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Abstract

We study the set of objects known as vanishing polynomials (the
set of polynomials that annihilate all elements of the ring) over gen-
eral commutative rings with identity. This set is an ideal of the ring
of polynomials whose natural projection maps the ring of polynomi-
als to the ring of polynomial functions. We present a new approach
to finding the generating set of this ideal over the ring Zn of residue
classes modulo n. Generalizing this approach, we partially classify
the vanishing polynomials over any general commutative ring with
identity. We also establish a bijection between vanishing polynomials
and polynomial functions over product rings and those of their con-
stituent rings. Finally, we find some restrictions on how many roots
polynomials can have over certain finite commutative rings.

1 Introduction

Polynomial rings are arguably one of the most fundamental and extensively
studied objects in mathematics. While there has been a significant amount
of research done regarding polynomials over fields and integral domains, less
has been done investigating polynomials over rings with zero divisors. In
particular, it is widely known that a polynomial of degree n can have at
most n roots over a field, but when zero-divisors are introduced this result
may fail. More specifically, a polynomial that vanishes for all x ∈ R must be
of degree at least |R| if R is an integral domain, but if R has zero divisors
the degree of this polynomial can be significantly smaller.
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A complete description of such vanishing polynomials over the integers
was given in [9, 10] while a more general result for multiple variables was
found in [6]. We establish that the set of vanishing polynomials is an ideal
and the quotient of the original polynomial ring by this ideal gives the ring of
polynomial functions. Such a ring of polynomial functions over Zn, the ring
of residue classes modulo n, was explored in [7, 12]. Throughout this paper,
we build on these works and present various results regarding the structure of
this ring. We then examine the structure of the ideal of vanishing polynomials
and polynomial functions for more general rings.

In Section 2, we begin with definitions of essential terms followed by
some background results that are used throughout the paper. In Section 3,
we continue by studying the ring of polynomial functions over Zn and find
the number of zero divisors and units over this ring when n is a product of
distinct primes. In Section 4, we look at the generating set of the ideal of
vanishing polynomials over Zn. We present a new proof of the completeness
of the generating set presented in [10] and generalize it to encompass results
from various other works. In Section 5, the notion of a monic vanishing
polynomial of minimal degree is developed and we study its properties over
an infinite class of rings of a specific form. In Sections 6 and 7, we prove some
results about vanishing polynomials for direct products of rings and rings of
prime power, respectively. In Section 8 we find vanishing polynomials over
arbitrary rings and apply these results to show that they give a complete
classification for the integers modulo n. Finally, in Section 9 we examine
what properties can be discerned about a ring when the polynomials over
the ring have a finite number of roots, as well as provide a technique to limit
the possible number of roots a polynomial has over a product ring.

2 Vanishing Polynomials

Throughout this paper, we assume rings to be commutative and with identity
unless otherwise specified. Let R be a ring and let R[x] denote the ring
of polynomials with coefficients in R. We study objects in R[x] known as
vanishing polynomials.

Definition 1. A polynomial F (x) in a polynomial ring R[x] is a formal sum

anx
n + an−1x

n−1 + · · ·+ a1x+ a0

for some nonnegative integer n, where each ai ∈ R and x is an indeterminate.
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Definition 2. A vanishing polynomial F (x) ∈ R[x] is a polynomial such
that F (a) = 0 for all a ∈ R. By definition, 0 itself is a vanishing polynomial.

Example 1. Consider the polynomial F (x) = x2 + x over Z2. Notice that
F (0) = 0 and F (1) = 0. Therefore, x2+x is a vanishing polynomial over Z2.
Even infinite rings can have a finite nonzero vanishing polynomial: consider
the ring R = Π∞

n=1Z2. Notice that x
2 + x is vanishing in this ring as well. In

fact, ax2 + ax is a vanishing polynomial for any a ∈ R.

The set of vanishing polynomials over a ring R[x] is known to form an
ideal. Thus, taking I to be the ideal of vanishing polynomials, it makes
sense to consider the quotient R[x]/I. To understand the significance of this
operation we must first consider the distinction between a polynomial and a
polynomial function.

