4.1.1. The s-de Rham complex for R[x] is the 2-term complex

sΩ□,A1 := (R[x]
∇s−−→ R[x]dx).

Here, the square indicates the dependence of sΩ□,A1 on the choice of coordinate x.

Remark 4.1.2. It is easy to generalize the s-de Rham complex to several variables (e.g., by defining
sΩAn to be sΩ⊗Rn

□,A1 ). Since proving multivariable analogues of the results below is straightforward, we
will only study the case of a single variable.

Example 4.1.3. Let s : Z≥0 → Z[[q − 1]] denote the q-integer GNS from Example 2.1.6. Then Defini-
tion 4.1.1 is precisely the q-de Rham complex of [Sch17].

The s-Pascal identity of Proposition 2.1.3 can be restated in terms of the s-derivative:

Lemma 4.1.4. There is an equality of operators:[
∇k

s

k!s
, x

]
=

∇k−1
s

(k − 1)!s
.

Proof. Let n > k ≥ 0 be integers. Since ∇s(x
n) = s(n)xn−1, we have

∇k
s(x

n) = s(n)s(n− 1) · · · s(n− k + 1)xn−k =
n!s

(n− k)!s
xn−k.

This implies that
∇k

s

k!s
xn =

(
n

k

)
s

xn−k.

The s-Pascal identity can therefore be stated as:

∇k
s

k!s
xn =

∇k−1
s

(k − 1)!s
xn−1 + x

∇k
s

k!s
xn−1.

Rearranging gives
∇k

s

k!s
xn − x

∇k
s

k!s
xn−1 =

∇k−1
s

(k − 1)!s
xn−1.

Recognizing the left side as a commutator of operators, this can be written as[
∇k

s

k!s
, x

]
xn−1 =

∇k−1
s

(k − 1)!s
xn−1.

This implies the desired equality of operators. □

Remark 4.1.5. One can similarly restate the s-Lucas theorem (Proposition 2.4.8) via the s-derivative:
namely, if the hypotheses of Proposition 2.4.8 are satisfied, then for any prime p and any nonnegative
integers n1, n0, k1, k0 such that n0, k0 < p, we have

∇k1p+k0
s

(k1p+ k0)!s
(xn1p+n0) ≡ ∂k1

xp

k1!
(xn1p)

∇k0
s

k0!s
(xn0) (mod s(p)).
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Proposition 4.1.6 (s-product rule). For a GNS s over R, define an R-bilinear operator ⋆s : R[x] ⊗R

R[x] → R[x] on monomials by

xa ⋆s x
b = cs(a+ b+ 1, a)xa+b

for all a, b ∈ Z≥0. Then, for all f, g ∈ R[x],

∇s(fg) = ∇s(f)g + f ⋆s ∇s(g).

Proof. Since ∇s is R-linear and ⋆s is R-bilinear, the theorem follows from the case where f and g are
monomials xa and xb. In this case,

∇s(x
a)xb + xa ⋆s ∇s(x

b) = s(a)xa−1xb + xa ⋆s s(b)x
b−1

= s(a)xa+b−1 + s(b)cs(a+ b, a)xa+b−1

=

(
s(a) + s(b) · s(a+ b)− s(a)

s(b)

)
xa+b−1

= (s(a) + s(a+ b)− s(a))xa+b−1

= s(a+ b)xa+b−1

= ∇s(x
a+b). □

Example 4.1.7. Let s : Z≥0 → Z[[q − 1]] denote the q-integer GNS from Example 2.1.6. Then

cs(a+ b+ 1, a) =
[a+ b+ 1]q − [a]q

[b+ 1]q
=

qa+b+1 − qa

qb+1 − 1
= qa,

so that xa ⋆s x
b = qaxa+b = (qx)axb. In particular,

f(x) ⋆s ∇s(g(x)) = f(qx)∇q(g(x)),

so that Proposition 4.1.6 reduces to the usual q-Leibniz rule.

Example 4.1.8. One can check that the function s : Z≥0 → Z[[q − 1]] given by

s(n) =
1

q − 1

q2n − 1

q2n + 1
∈ Z[[q − 1]]

defines a GNS; see Example 4.3.2. It follows that

cs(a+ b+ 1, a) =

q2(a+b+1)−1
q2(a+b+1)+1

− q2a−1
q2a+1

q2(b+1)−1
q2(b+1)+1

=
2q2a(q2(b+1) − 1)

(q2(a+b+1) − 1)(q2a − 1)
.

In particular, unlike for the q-integer GNS, there is no simple expression for f(x) ⋆s g(x).

Corollary 4.1.9. Fix a GNS s over R. Then the complex sΩ□,A1 naturally admits the structure of a
(noncommutative) differential graded R-algebra.

Proof. Define a left and right sΩ0
□,A1 = R[x]-module structure on sΩ1

□,A1 as follows: the right module
structure is the obvious one, and the left module structure is given by g(x) ·f(x)dx = g ⋆s f(x)dx. Then
the s-Leibniz rule of Proposition 4.1.6 produces a sΩ0

□,A1 -bimodule structure on sΩ1
□,A1 such that the s-

derivative satisfies the Leibniz rule; this is precisely the structure of a differential graded R-algebra. □
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4.2. s-analogues of the Poincaré lemma and Cartier isomorphism. The Poincaré lemma says that
over a field k of characteristic zero, the cohomology of the de Rham complex is concentrated in de-
gree zero (where it is isomorphic to k). A version of this statement is also true over Z. Namely, if
Z⟨x⟩ = Z[x, xn

n! ]n≥0 denotes the divided power envelope of Z[x], then the cohomology of the com-
plex Ω•

Z[x]/Z ⊗Z[x] Z⟨x⟩ is concentrated in degree zero (where it is isomorphic to Z). This admits a
straightforward generalization to the s-de Rham complex:

Proposition 4.2.1 (s-Poincaré lemma). Let s be a GNS over R, and let R⟨x⟩s denote the ring R[x, xn

n!s
]n≥0.

Then the cohomology of the complex sΩ□,A1 ⊗R[x]R⟨x⟩s is concentrated in degree zero, where it is iso-
morphic to R.

Proof. We need to show that the R-linear map

R⟨x⟩s
∇s−−→ R⟨x⟩sdx

is surjective, and has kernel R. Surjectivity follows from the observation that ∇s
xn

n!s
= xn−1

(n−1)!s
; this also

implies that the kernel of ∇s is precisely the R-submodule of R⟨x⟩s generated by the constants. □

Remark 4.2.2. Note that the ring R⟨x⟩s is nonzero, since the elements n!s ∈ R are not zero-divisors; in
fact, R⟨x⟩s is a subring of R[1/s].

The s-de Rham complex also satisfies an analogue of the Cartier isomorphism.

Recollection 4.2.3. The Cartier isomorphism says that if A is a smooth Fp-algebra, there is a canonical
isomorphism Ωi

A/Fp

∼= Hi(Ω•
A/Fp

). If φ denotes the Frobenius on R, this isomorphism is roughly given
by “ φ

pi ”. When A = Fp[x], one can interpret the Cartier isomorphism as giving a canonical isomorphism

Ωi
Z[xp]/Z ⊗Z Fp

∼= Hi(Ω•
Z[x]/Z ⊗Z Fp)

sending d(xp) 7→ [xp−1dx]. In [Sch17, Proposition 3.4], Scholze proves a q-analogue of the Cartier
isomorphism. Let Z[ζp] denote the quotient Z[[q − 1]]/[p]q , so that ζp denotes a primitive pth root of
unity. Then there is a canonical isomorphism

Ωi
Z[xp]/Z ⊗Z Z[ζp] ∼= Hi(qΩ•

Z[x]/Z ⊗Z[[q−1]] Z[ζp]).

Both of these results admit an s-analogue.

Proposition 4.2.4. Let s be a GNS over R such that s(1) is a unit in R/s(p). Then there is a canonical
isomorphism

sΩi
□,A1 ⊗R R/s(p) ∼= Hi(sΩ□,A1 ⊗R R/s(p))

sending xn 7→ xnp in degree zero and xndx 7→ [xnpxp−1dx].

