The Probabilistic Method and the Lovász Local Lemma

Arvind Murty Cedric Xiao
Mentor: Dr. Jimmy He

MIT PRIMES
December 9, 2022
1. The Probabilistic Method
2. The Lovász Local Lemma
3. Acknowledgements
Problem
We want to prove the existence of a certain combinatorial structure.
The Probabilistic Method

Problem
We want to prove the existence of a certain combinatorial structure.

Basic Idea
Let S be a random set and A be the property we want to find.
$\Pr[S \text{ has } A] > 0 \iff$ there exists some set with the property A.

Arvind, Cedric Mentor: Dr. Jimmy He
Definition

The **Ramsey number** $R(k, l)$ is the smallest $n \in \mathbb{N}$ such that any edge two-coloring of K_n contains either a red K_k or a blue K_l.

Example

$R(3, 3) = 6$.

First note that $R(3, 3) > 5$:
Consider any vertex v in K_6. WLOG, it has 3 red edges to u_1, u_2, u_3. To not form a red triangle, all edges between these three must be blue, which would form a blue triangle. So $R(3, 3) \leq 6$.

Arvind, Cedric
Mentor: Dr. Jimmy He
The Probabilistic Method
December 9, 2022
4/14
Ramsey Numbers

Definition

The **Ramsey number** $R(k, l)$ is the smallest $n \in \mathbb{N}$ such that any edge two-coloring of K_n contains either a red K_k or a blue K_l.

Example

$R(3, 3) = 6$. First note that $R(3, 3) > 5$:

Consider any vertex v in K_6. Without loss of generality (WLOG), it has 3 red edges to u_1, u_2, u_3. To not form a red triangle, all edges between these three must be blue, which would form a blue triangle. So $R(3, 3) \leq 6$.
Ramsey Numbers

Theorem

For all \(k \geq 3 \),

\[
R(k, k) > 2^{k/2}.
\]
Ramsey Numbers

Theorem

For all \(k \geq 3 \),

\[R(k, k) > 2^{k/2}. \]

Proof.

Randomly color the edges of \(K_n \).
For any set \(S \) of \(k \) vertices, let \(A_S \) be the event that \(S \) is monochromatic.
\[\Pr[A_S] = 2^{1-\binom{k}{2}}. \]

We want
\[\Pr \left[\bigcap \overline{A_S} \right] \geq 1 - \left(\sum \Pr[A_S] \right) = 1 - \left(\binom{n}{k} 2^{1-\binom{k}{2}} \right) > 0. \]

\[\frac{n^k}{k!} \cdot \frac{2^{1+k/2}}{2^{k^2/2}} < \frac{n^k}{2^{k^2/2}} \text{ for } k \geq 3. \]
We start with independence...

Let $A_1, A_2, ..., A_n$ be mutually independent events defined on an arbitrary probability space with $\Pr[A_i] = x_i$, then we have:

$$\Pr\left[\bigcap_{i=1}^{n} \overline{A_i}\right] = \prod_{i=1}^{n} (1 - x_i).$$
We start with independence...

Let $A_1, A_2, ..., A_n$ be mutually independent events defined on an arbitrary probability space with $\Pr[A_i] = x_i$, then we have:

$$\Pr\left[\bigcap_{i=1}^{n} \overline{A_i} \right] = \prod_{i=1}^{n} (1 - x_i).$$

Problem

What would happen if $A_1, A_2, ..., A_n$ are not mutually independent?
The Symmetric Lovász Local Lemma

Let A_1, A_2, \ldots, A_n be events such that for each $1 \leq i \leq n$, A_i is mutually independent with all but at most d other events A_j, and $\Pr[A_i] \leq p$. If

$$e p(d + 1) \leq 1$$

then we have $\Pr \left[\bigcap_{i=1}^{n} \overline{A_i} \right] > 0$.
A hypergraph $H = (V, E)$ is a generalization of a graph, where V is a set of vertices, and E is a set of non-empty subsets of V. A hypergraph $H = (V, E)$ is vertex 2-colorable if V can be colored with two colors such that no edge is monochromatic.
A hypergraph $H = (V, E)$ is a generalization of a graph, where V is a set of vertices, and E is a set of non-empty subsets of V.

H is vertex 2-colorable if V can be colored with two colors such that no edge is monochromatic.
Theorem

Let $H = (V, E)$ be a hypergraph where every edge has at least k elements, and each edge intersects with at most d other edges. If
e(d + 1) \leq 2^{k-1},$

then H is vertex 2-colorable.

Proof.

Randomly color the vertices of H.

For any edge $f \in E$, let A_f be the event that f is monochromatic.

$Pr[A_f] = 2^{1-|f|} \leq 2^{1-k}$.

A_f is independent with all but at most d other events $A_{f'}$. By the Symmetric Local Lemma, if $e(d + 1)2^{1-k} \leq 1$, then

$Pr \left[\bigcap A_f \right] > 0.$
Theorem

If \(e \left(\binom{k}{2} \binom{n-2}{k-2} + 1 \right) 2^{1-\binom{k}{2}} \leq 1 \), then \(R(k, k) > n \). So,

\[
R(k, k) > \frac{\sqrt{2}}{e} (1 + o(1))k2^{k/2}.
\]
Theorem

If \(e \left(\binom{k}{2} \binom{n-2}{k-2} + 1 \right) 2^{1-\binom{k}{2}} \leq 1 \), then \(R(k, k) > n \). So,

\[
R(k, k) > \frac{\sqrt{2}}{e} (1 + o(1))k2^{k/2}.
\]

Proof.

Randomly color the edges of \(K_n \).
For any set \(S \) of \(k \) vertices, let \(A_S \) be the event that \(S \) is monochromatic.
\[
\Pr[A_S] = 2^{1-\binom{k}{2}}.
\]
\(A_S \) is dependent on \(A_T \) only if they share an edge: \(|S \cap T| \geq 2 \).
Fixing \(S \), the number of dependent \(T \) is \(d \leq \binom{k}{2} \binom{n-2}{k-2} \).
If \(e \left(\binom{k}{2} \binom{n-2}{k-2} + 1 \right) 2^{1-\binom{k}{2}} \leq 1 \), then \(\Pr \left[\bigcap \overline{A_S} \right] > 0 \).
Definition

The **dependency graph** of a set of events \(A_1, ..., A_n \) is a graph \(D = (V, E) \), which satisfies \(V = \{1, 2, ..., n\} \), and for every \(1 \leq i \leq n \), the event \(A_i \) is mutually independent with all \(A_j \) for \((i, j) \notin E\).
Lemma

Let $A_1, A_2, ..., A_n$ be events and $D = (V, E)$ be their dependency digraph. If there exist real numbers $x_1, x_2, ..., x_n$ such that $0 \leq x_i < 1$ and $\Pr[A_i] \leq x_i \prod_{(i,j) \in E} (1 - x_j)$ for all $1 \leq i \leq n$, then

$$\Pr \left[\bigcap_{i=1}^{n} \overline{A_i} \right] \geq \prod_{i=1}^{n} (1 - x_i).$$
We would like to thank our mentor, Dr. Jimmy He, for guiding us along this project. We would also like to thank Dr. Gerovitch, Dr. Etingof, Dr. Khovanova, and the PRIMES program for making this opportunity possible. Finally, we would like to thank our family and friends for their support along the way.