Definition 3. A polynomial function f : R → R is a function on R for which
there exists a polynomial F (x) ∈ R[x] such that f(r) = F (r) for all r ∈ R.

When we need to distinguish between the two, we refer to the polynomial
with an uppercase letter, such as F (x), and the corresponding polynomial
function with a lowercase letter, such as f(x). Note that each polynomial
F (x) corresponds to a unique polynomial function f(x), but as we will see
later, any given polynomial function f(x) must correspond to an infinite
number of polynomials if there is a nonzero vanishing polynomial. The
proposition below is a statement found in [5] connecting polynomials and
polynomial functions.

Proposition 1. The quotient R[x]/I, where I denotes the ideal of vanishing
polynomials over R[x], is the ring of polynomial functions f : R → R.

Finally, we present a well-known background result (a proof can be found
in [4]) which we use in later sections.

Lemma 1. Any function over a finite field F can be represented as a poly-
nomial.

In particular, every function over a finite field Zp for a prime number p
can be represented by a polynomial.
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3 Polynomial Functions Over Zn

Let us now specifically look at the case where R = Zn, for an integer n, and
consider the quotient ring Zn[x]/I. In the following theorems, we categorize
the zero divisors and units of this ring for special types of n. We characterize
polynomial functions using their evaluations which we represent as n-tuples
with the ith entry corresponding to f(i).

The first case that we will consider is when n has a prime factorization of
the form

∏k
i=1 pi = p1p2 . . . pk. It follows from the Chinese remainder theorem

that any element x ∈ Zn for an n of this form can be expressed as an element
(x1, x2, . . . , xk) in the product ring Zp1 × Zp2 × · · · × Zpk . It can be easily
seen that if x ≡ y (mod p), then f(x) ≡ f(y) (mod p) for any polynomial
function f . In essence, this means that instead of considering a single n
tuple over Zn with the jth entry of the tuple corresponding to f(j), we can
consider k tuples corresponding to the values of the function over Zpi , for
1 ≤ i ≤ k, with the jth entry in each of those k tuples corresponding to f(j)
evaluated over the ring Zpi . Hence, we see that if we can come up with a
valid function for each of the tuples over the rings Zpi for 1 ≤ i ≤ k, then
we can use the Chinese remainder theorem to reconstruct a valid polynomial
function in the product ring Zp1 ×Zp2 ×· · ·×Zpk . In fact, for n of this form,
Lemma 1 states that in each ring Zpi for 1 ≤ i ≤ k the set of functions and
the set of polynomial functions are identical, and thus the following theorem
holds.

Definition 4. A tuple of integers is said to be m cyclic if whenever two
indices are a multiple of m apart, then the values of the entries in those
indices also differ by a multiple of m. For example, (1, 4, 3, 2, 9, 8) is 2-cyclic.

Theorem 1. If n = p1p2 . . . pk, then the only condition for a tuple to be a
valid polynomial function over Zn is that each of the tuples over Zpi is pi
cyclic for 1 ≤ i ≤ k.

Proof. This follows from Lemma 1 and the Chinese remainder theorem.

Using this theorem, the structure of the zero divisors and units of Zn[x]/I
for n of this form can be deduced.

Theorem 2. The number of zero divisors of Zn[x]/I where I is the ideal of
vanishing polynomials and n is of the form n =

∏k
i=1 pi is given by:
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k∏
i=1

ppii −
k∏

i=1

(pi − 1)pi .

Proof. Consider the polynomial F and its corresponding polynomial func-
tion, denoted by the tuple (f(0), f(1), . . . , f(n−1)), where f(i) is an element
of Zn for for 0 ≤ i ≤ n− 1. If we instead consider each of the n-tuples that
are obtained when the tuple (f(0), f(1), . . . , f(n− 1)) is considered over Zpi ,
for 1 ≤ i ≤ k, it follows from Theorem 1 that it is sufficient and necessary
that each of these tuples be periodic every pi elements for the original tuple
over Zn to be a valid polynomial function. It is sufficient because if two ele-
ments differ in position by a multiple of p, then the periodicity implies that
the elements themselves must be in the same residue class over Zp. It is also
necessary, as it follows from Theorem 1 that each of the following equality
chains must hold, where all elements are considered over Zpi :

f(0) = f(pi) = f(2pi) = . . . = f(n− pi),

f(1) = f(pi + 1) = f(2pi + 1) = . . . = f(n− pi + 1),

f(2) = f(pi + 2) = f(2pi + 2) = . . . = f(n− pi + 2),

...

and f(pi − 1) = f(2pi − 1) = f(3pi − 1) = . . . = f(n− 1).