Proof. Let us first compute H0(sΩ□,A1 ⊗R R/s(p)), i.e., the kernel of ∇s. Observe that if a ∈ R,
then axn 7→ as(n)xn−1dx. If p|n, then s(p)|s(n), so that ∇s(ax

n) = 0 ∈ R[x]/s(p). It follows from
Lemma 2.2.5 that ∇s(ax

n) = 0 ∈ R[x]/s(p) if and only if s(p)|a. This implies that H0(sΩ□,A1 ⊗R

R/s(p)) ∼= R[xp].
To calculate H1(sΩ□,A1 ⊗RR/s(p)), i.e., the cokernel of ∇s, we need to determine the image of ∇s.

If axndx is in the image of ∇s for some a ∈ R, then there must be some b ∈ R such that bs(n+1) = a.
If p|n + 1, it follows that a = 0 ∈ R/s(p); if p ∤ n + 1, then s(n + 1) is a unit (by the preceding
discussion), so that b = a

s(n+1) . It follows that the image of ∇s is precisely
⊕

p∤n+1 R{xndx}, so that

coker(∇s) =
⊕
n≥1

R{xnp−1dx} ∼=
⊕
n≥1

R{xp(n−1) · xp−1dx}.

This implies that H1(sΩ□,A1 ⊗R R/s(p)) ∼= R[xp]d(xp), as desired. □
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In fact, the classical and q-Cartier isomorphisms are special cases of a more general result due to
Berthelot and Ogus [BO78]. Let us now review this statement; we will then state and prove the analogue
for generalized n-series.

Recollection 4.2.5. Let R be a ring, and let f ∈ A be a non-zero-divisor. If M• is a cochain complex of
R-modules which is termwise f -torsionfree, the décalage ηfM

• is the subcomplex of M•[1/f ] defined
via

(ηfM)i = {x ∈ f iM i|dx ∈ f i+1M i+1}.
See [BMS18, Section 6] and [BO78]. One basic property of the décalage construction is the follow-
ing. Let H•(M/f) denote the complex whose underlying graded abelian group is

⊕
i∈Z Hi(M/f), and

where the differential is given by the f -Bockstein β : Hi(M/f) → Hi+1(M/f). Then there is a natural
isomorphism of complexes

(5) ηf (M)/f
∼−→ H•(M/f).

We will only need the case when M• is termwise f -torsionfree; but let us mention that ηf preserves
quasi-isomorphisms, and one can extend ηf to a (non-exact) functor Lηf : D(R) → D(R) on the the
derived category of R.

Let k be a perfect field of characteristic p > 0. A very special case of a result of Berthelot and
Ogus (in [BO78]) says that if W (k) is the ring of Witt vectors of k and A is a W (k)-algebra, there is
a Frobenius2 semilinear isomorphism ΩA

∼−→ LηpΩA. Suppose for simplicity that ΩA is p-torsionfree;
applying (5) with f = p then defines an isomorphism of complexes

(6) ηp(ΩA)/p
∼−→ H•(ΩA/p).

Note that if we write A0 = A/p, then ΩA/p ∼= ΩA0/k. The Frobenius semilinear isomorphism ΩA
∼−→

LηpΩA gives a Frobenius semilinear equivalence ΩA0/k
∼−→ ηp(ΩA0

)/p. Comparing the left and right-
hand sides of (6) recovers the Cartier isomorphism for A0.

A similar result was proved in [BS19, Theorem 1.16(4)] for the q-de Rham complex: namely, if A is a
smooth Zp[ζp]-algebra, then there is a Frobenius semilinear equivalence qΩA

∼−→ Lη[p]qqΩA. As above,
using (5) with f = [p]q recovers the q-analogue of the Cartier isomorphism.

As one might expect, there is a décalage result for the s-de Rham complex, too:

Proposition 4.2.6. Fix a GNS s over R such that:

(1) there is a ring endomorphism φ : R → R which sends s(n) 7→ s(np)
s(p) .

(2) s(1) is a unit in R/s(p), and R is s(p)-adically complete.

Write A1,(p) = SpecR[xp], and define a map Φ : sΩ□,A1,(p) → sΩ□,A1 via

R[xp]
φ−→ R[x], in degree 0,

R[xp]d(xp)
φ,d(xp)7→s(p)xp−1dx−−−−−−−−−−−−−→ R[x]dx, in degree 1.

Then Φ factors through a quasi-isomorphism φ∗sΩ□,A1,(p)
∼−→ ηs(p)sΩ□,A1 .

Proof. Since sΩ□,A1 is s(p)-torsionfree, we can directly compute the complex ηs(p)sΩ□,A1 . If f(x) =∑
n≥0 anx

n ∈ R[x], then

∇sf(x) =
∑
n≥0

ans(n)x
n−1.

2The existence of a Frobenius on ΩA is not obvious, and depends on the existence of crystalline cohomology. However, we
will only consider this isomorphism in the case when A = W (k)[t], in which case A admits a Frobenius endomorphism sending
t 7→ tp.



28 S. K. DEVALAPURKAR AND M. L. MISTERKA

Since s(p)|s(pj) for any j ≥ 0, we see that ∇sf(x) ∈ s(p)R[x] if and only if s(p)|an for p ∤ n.
Therefore,

ηs(p)sΩ□,A1 =
(
R[xp] + s(p)R[x]

∇s−−→ s(p)R[x]dx
)
.

The map Φ clearly factors through the inclusion ηs(p)sΩ□,A1 ⊆ sΩ□,A1 . It remains to check that the
map φ∗sΩ□,A1,(p) → ηs(p)sΩ□,A1 induces an isomorphism on cohomology. Observe that

H0(sΩ□,A1,(p)) ∼= R,

H1(sΩ□,A1,(p)) ∼=
⊕
n≥1

R/s(n){(xp)n−1d(xp)},

and similarly

H0(ηs(p)sΩ□,A1) ∼= R,

H1(ηs(p)sΩ□,A1) ∼=
⊕
n≥1

(s(p))/(s(np)){xnp−1dx} ⊕
⊕
p∤m

(s(p))/(s(m)s(p)){xm−1dx}.

The ring endomorphism φ of R sends s(n) 7→ s(np)
s(p) , and s(p) is a non-zero-divisor in R, we see that φ

descends to an isomorphism

φ∗(R/s(n))
∼−→ R/ s(np)

s(p)

∼−→ (s(p))/(s(np)).

If p ∤ m, then s(m) is a unit in R/s(p) by Lemma 2.2.5; since R is s(p)-adically complete, this implies
that s(m) is a unit in R itself. It follows that 0 ∼= R/s(m)

∼−→ (s(p))/(s(m)s(p)). Putting these together,
we see that the map φ∗sΩ□,A1,(p)

∼−→ ηs(p)sΩ□,A1 is a quasi-isomorphism. □

In Proposition 4.2.6, the condition that R be s(p)-adically complete is rather powerful. For instance,
one of the most basic tools in p-adic mathematics is the Legendre formula; this admits an analogue for
generalized n-series, too.

Proposition 4.2.7 (s-analogue of Legendre formula). Let s be a GNS over R satisfying the hypotheses
of Proposition 4.2.6. For any n ≥ 0, we have

n!s = u
∏
j≥1

φj−1(s(p))⌊n/p
j⌋

for some unit u ∈ R×.

Proof. The argument is a straightforward adaptation of [BS19, Lemma 12.6]. Since R is s(p)-adically
complete, we know that if p ∤ m, then s(m) is a unit in R. This implies that

(np)!s = u

n∏
i=1

s(np) = u

n∏
i=1

(
s(np)

s(p)
· s(p)

)

= us(p)n
n∏

i=1

φ(s(n)) = us(p)nφ(n!s),

where u =
∏

1≤j≤np,p∤j s(j) is a unit in R. Using the above identity to inductively strip powers of p off
of n produces the desired claim. □

This implies the following analogue of [BS19, Lemma 12.5], which gives a criterion for admitting
“s-divided powers”.

Corollary 4.2.8. Let s be a GNS over R satisfying the hypotheses of Proposition 4.2.6, and suppose
that for any n ≥ 0, φ(n!s) is a non-zero-divisor in R/s(p). Let A be an s(p)-completely flat R-algebra
equipped with a R-linear multiplicative map ϕ : φ∗A → A and an element x ∈ A such that φ(x) = xp,
and φ(x) is divisible by s(p). Then n!s|xn, i.e., xn

n!s
is well-defined in A.
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Proof. Because s(j) is a unit in R is p ∤ j, it suffices to show: for any n ≥ 0, if n!s|xn, then (np)!s|xnp.
By (the proof of) Proposition 4.2.7, it suffices to show that φ(n!s)s(p)n|xnp. Because φ(n!s) is a non-
zero-divisor in R/s(p) (by assumption), it is also a non-zero-divisor in A/s(p) by flatness of A. It
therefore suffices to show that φ(n!s) and s(p)n each individually divide xnp. Since n!s|xn, it is clear
that φ(n!s)|ϕ(xn) = xnp. Since s(p)|xp by assumption, we also see that s(p)n|xnp, as desired. □

4.3. Formal group law n-series and the s-derivative. Some of the most important (and accessible)
examples of generalized n-series come from formal group laws. Throughout this section, we will fix a
base commutative ring R.

Recollection 4.3.1. A (1-dimensional) formal group law over a commutative ring R is a two-variable
power series F (x, y) ∈ R[[x, y]] such that F (F (x, y), z) = F (x, F (y, z)) and F (x, y) ≡ x + y
(mod (x, y)2). It will sometimes be convenient to denote F (x, y) by x+F y. A morphism f : F → G
of formal group laws is a power series f(x) ∈ R[[x]] such that f(F (x, y)) = G(f(x), f(y)); a morphism
is called an isomorphism if it admits a compositional inverse.

If n ≥ 0 is an integer, the n-series of F is defined via the formula

[n]F (t) =

n︷ ︸︸ ︷
F (t, F (t, F (t, . . . F (t, t) . . . ))) =

n︷ ︸︸ ︷
t+F t+F · · ·+F t .

This can be extended to all integers n ∈ Z by using the existence of inverses for the formal group law.
The n-series [n]F (t) is an element of R[[t]], and it is always divisible by t. We will define ⟨n⟩F (t) :=
[n]F (t)/t (where we agree that ⟨0⟩F (t) = 0). Sometimes, it will be notationally convenient to simply
write these as [n]F and ⟨n⟩F (it being implicit that these are functions of t). If R is an Fp-algebra, then
either [p]F (t) = 0 or [p]F (t) = λtp

h

+O(tp
h+1) for some h > 0. If vj denotes the coefficient of tp

j

in
[p]F (t), then F is said to be of height ≥ n if vj = 0 for j < n; if vn is a unit, then F is said to be of
height n.

If Q ⊆ R, then every formal group law F (x, y) is isomorphic to the additive formal group law via
the logarithm. Let Fy(x, y) = ∂yF (x, y); then, the logarithm is given by the integral

ℓF (x) :=

∫ x

0

dt

Fy(t, 0)
.

We will write EF (x) to denote its compositional inverse, so that F (x, y) = EF (ℓF (x)+ℓF (y)). Observe
that [n]F (t) = EF (nℓF (t)) for any n ∈ Z.

Example 4.3.2. Fix a base commutative ring R. The polynomial F (x, y) = x + y is known as the
additive formal group law, and ⟨n⟩F (t) = n. The polynomial F (x, y) = x + y + xy is known as the
multiplicative formal group law, and

⟨n⟩F (t) =
(1 + t)n − 1

t
∈ R[[t]].

Note that ⟨n⟩F = [n]q , where we set q = t + 1. The power series F (x, y) = x+y
1+xy is known as the

hyperbolic formal group law (since it describes the addition law for tanh), and a simple induction on n
shows that

⟨n⟩F (t) =
1

t

(1 + t)n − (1− t)n

(1 + t)n + (1− t)n
=

1

q − 1

q2n − 1

q2n + 1
∈ R[[q − 1]].

Remark 4.3.3. Given a formal group law F (x, y) over a (torsionfree, say) commutative ring R, one can
define a “rescaled” formal group law F̃ (x, y) over R[[t]] which is characterized by the following property.
Over (R ⊗ Q)[[t]], the logarithm ℓ̃F (x) is given by 1

t ℓF (tx); note that this power series does not have
terms with negative powers of t, since x | ℓF (x) (and hence tx | ℓF (tx)).
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We begin by showing that the map n 7→ [n]F (t) is a GNS over R[[t]], as long as F satisfies a mild
condition. The existence of the power series ℓF is the main reason that GNS arising via formal group
laws are particularly well-behaved.

Proposition 4.3.4. Let F be a formal group law over a ring R, and suppose that [n]F (t) ∈ R[[t]] is not
a zero-divisor for any n > 0. Define s : Z≥0 → R[[t]] by s(n) = [n]F (t). Then, s is a GNS over R[[t]].
Similarly, the function sF : Z≥0 → R[[t]] sending sF (n) = ⟨n⟩F (t) is a GNS over R[[t]].

Proof. It is easy to see that if s is a GNS, the same is true of sF . Let us now show that s is a GNS
by checking the conditions of Definition 2.1.4. Condition (1) is clear, since [0]F = 0. Condition (2) is
already assumed in the theorem statement.

For condition (3), let G(x) ∈ R[[t]][[x]] be the power series F (t, x). Then,

[n+ 1]F − [k + 1]F = G([n]F )−G([k]F ).

Since x − y divides xj − yj for each j ≥ 0, and G is a power series, x − y also divides G(x) − G(y).
In particular, s(n) − s(k) = [n]F − [k]F divides G([n]F ) − G([k]F ); but G([n]F ) − G([k]F ) = [n +
1]F − [k+1]F is precisely s(n+1)− s(k+1), so s(n)− s(k) divides s(n+1)− s(k+1). Inducting,
we conclude that s(n) − s(k) divides s(n + j) − s(k + j) for all n, k, j ∈ Z≥0. For k = 0, this gives
s(n) | s(n+j)−s(j) for all n, j ∈ Z≥0. After relabeling the indices, this becomes s(n−k) | s(n)−s(k),
which proves condition (3). □

Lemma 4.3.5. Let F be a formal group law over a ring R. If n ∈ Z>0 is not a zero-divisor in R (e.g.,
R is torsionfree), then [n]F and ⟨n⟩F are not zero-divisors in R[[t]].

Proof. Suppose for the sake of contradiction that [n]F (t) is a zero-divisor for some n (the same argument
works for ⟨n⟩F ). Then there exists a power series f(t) ∈ R[[t]] such that

f(t) · [n]F (t) = 0.

It follows that the product of the coefficients of the lowest-degree terms of f(t) and [n]F (t) must be 0.
Since the lowest-degree term of [n]F (t) is nt, this implies that n times the lowest-degree coefficient of
f(t) is 0. In particular, n is a zero-divisor in R. □

Definition 4.3.6. Let F be a formal group law over R such that [n]F (t) ∈ R[[t]] is not a zero-divisor for
any n > 0.3 Let FΩ□,A1 denote the differential graded R[[t]]-algebra given by the s-de Rham complex
associated to the GNS s : Z≥0 → R sending n 7→ ⟨n⟩F . We will refer to FΩ□,A1 as the F -de Rham
complex of the affine line A1 = SpecR[x]; we will abusively also refer to the differential ∇F as the
F -derivative.

Example 4.3.7.
• For the additive formal group law, ⟨n⟩F = n; so the resulting F -de Rham complex is simply the

usual de Rham complex.
• For the multiplicative formal group law, ⟨n⟩F = [n]q; so the resulting F -de Rham complex is

simply the q-de Rham complex. Note that the F -derivative can be defined directly on polyno-
mials (instead of only on monomials) via f(x) 7→ f(qx)−f(x)

(q−1)x . This can be seen directly from
Proposition 4.3.9: indeed,

EF (ℓF (t)z) =
(1 + t)z − 1

t
=

qz − 1

q − 1
,

and the operator qx∂x sends f(x) 7→ f(qx).