Note that the last element in each chain is obtained from the fact that
pi | n.

For the polynomial function represented by (f(0), f(1), . . . , f(n−1)) to be
a zero divisor, we consider the existence of a tuple (g(0), g(1), . . . , g(n− 1)),
where g(i) for 0 ≤ i ≤ n− 1 are elements of Zn, such that

(f(0), f(1), . . . , f(n− 1)) · (g(0), g(1), . . . , g(n− 1)) = (0, 0, . . . , 0︸ ︷︷ ︸
n zeros

).

Here, the · denotes tuple multiplication, where multiplication is done sep-
arately in each index. The zero tuple (g(0), g(1), . . . , g(n−1)) = (0, 0, . . . , 0︸ ︷︷ ︸

n zeros

)

clearly satisfies the equation. The condition that (f(0), f(1), . . . , f(n − 1))
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is a zero divisor is equivalent to the stipulation that the zero tuple is not the
only solution for (g(0), g(1), . . . , g(n− 1)) to the equation.

To count the number of zero divisors, we proceed with complementary
counting and consider when the tuple (g(0), g(1), . . . , g(n − 1)) is forced to
be 0 at all indices. If the tuple is forced to be 0 over Zn, this is an equivalent
condition to the tuple being forced to be 0 at all indices when the polynomial
function is considered over each of the Zpi , for 1 ≤ i ≤ k. The only way for
the tuple (g(0), g(1), . . . , g(n− 1)) to be forced to be 0 at all indices over Zpi

is if all indices in the tuple (f(0), f(1), . . . , f(n − 1)) evaluated over Zpi are
relatively prime to pi. This can be seen from considering each of the indices
separately: it is well known that over Zp, for an arbitrary prime p, if ab ≡ 0
(mod p), then either a ≡ 0 (mod p) or b ≡ 0 (mod p). In other words, either
a is 0 in Zp, or if it is not, then b must be 0 in Zp.

Hence, to count the number of non-zero-divisors, we just have to choose
the first pi elements in the tuple (f(0), f(1), . . . , f(n − 1)) evaluated over
Zpi to be relatively prime to pi, as all functions are polynomial functions
over a finite field; then the other elements would be determined from the
periodicity previously discussed. Hence, there are (pi−1)pi ways to construct
the evaluation of (f(0), f(1), . . . , f(n − 1)) over Zpi , and since n =

∏k
i=1 pi,

and each of the rings Zp1 ,Zp2 , . . . ,Zpn are comaximal, it follows from the
Chinese remainder theorem that there are

k∏
i=1

(pi − 1)pi

ways to construct polynomial functions which are non-zero-divisors over the
ring of polynomial functions.

To count the number of total polynomial functions over Zn, we can just
determine the evaluations of the tuple corresponding to the function over each
of the Zpi for 1 ≤ i ≤ k, again due to all functions over finite fields being
polynomial functions. There are pi choices for each of the first pi values and
then the rest of the elements of the tuple are determined by periodicity, so
it follows from a similar application of the Chinese remainder theorem that
there are

k∏
i=1

ppii

possible polynomial functions over Zn. By complementary counting, it fol-

6



lows that the number of zero divisors over Zn is given by

k∏
i=1

ppii −
k∏

i=1

(pi − 1)pi ,

as desired.

Corollary 1. Let I be the ideal of vanishing polynomials over Zn. Then
there are

k∏
i=1

(pi − 1)pi

units in Zn[x]/I when n is of the form n =
∏k

i=1 pi.