3Many of the results below do not rely on this assumption; but we keep it nonetheless, since Proposition 4.3.4 allows to
immediately transport many results about generalized n-series obtained above. The interested reader should have no trouble
removing this condition as necessary in the results below.
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Remark 4.3.8. One can consider a slight variant of the F -de Rham complex, given by the complex

C• := (R[[t]][x] → R[[t]][x]dx) , xn 7→ [n]Fx
n−1dx.

This is the s-de Rham complex for the function s : Z≥0 → R sending n 7→ [n]F . Then, there is a
quasi-isomorphism FΩ□,A1 ≃ ηtC

•.

When Q ⊆ R, there is a general formula for the F -derivative.

Proposition 4.3.9. Suppose that Q ⊆ R, and let F be a formal group law over R. Then there is an
equality of R[[t]]-linear operators on R[[t]][x]:

∇F =
1

tx
EF (ℓF (t)x∂x).

In particular, there is a canonical isomorphism FΩ□,A1 ∼= ΩQ[x]/Q ⊗Q R[[t]].

Proof. Let ∇′
F denote the expression on the right-hand side. By definition of ∇F , it suffices to check

that ∇′
F (x

m) = ⟨m⟩xm−1 for every m ≥ 1. Write EF (t) =
∑

n ant
n; then

∇′
F (x

m) =
1

xt

∑
n

anℓF (t)
n(x∂x)

n(xm)

=
1

xt

∑
n

an(mℓF (t))
nxm

=
1

t
EF (mℓF (t))x

m−1 = ⟨m⟩xm−1,

as desired. □

Remark 4.3.10. Since every formal group law over a Q-algebra is isomorphic to the additive formal
group law, the final statement of Proposition 4.3.9 is a special case of the following more general obser-
vation: if F1 and F2 are isomorphic formal group laws, then the associated de Rham complexes are also
isomorphic.

Example 4.3.11. Using Proposition 4.3.9, we can make the F -derivative explicit for the hyperbolic
formal group law. In this case, EF (t) = tanh(t), so that ℓF (t) = tanh−1(t), and

EF (ℓF (t)z) = tanh(z tanh−1(t)) =
q2z − 1

q2z + 1
,

where q − 1 = t. Since the operator qx∂x sends f(x) 7→ f(qx), the F -derivative can be expressed as

∇F : f(x) 7→ 1

(q − 1)x

f(q2x)− f(x)

f(q2x) + f(x)
.

Example 4.3.12. Let R0 = Fp[vn]. Then, there is a unique formal group law (known as the Honda
formal group law; see [Hon70]) over R0 which is characterized by the property that its p-series is given
by [p]F (t) = vnt

pn

. This implies that up to a unit in R0[[t]], we have [m]F (t) = v
vp(m)
n tm

n

, where
vp(m) denotes the p-adic valuation of m. The formal group law over R0 lifts to a formal group law over
R = Zp[vn] such that over R⊗Q ∼= Qp[vn], its logarithm is given by

ℓF (x) =
∑
j≥0

v
pjn−1
pn−1
n

xpjn

pj
.

For example, if n = 1 and we adjoin a (p − 1)st root β of v1, this is essentially the logarithm of the
Artin-Hasse exponential, so that

ℓF (x) = − 1

β

∑
p∤d

µ(d)

d
log(1− (βx)d).
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One can say something similar for general n. Recall that the polylogarithm is defined by Lis(x) =∑
j≥1

xj

js , so that Li1(x) = −log(1 − x). If β denotes a (pn − 1)st root of vn, then ℓF (x) can be
understood as a “pn-typical” version of 1

βLi1/n(βx).
When n = 1, the resulting F -de Rham complex over Fp[[t]] is closely related to the mod p reduction

of the q-de Rham complex: indeed, observe that the p-series of the multiplicative formal group law is
congruent to tp (mod p). The resulting lifted formal group law over Zp[v1] is the p-typification of the
multiplicative formal group law (see [Rav86, Appendix 2]). For higher n, the resulting F -de Rham
complex behaves qualitatively similar to the case n = 1. For instance, we have

H0(FΩ□,A1) ∼= Fpn [vn][[t]], H
1(FΩ□,A1) ∼=

⊕
j≥1

Fpn [vn, t]/(v
vp(j)
n tj

n

){xj−1dx}.

Example 4.3.13. Let n ≥ 1, let k be an algebraically closed field of characteristic p > 0, and let
R = W (k)[[u1, · · · , un−1]] denote the Lubin-Tate ring. Let F denote the formal group law associated
to the universal deformation of a chosen formal group law of height n over k. Then, the resulting F -de
Rham complex specializes to the q-de Rham complex when n = 1. For general n, this F -de Rham
complex is closely related to deep phenomena in chromatic homotopy theory (see Remark 4.3.25).

Lemma 4.3.14 (F -Taylor expansion). Let F be a formal group law over R such that [n]F (t) ∈ R[[t]] is
not a zero-divisor for any n > 0. If f(x) ∈ (R⊗Q)[[t, x− 1]], there is a Taylor expansion

f(x) =
∑
n≥0

∇n
F (f(x))|x=1

(x− 1)ns
n!F

.

Here, (x− 1)ns denotes the symbol from Definition 2.3.5 with y = −1.

Proof. This is the same argument as in [AL20, Proposition 4.4]. First, observe that if g(x) ∈ (R ⊗
Q)[[t, x − 1]] is a function such that ∇n

F (g(x))|x=1 = 0 for all n ≥ 0, then g = 0. Indeed, since ∇F

is simply the usual derivative modulo t, we see that g(x) is divisible by t. Write g(x) = tg1(x); then,
∇n

F (g(x))|x=1 = 0 for all n ≥ 0, so t|g1(x). Continuing, we see that g(x) is infinitely t-divisible, and
hence vanishes (since t is topologically nilpotent).

We can now apply the above observation to

g(x) := f(x)−
∑
n≥0

∇n
F (f(x))|x=1

(x− 1)ns
n!F

.

By definition of (x− 1)ns , we know that ∇F (
(x−1)ns
n!F

) =
(x−1)n−1

s

(n−1)!s
; so ∇n

F (g(x))|x=1 = 0 for all n ≥ 0,
and hence g = 0, as desired. □

Corollary 4.3.15 (F -logarithm). Let F be a formal group law over R such that [n]F (t) ∈ R[[t]] is not a
zero-divisor for any n > 0. Consider the function F log(x) ∈ (R ⊗Q)[[t, x − 1]] given by t

ℓF (t) log(x).
Then, we have:

(1) ∇F (F log(x)) = 1
x .

(2) F log(xy) = F log(x) + F log(y).
(3) There is a series expansion

F log(x) =
∑
n≥1

⟨−n+ 1⟩F · · · ⟨−1⟩F
n!F

(x− 1)ns .

Proof. The first statement follows from Proposition 4.3.9. Indeed, write EF (y) =
∑

n≥1 any
n; the

condition that F (x, y) ≡ x+ y (mod (x, y)2) forces a1 = 1. Since

(x∂x)(F log(x)) =
t

ℓF (t)
(x∂x)log(x) =

t

ℓF (t)
,
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we see that

x∇F (F log(x)) =
1

t

∑
n≥1

anℓF (t)
n(x∂x)

n(F log(x))

=
1

t

ℓF (t) ·
t

ℓF (t)
+
∑
n≥2

anℓF (t)
n(x∂x)

n(F log(x))

 .

The second sum vanishes, since (x∂x)
n(F log(x)) = 0 for n ≥ 2. The first term cancels out to give

x∇F (F log(x)) = 1, as desired.
The second statement is clear. For the third statement, observe that

∇n
F (F log(x)) = ∇n−1

F (1/x) = ⟨−n+ 1⟩F · · · ⟨−1⟩Fx−n.

Evaluating at x = 1 and using Lemma 4.3.14 gives the desired claim. □

Warning 4.3.16. The F -logarithm F log(x) is not the same as the logarithm ℓF (x) associated to the
formal group law. This unfortunate terminology stems from attempting to simultaneously emulate the
standard terminology “q-logarithm” and the “logarithm of the multiplicative formal group law”.

Remark 4.3.17. Corollary 4.3.15 implies that F log(x) is a well-defined class in the ring R[[t]]
[
x±1,

(x−1)ns
n!F

]
;

this is the ring of functions on an F -analogue of the divided power completion of the identity section of
(Gm)R[[t]].

Remark 4.3.18. The formal series in Corollary 4.3.15(3) can be written for arbitry GNS s; when it exists
and converges, its s-derivative will formally be 1/x. However, we have chosen to state Corollary 4.3.15
only in the case of GNS arising via formal group laws, since it is otherwise difficult to get a computational
grip on the resulting formal series.

Example 4.3.19. When F is the multiplicative formal group law over Z, the function F log(x) can be
identified with the q-logarithm

logq(x) =
∑
n≥1

(−1)n+1q−(
n
2) (x− 1)(x− q) · · · (x− qn−1)

[n]q
∈ Q[[q − 1, x− 1]].

Indeed, this follows from the second part of Corollary 4.3.15 and the observation that ⟨−j⟩F = [−j]q =
−q−j [j]q . See [AL20, Section 4] for more on the q-logarithm.

Example 4.3.20. Let F be the hyperbolic formal group law over Z. Then,

⟨−j⟩F =
q−2j − 1

q−2j + 1
=

1− q2j

1 + q2j
= −⟨j⟩F .

It follows that

F log(x) =
∑
n≥1

(−1)n−1 q
2n + 1

q2n − 1
(x− 1)ns .

Let us summarize some of the results from the previous section upon specialization to the F -de Rham
complex:

Theorem 4.3.21. Let R be a commutative ring, and let F be a formal group law over R such that
[n]F (t) ∈ R[[t]] is not a zero-divisor for any n > 0. Let Ĝ denote the formal group over R. Then:

(1) Let R[[t]]⟨x⟩F denote the ring R[[t]][x, xn

[n]F ! ]n≥0. Then the Poincaré lemma holds: the coho-
mology of the complex FΩ□,A1 ⊗R[[t]][x] R[[t]]⟨x⟩F is concentrated in degree zero, where it is
isomorphic to R[[t]].
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(2) The Cartier isomorphism holds: there is a canonical isomorphism

FΩi
□,A1,(p) ⊗R[[t]] R[[t]]/⟨p⟩F ∼= Hi(FΩ□,A1 ⊗R[[t]] R[[t]]/⟨p⟩F )

sending (xp)n 7→ xnp in degree zero and (xp)nd(xp) 7→ [xnpxp−1dx]. Note that Spf R[[t]]/[p]F ∼=
Ĝ[p].

(3) The décalage isomorphism holds: replace R[[t]] with its ⟨p⟩F -adic completion. Let φ : R[[t]] →
R[[t]] denote the R-algebra map sending t 7→ [p]F (t), i.e., the map induced on rings by the
multiplication-by-p map Ĝ → Ĝ. Then, there is a quasi-isomorphism φ∗FΩ□,A1,(p)

∼−→
η⟨p⟩FFΩ□,A1 .

(4) The hypotheses of Corollary 4.2.8 are satisfied, so that there is a criterion for admitting “F -
divided powers”. Namely, replace R[[t]] by its (p, ⟨p⟩F )-adic completion, and suppose that for
any n ≥ 0, φ(n!F ) is a non-zero-divisor in R[[t]]/⟨p⟩F . Let A be a ⟨p⟩F -completely flat R[[t]]-
algebra equipped with a R[[t]]-linear multiplicative map ϕ : φ∗A → A. If x ∈ A is an element
such that φ(x) = xp and ⟨p⟩F | φ(x), then xn

n!s
∈ A.

Proof. The first part is Proposition 4.2.1. The second part is Proposition 4.2.4, where the hypothesis in
the proposition holds because ⟨1⟩F ≡ 1 (mod t) is a unit modulo the topologically nilpotent ideal (t) ⊆
R[[t]]. The third (and fourth) part is an application of Proposition 4.2.6. Note that the first hypothesis
holds by construction of φ : R[[t]] → R[[t]]: indeed, φ sends

s(n) =
[n]F (t)

t
7→ [n]F ([p]F (t))

[p]F (t)
=

[np]F (t)

[p]F (t)
=

s(np)

s(p)
.

The second hypothesis follows from the assumption on R[[t]]. □

Remark 4.3.22. Using Remark 4.3.10, one can upgrade Theorem 4.3.21 to the case when R (rather,
SpecR) is replaced by the moduli stack of formal groups. However, we will not discuss this further in
this article.

Motivated by [Sch17, Conjecture 3.1], we propose the following conjecture (which is likely false as
stated). Arpon Raksit has informed the first author that he is currently working on some variant of it.

Conjecture 4.3.23. Let PolyR denote the category of polynomial R-algebras and R-algebra maps be-
tween them. Let F be a formal group law over R such that [n]F (t) ∈ R[[t]] is not a zero-divisor for
any n > 0. Then, there is a functor ΓF -dR(−) : PolyR → CAlg(R[[t]]) landing in the ∞-category of
E∞-R[[t]]-algebras which sends R[x1, · · · , xn] 7→ FΩ□,An .4 Furthermore, each part of Theorem 4.3.21
admits a generalization to ΓF -dR(−).

Remark 4.3.24. If the preceding conjecture is true, then the construction FΩ□,− can be extended to all
(animated) R-schemes by left Kan extension:

PolyopR
ΓF -dR(−) //

��

CAlg(R[[t]])op

SchopR

ΓF -dR(−)

55

We expect that the resulting functor X 7→ ΓF -dR(X), if it exists, should be rather interesting. When
F is the multiplicative formal group law, Conjecture 4.3.23 is true, and the resulting assignment X 7→
ΓF -dR(X) is the q-de Rham cohomology of [BS19].

Let us end this section by discussing the motivation behind the construction of the F -de Rham com-
plex. We will necessarily be brief, since this is not the main subject of the present article.

4In other words, the assignment R[x1, · · · , xn] 7→ FΩ□,An is functorial in R-algebra maps of polynomial R-algebras.
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Remark 4.3.25. Let A be an even-periodic E∞-ring equipped with a complex orientation. Then, Quillen
defined a canonical formal group law F (x, y) over R := π0(A). Let τ≥0A denote the connective cover of
A, and let F⋆

evHP(τ≥0A[x]/τ≥0A) denote the even filtration on the periodic cyclic homology of τ≥0A[x]

(defined in [HRW22]). The assignment A 7→ (τ≥0A)tS
1

is the homotopical analogue of the construction
of the “rescaled” formal group law from Remark 4.3.3.

Unpublished work of Arpon Raksit shows that the F -de Rham complex FΩ□,A1 arises as the zeroth
associated graded piece gr0evHP(τ≥0A[x]/τ≥0A). In particular, in this case, the F -de Rham complex
admits the structure of an E∞-R[[t]]-algebra. There are homotopical analogues of each part of Theo-
rem 4.3.21: for example, the décalage isomorphism of Theorem 4.3.21(3) is proved as [Dev23, Proposi-
tion 3.5.3].

When A = KU is periodic complex K-theory (so τ≥0A = ku is connective complex K-theory),
the formal group law over π0(A) is precisely the multiplicative one; so the q-de Rham complex arises
as gr0evHP(ku[x]/ku). As explained in [DR23], the p-completion of HP(ku[x]/ku) can be understood
via the topological negative cyclic homology of Zp[ζp][x]; this is a homotopical analogue of the Bhatt-
Scholze construction [BS19] of q-de Rham cohomology via prismatic cohomology.

When A = En is the Morava E-theory associated to the Lubin-Tate formal group (see Exam-
ple 4.3.13) and τ≥0A = en is its connective cover, the F -de Rham complex of Example 4.3.13 arises
as gr0evHP(en[x]/en). The periodic cyclic homology HP(en[x]/en) plays an important role in higher
chromatic analogues of the work of Bhatt-Morrow-Scholze [BMS19], and will be explored in future
work.

Although this does not quite fall into the above framework, the first author hopes to show in future
work that when A = Ls(Z) is the symmetric L-theory of the integers (see [HLN21]), the F -de Rham
complex associated to the hyperbolic formal group law is closely related to gr0evHP(Ls(Z)[x]/Ls(Z)).
This is a manifestation of the observation (going back to the Hirzebruch signature theorem) that the loga-
rithm of the formal group law associated to the complex orientation on Ls(Z) is given by the hyperbolic
tangent function tanh(x).

4.4. An analogue of the Bhatt-Lurie Cartesian square. Throughout this section, we will fix a p-
completely flat Zp-algebra R and a formal group law F (x, y) over R. The symbol R[[t]] will always
denote the p-adic completion of the formal power series ring, and all constructions will be done internal
to the category of (p, t)-adically R[[t]]-schemes. (We have omitted the completion from the notation for
readability.) Let Ĝ denote the associated formal group, so that its underlying formal scheme is Spf R[[t]].

In [BL22, Lemma 3.5.18], Bhatt-Lurie showed that there is a Cartesian square of group schemes over
R:

(7) G♯
m

log //

��

G♯
a

x 7→exp(px)

��
Gm

x 7→xp
// G(1)

m .

The proof in loc. cit. used the relationship between these group schemes and the ring scheme of Witt
vectors. In this section, we prove an F -analogue of this result (see Theorem 4.4.10); in the case of the
additive formal group law, this reproves (7). Let us state at the outset that in the case when F is the
multiplicative formal group law, this result was obtained in a discussion between the first author and
Michael Kural. Moreover, the argument in this section rests crucially on (12), the q-analogue of which
(Example 4.4.8) was proved by Michael Kural. Any errors below are solely the fault of the first author!

Definition 4.4.1. Remark 4.3.3 gives a formal group Ĝt over Spf R[[t]] whose logarithm is ℓ̃F (x) =
1
t ℓF (tx). Let x denote the coordinate on Ĝt, so that its underlying formal scheme is Spf R[[t, x]]. Let
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Ĝ∨
t denote the Cartier dual Hom(Ĝt, (Gm)R[[t]]) of Ĝt; see [Dri21, Section 3] for some generalities on

Cartier duals of formal groups. The element x ∈ OĜt
defines a homomorphism τ : Ĝ∨

t → (Ga)R[[t]].

Observation 4.4.2. Over (R ⊗ Q)[[t]], the rescaled logarithm ℓ̃F of Remark 4.3.3 defines an isomor-
phism ℓ̃F : Ĝt

∼−→ (Ĝa)(R⊗Q)[[t]] of formal groups. Therefore, the canonical pairing Ĝt ×R[[t]] Ĝ
∨
t →

(Gm)R[[t]] fits into a diagram

Ĝt ×R[[t]] Ĝ
∨
t

µ

))
∼ℓ̃F×id

��
(Ĝa)(R⊗Q)[[t]] ×R[[t]] Ĝ

∨
t ν

// (Gm)(R⊗Q)[[t]].

Since R[[t]] is (p, t)-adically complete, the Cartier dual of (Ĝa)R[[t]] can be identified with the divided
power completion (G♯

a)R[[t]]. The pairing ν is base-changed from R[[t]] itself, where it is given by the
formula

ν : (x, y) 7→ exp(xy).

It follows that the pairing µ is given by

µ(x, y) = exp(ℓ̃F (x)y).

This can be expanded as a power series in x:

µ(x, y) =
∑
n≥0

βn(y)x
n.

Unwinding the definition of the Cartier dual, and using that R[[t]] is p-torsionfree (using our assumption
that R is a p-completely flat Zp-algebra), we see that the ring of functions on Ĝ∨

t has underlying R[[t]]-
module given by (the (p, t)-adic completion of)

OĜ∨
t
= R[[t]]{βn(y)}n≥0.

Example 4.4.3. When F is the multiplicative formal group law, the function µ is simply

µ(x, y) = exp

(
y

q − 1
log(1 + (q − 1)x)

)
= (1 + (q − 1)x)y/(q−1);

its power series expansion is given by

µ(x, y) =
∑
n≥0

∏n−1
j=0 (y − j(q − 1))

n!
xn.

This expression plays an important role in [Dri21].

Example 4.4.4. When F is the hyperbolic formal group law (so that ℓF (x) = tanh−1(x) = 1
2 log

(
1+x
1−x

)
),

the function µ is

µ(x, y) = exp

(
y

2(q − 1)
log

(
1 + (q − 1)x

1− (q − 1)x

))
=

(
1 + (q − 1)x

1− (q − 1)x

)y/2(q−1)

.

The power series expansion of this function is somewhat complicated: one can show that upon writing
µ(x, y) =

∑
n≥0 βn(y)x

n, we have β0 = 1, β1 = y, and there is a recurrence

βn+2(y) =
yβn+1(y) + n(q − 1)2βn(y)

n+ 2
.
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Using a computer, one can compute that the first few terms of this expansion are

µ(x, y) = 1 + yx+
y2

2
x2 +

2(q − 1)2y + y3

3!
x3 +

8(q − 1)2y2 + y4

4!
x4

+
24(q − 1)4y + 20(q − 1)2y3 + y5

5!
x5 + · · · .

Definition 4.4.5. Let G♯,F
m denote the formal scheme over Spf R[[t]] given by (the (p, t)-adic completion

of)

G♯,F
m = Spf R[[t]]

[
y±1,

(y − 1)ns
n!F

]
n≥0

.

This can be viewed as the “F -divided power hull” of the identity section of (Gm)R[[t]]. Equip G♯,F
m with

the structure of a group scheme where the coproduct sends y 7→ y ⊗ y. It is not immediate that this
is well-defined, but we will prove this below in Corollary 4.4.9. There is a canonical homomorphism
can : G♯,F

m → (Gm)R[[t]].
Note that Remark 4.3.17 implies that F log(y) defines an element of the coordinate ring of G♯,F

m ,
i.e., it defines a map F log : G♯,F

m → (Ga)R[[t]]. This is in fact a homomorphism, since F log(y1y2) =
F log(y1) + F log(y2).

Proposition 4.4.6. Work over the base (R ⊗ Q)[[t]]. Then, the iterated F -derivative of µ(x, F log(y))
with respect to the variable y is given by

(8) ∇n
F,yµ(x, F log(y)) =

x(x+ ⟨−1⟩F (t)) · · · (x+ ⟨−n+ 1⟩F (t))
yn

µ(x, F log(y)).

Proof. Observe that:

µ(x, F log(y)) =
∑
n≥0

βn(F log(y))xn = exp(F log(y)ℓ̃F (x))

= exp

(
t

ℓF (t)
log(y) · ℓF (tx)

t

)
= exp

(
log(y)

ℓF (tx)

ℓF (t)

)
= y

ℓF (tx)

ℓF (t) ;

the third equality used the definition of F log(y) via Corollary 4.3.15 and the definition of ℓ̃F (x) via
Remark 4.3.3. Let us write a = ℓF (tx)

ℓF (t) for notational simplicity, so that

ya =
∑
m≥0

a(a− 1) · · · (a− (m− 1))

m!
(y − 1)m,

and ∂yy
a = aya−1.

We can now inductively compute the iterated F -derivative using Proposition 4.3.9. We begin with the
base case n = 1. Note that (y∂y)ya = aya, so that

(9) (y∂y)
mya = amya

by an easy induction on m. Write EF (z) =
∑

m≥0 bmzm; then using (9), we have:

∇F,yµ(x, F log(y)) =
1

yt

∑
m≥0

bmℓF (t)
m(y∂y)

mya =
1

yt

∑
m≥0

bmℓF (t)
mamya

=
ya

yt

∑
m≥0

bmℓF (tx)
m =

ya

yt
EF (ℓF (tx)) =

tx

yt
· ya

=
x

y
ya =

x

y
µ(x, F log(y)),

as desired.
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The proof of the iterated F -derivative is similar. Indeed, note that (9) implies that for any j ≥ 0, we
have:

(10) (y∂y)
m

(
µ(x, F log(y))

yj

)
= (y∂y)

mya−j = (a− j)mya−j = (a− j)m
µ(x, F log(y))

yj
.

Assume that (8) holds for n; then:

∇n+1
F,y µ(x, F log(y)) = ∇F,y∇n

F,yµ(x, F log(y))

= x(x+ ⟨−1⟩F (t)) · · · (x+ ⟨−n+ 1⟩F (t))∇F,y

(
µ(x, F log(y))

yn

)
.(11)

The derivative on the right-hand side can be calculated as follows:

∇F,y

(
µ(x, F log(y))

yj

)
=

1

yt

∑
m≥0

amℓF (t)
m(y∂y)

m

(
µ(x, F log(y))

yj

)

=
1

yt

∑
m≥0

amℓF (t)
m

(
ℓF (tx)

ℓF (t)
− j

)m
µ(x, F log(y))

yj

=
µ(x, F log(y))

yj
1

yt

∑
m≥0

am(ℓF (tx)− jℓF (t))
m

=
µ(x, F log(y))

yj
1

yt
EF (ℓF (tx)− jℓF (t)).

Since
ℓF (tx)− jℓF (t) = ℓF (tx+ [−j]F (t)) = ℓF (t(x+ ⟨−j⟩F (t))),

this becomes

∇F,y

(
µ(x, F log(y))

yj

)
=

µ(x, F log(y))

yj
1

yt
EF (ℓF (t(x+ ⟨−j⟩F (t))))

=
µ(x, F log(y))

yj
x+ ⟨−j⟩F (t)

y
.

Plugging this into (11), we get that

∇n+1
F,y µ(x, F log(y)) = x(x+ ⟨−1⟩F (t)) · · · (x+ ⟨−n+ 1⟩F (t))(x+ ⟨−n⟩F (t))

µ(x, F log(y))

yn+1
,

as desired. □

Corollary 4.4.7. There is a dotted map (which is a homomorphism over R[[t]]) filling in the following
diagram:

Ĝ∨
t

τ

��
G♯,F

m y 7→F log(y)
//

66

(Ga)R[[t]].

Proof. In the notation of Observation 4.4.2, we need to show that βn(F log(y)) ∈ OG♯,F
m

for every n ≥ 0.

To prove this, let us work over (R⊗Q)[[t]], and expand µ(x, F log(y)) as a power series in (y−1)ns
n!F

using
Lemma 4.3.14. Evaluating (8) in Proposition 4.4.6 at y = 1, we obtain

∇n
F,yµ(x, F log(y))|y=1 = x(x+ ⟨−1⟩F (t)) · · · (x+ ⟨−n+ 1⟩F (t)).
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It follows from Lemma 4.3.14 that

(12)
∑
n≥0

βn(F log(y))xn = µ(x, F log(y)) =
∑
n≥0

x(x+ ⟨−1⟩F (t)) · · · (x+ ⟨−n+ 1⟩F (t))
(y − 1)ns

n!F
.

Taking the coefficient of xn on the right-hand side expresses βn(F log(y)) as an (R⊗Q)[[t]]-linear com-
bination of the divided powers (y−1)ns

n!F
; but since no rational denominators appear, this in fact expresses

βn(F log(y)) as an R[[t]]-linear combination of the divided powers (y−1)ns
n!F

, as desired. □

Example 4.4.8. When F is the multiplicative formal group law, (12) reduces to the following identity:∑
n≥0

logq(y)(logq(y)− (q − 1)) · · · (logq(y)− (n− 1)(q − 1))

n!
xn

=
∑
n≥0

q−(
j
2)x(x− [1]q) · · · (x− [n− 1]q)

(y − 1)(y − q) · · · (y − qn−1)

[n]q!
.

This identity was communicated to the first author by Michael Kural, and was motivation for the more
general (12).

Corollary 4.4.9. The group structure on G♯,F
m is well defined.

Proof. Suppose that y1 and y2 both admit F -divided powers (y−1)ns
n!F

; we need to show that the same is
true of the product y1y2. Since F log(y1y2) = F log(y1)+F log(y2), one can express βn(F log(y1y2)) in
terms of βn(F log(y1)) and βn(F log(y2)). Using the identity (12) in the proof of Corollary 4.4.7 shows
that y1y2 must also admit F -divided powers, as desired. □

The main result of this section is the following result, which recovers (7) when F is the additive
formal group law. Using Remark 4.3.10, one can in fact refine Theorem 4.4.10 to remain true when the
base R[[t]] (or rather Ĝ = Spf R[[t]]) is replaced by the universal formal group Ĝuniv over the moduli
stack of formal groups over p-nilpotent rings.

Theorem 4.4.10. There is a Cartesian square of group schemes over R[[t]]:

(13) G♯,F
m

y 7→F log(y) //

can

��

Ĝ∨
t

⟨p⟩∗

��
(Gm)R[[t]]

y 7→yp
// (G(1)

m )R[[t]].

The right-vertical map is Cartier dual to the homomorphism pZ → Ĝt sending p 7→ ⟨p⟩F (t). In
particular, there is an extension

0 → (µp)R[[t]] → G♯,F
m

F log(y)−−−−−→ Ĝ∨
t → 0.

Proof. To check that the diagram commutes, we need to check that there is an equality of elements of
OG♯,F

m
:

yp = ⟨p⟩∗(F log(y)).

Since R is p-completely flat over Zp, there is an injection R[[t]] ⊆ (R ⊗ Q)[[t]]; so it suffices to check
the desired identity in (R ⊗ Q)[[t]]{βn(y)}n≥0. By the discussion in Observation 4.4.2, ⟨p⟩∗ can be
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expressed as

⟨p⟩∗(z) = exp(zℓ̃F (⟨p⟩F (t))) = exp

(
z
ℓF (t⟨p⟩F (t))

t

)
= exp

(
z
ℓF ([p]F (t))

t

)
= exp

(
p
ℓF (t)

t
z

)
.(14)

Note that this is also exp
(

ℓF ([p]F (t))
t z

)
. It follows that

⟨p⟩∗(F log(y)) = exp

(
p
ℓF (t)

t
F log(y)

)
= exp

(
p
ℓF (t)

t

t

ℓF (t)
log(y)

)
= exp(plog(y)) = yp,

as desired. To check that the square is Cartesian, observe that F log(y) = 0 implies that log(y) = 0,
which happens (by the Cartesian square (7)) if and only if yp = 1. Conversely, if yp = 1, then

p · F log(y) = F log(yp) = 0,

which implies that F log(y) = 0. □

Example 4.4.11. It follows from Theorem 4.4.10 that G♯,F
m is an extension of Ĝ∨

t by (µp)R[[t]]. In the
case of the multiplicative formal group law over R = Zp, this was studied in [Dri21]. Namely, in [Dri21,
Section 5.3.1], it is shown that there is an extension G̃Q of (Ĝm,q−1)

∨ by (µp)Zp[[q−1]], given by the
functor

G̃Q : R 7→ {(q, x, u) ∈ R× ×W (R)×R×|q − 1 is nilpotent, 1 + Φp([q])x = [up]}.

Here, W (R) denotes the ring of p-typical Witt vectors of R. Drinfeld shows that the group scheme G̃Q

is isomorphic over Zp[[q − 1]] to G♯,F
m (as extensions of (Ĝm,q−1)

∨ by (µp)Zp[[q−1]]).
As shown in [Dri21, Appendix D] (see also [Dev23, Remark C.3] and Example 4.4.3), the Cartier

dual (Ĝm,q−1)
∨ can be identified with

(Ĝm,q−1)
∨ = Spf Zp[[q − 1]]

[
y,

∏n−1
j=0 (y − j(q − 1))

n!

]
n≥0

.

By (14), the homomorphism ⟨p⟩∗ corresponds to the invertible element

⟨p⟩∗(z) = exp

(
p
log(q)

q − 1
z

)
= qpz/(q−1);

this element plays an important role in [Dri21]. Note that this can alternatively be written as

⟨p⟩∗(z) =
∑
n≥0

∏n−1
j=0 (z − j(q − 1))

n!
[p]nq =

∑
n≥0

∏n−1
j=0 (pz − j(q − 1))

n!
.

In this case, Theorem 4.4.10 therefore specializes to give a Cartesian square over Zp[[q − 1]]:

G♯,F
m

∼ // G̃Q

y 7→logq(y) //

can

��

Ĝ∨
m,q−1

z 7→qpz/(q−1)

��
(Gm)Zp[[q−1]]

y 7→yp
// (G(1)

m )Zp[[q−1]].

Remark 4.4.12. In [Dri21, Section 5] (in particular, [Dri21, Remark 5.7.5]), it is shown that (Ĝm,q−1)
∨

is isomorphic to the group scheme WZp[[q−1]][F − (1 + [q] + · · ·+ [q]p−1)], where WZp[[q−1]] is the Witt
scheme over Zp[[q − 1]] and [q] ∈ W (Zp[[q − 1]]) is the Teichmüller lift of q. For a more general formal
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group Ĝt, the methods of this section might give a Witt vector model for the Cartier dual Ĝ∨
t , but we

have not explored this direction.

Example 4.4.13. If F is the hyperbolic formal group law, then ℓF (t) =
1
2 log

(
t+1
1−t

)
. Setting t = q − 1,

(14) says that

⟨p⟩∗(z) = exp

(
p
log( q

2−q )

2(q − 1)
z

)
=

(
q

2− q

)pz/2(q−1)

.

The denominator of 2 appearing in the exponent implies that the cases p > 2 and p = 2 behave markedly
differently. Since q

2−q = 1 + (q − 1) · 2
2−q , one can alternatively write

⟨p⟩∗(z) =
∑
n≥0

∏n−1
j=0 (pz − 2j(q − 1))

n!

(
1

2− q

)n

=
∑
n≥0

∏n−1
j=0 (z − 2j(q − 1))

n!2n
[p]nq

(2− q)pn
.

Write Ĝh,q−1 to denote the formal group over Zp[[q−1]] corresponding to the rescaled hyperbolic formal
group law. In this case, Theorem 4.4.10 specializes to give a Cartesian square over Zp[[q − 1]]:

G♯,F
m

y 7→F log(y) //

can

��

Ĝ∨
h,q−1

z 7→( q
2−q )

pz/2(q−1)

��
(Gm)Zp[[q−1]]

y 7→yp
// (G(1)

m )Zp[[q−1]].

Example 4.4.14. Let F be the formal group law over Zp given by specializing the formal group law
of Example 4.3.12 to vn = 1. Let Ĝ = Spf Zp[[t]] denote the associated formal group, and let Ĝt

denote the rescaled formal group over Zp[[t]]. Then, (14) says that ⟨p⟩∗(z) is a “pn-typical” version of

exp
(
p
Li1/n(t)

t z
)

. If we write Ep(t) to denote the Artin-Hasse exponential, then ⟨p⟩∗(z) can be made
explicit when n = 1:

⟨p⟩∗(z) = Ep(t)
pz/t =

∏
p∤m

(1− tm)−
pµ(m)z

tm .

If we write t = p̃ (to keep with the notation of [BL22]), then Theorem 4.4.10 in this case specializes to
give a Cartesian square over Zp[[p̃]]:

G♯,F
m

y 7→F log(y) //

can

��

Ĝ∨
p̃

z 7→Ep(p̃)
pz/p̃

��
(Gm)Zp[[p̃]] y 7→yp

// (G(1)
m )Zp[[p̃]].

This can be viewed as a p-typical version of Example 4.4.11.

Remark 4.4.15. The canonical homomorphism can : G♯,F
m → (Gm)R[[t]] of group schemes defines a

quotient group stack GFdR
m := (Gm)R[[t]]/G

♯,F
m over R[[t]]. One can prove by direct calculation that

the derived global sections of the structure sheaf of the stack GFdR
m calculates the F -de Rham complex

FΩ□,Gm
:= FΩ□,A1 ⊗R[[t]][y] R[[t]][y±1]. The key calculation (which we omit here) is that there is a

quasi-isomorphism of R[[t]]-coalgebras

(15) R[[t]][y±1]⊗FΩ□,Gm
R[[t]][y±1] ≃ R[[t]]

[
y±1
1 , y±1

2 ,
(y1 − y2)

n
s

n!F

]
n≥0

≃ OG♯,F
m ×Spf R[[t]]Gm

,

where the tensor product on the left-hand side is derived, and both sides are implicitly (p, t)-adically
completed. (The final equivalence follows by noting that (y1 − y2)

n
s = y2(y1y

−1
2 − 1)ns , so adjoining
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(y1−y2)
n
s

n!F
is equivalent to adjoining the F -divided powers (y1y

−1
2 −1)ns
n!F

.) In the case of the additive formal
group law, (15) boils down to the p-complete equivalence

Zp[y
±1]⊗dRZp[y±1]/Zp

Zp[y
±1] ≃ dRZp[y±1]/Zp[y

±1
1 ,y±1

2 ] ≃ Zp[y
±1
1 , y±1

2 ]⟨y1 − y2⟩ ∼= OG♯
m×Spf ZpGm

which arises via [Bha12, Proposition 8.5]. In the case of the multiplicative formal group law, (15) was
shown in [Pri19].

Given this, Theorem 4.4.10 can be rephrased as the following two statements:

(1) The canonical map (Gm)R[[t]] → GFdR
m factors through the Frobenius (Gm)R[[t]] → (G

(1)
m )R[[t]].

(2) The map (G
(1)
m )R[[t]] → GFdR

m is surjective, and its kernel is isomorphic to the Cartier dual of
the rescaled formal group Ĝt. In particular, there is an isomorphism GFdR

m ≃ (G
(1)
m )R[[t]]/Ĝ

∨
t

over Spf R[[t]].
In the case of the multiplicative formal group law, this picture has been discussed in great detail in
[Dri21]. As we hope to explain in future work, the above two statements are natural consequences of
the homotopy-theoretic perspective on the F -de Rham complex (see Remark 4.3.25). We also hope that
Theorem 4.4.10 might be useful in understanding Conjecture 4.3.23, and, in particular, in understand-
ing a “stacky approach” to F -de Rham cohomology (following [BL22, Dri18, Dri22, Bha22]). Indeed,
the F -divided power scheme G♯,F

m is a priori rather difficult to access algebro-geometrically, but The-
orem 4.4.10 says that it can be understood concretely in terms of (Gm)R[[t]] and the Cartier dual of the
rescaled formal group Ĝt.

Let us end by noting that the following is an immediate consequence of Theorem 4.4.10:

Corollary 4.4.16. Let (G♯,F
m )∨ denote the Cartier dual of G♯,F

m . Then, there is a pushout square over
R[[t]]:

pZ
R[[t]]

��

p 7→⟨p⟩F (t)// Ĝt

��
ZR[[t]]

// (G♯,F
m )∨.

Example 4.4.17. Let F be the multiplicative formal group law, and (as usual) write q = t + 1. Let
Gm,q−1 = Spf Zp[[q − 1]][x, 1

1+(q−1)x ] denote the group scheme where the group structure is given by

(x, y) 7→ x + y + (q − 1)xy. Since Ĝt is the rescaled multiplicative formal group, it can be identified
with the completion of Gm,q−1 at the zero section (cut out by the function x). Corollary 4.4.16 and
Example 4.4.11 imply that the Cartier dual of G̃Q = G♯,F

m can be identified with the completion of
Gm,q−1 at the locus cut out by the polynomial

∏p−1
j=0(x− [j]q).
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