Proof. This follows easily from the fact that in a finite ring, all nonzero
elements are either zero divisors or units.

4 Vanishing Polynomials Over Zn

It was shown in [10] that any element of the ideal of vanishing polynomials
over Zn is of the form

G(x) = F (x)Bs(x) +
s−1∑
k=0

ak ·
n

gcd(k!, n)
·Bk(x) (1)

where Bk(x) = (x+1)(x+2) . . . (x+k) with B0(x) = 1, and s is the smallest
integer such that n | s!, known as the Smarandache or Kempner function.
F (x) is a polynomial which is uniquely defined based on G(x), and ak’s are
integers also uniquely defined in the range 0 ≤ ak < gcd(k!, n). Similar
results were presented in [6,9,12] with slightly different definitions of Bk(x),
which we discuss later.

We propose a new method of finding vanishing polynomials with integer
coefficients over Zn, inspired by [8]. It is well known that any integer-valued
polynomial can be uniquely written as a linear sum with integer coefficients
of functions of the form

(
x
k

)
= x(x− 1)(x− 2) . . . (x− k + 1)/k!. If we want

a polynomial to vanish modulo n, it must evaluate to an integer multiple of
n for all integer inputs, so it must be n times an integer-valued polynomial.
Therefore, any vanishing polynomial F (x) corresponds to an integer-valued
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polynomial G(x) = F (x)/n. Conversely, for an integer-valued polynomial
G(x) to correspond to a polynomial F (x) = nG(x), all resulting coefficients
in F (x) must be integers.

As mentioned previously, every such G(x) can be uniquely represented as
a sum G(x) =

∑m
k=1 ck

(
x
k

)
so every vanishing polynomial F (x) over Zn can

be uniquely represented as

F (x) =
m∑
k=1

nck

(
x

k

)
where ck and m are integer values. Now we classify which sums of this form
yield valid polynomials. First, we will show that each element of the sum
must have integer coefficients.

Proposition 2. If any term in the summation
∑m

k=1 nck
(
x
k

)
has a non-integer

coefficient then the resulting polynomial cannot have integer coefficients.

Proof. Assume for contradiction that we can construct a polynomial of this
form where one of the terms has a non-integer coefficient. If any term
nci
(
x
i

)
= nci

i!
· x(x − 1)(x − 2) . . . (x − i + 1) has a non-integer coefficient

this means i! does not divide nci and therefore the leading coefficient of this
term, that is the coefficient on xi, is also non-integer. Thus, if the sum
is to have all integer coefficients, there must be a term of greater degree,
say j, that has a non-integer coefficient on xi. As before, this implies that
the leading coefficient of this new term, that is the coefficient on xj, is also
non-integer. Inductively, we conclude that for every term with non-integer
coefficients, there must be a term of greater degree with non-integer coeffi-
cients and therefore there is no term of maximal degree. We have reached a
contradiction.

For an element of the form nck ·
(
x
k

)
to have integer coefficients, we must

have k! | nck. The smallest such ck is k!/ gcd(n, k!) and any greater ck would
be a multiple of this, so any valid ck can be written as ak · (k!/ gcd(n, k!)) for
an arbitrary integer 0 ≤ ak < gcd(n, k!). Note that any ak outside this range
gives a polynomial equivalent to having an ak in this range by reduction
modulo n. If we define s to be the smallest integer such that n | s!, any
polynomial nak · (k!/ gcd(k!, n)) ·

(
x
k

)
where k ≥ s is a polynomial multiple

of
(
x
s

)
, therefore we have arrived at exactly the formulation in Equation 1

except with Bk(x) defined as k! ·
(
x
k

)
.
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An immediate consequence of this formula is that the generating set for
the ideal of vanishing polynomials over Zn is{

n

gcd(k!, n)
·Bk(x) | k ∈ Z≥0

}
for either definition of Bk(x). Note that if k is less than the smallest prime
divisor of n, we get the zero polynomial.

From this formulation, we can immediately find the degree of the minimal
degree monic vanishing polynomial and minimal degree non-monic vanishing
polynomial, which would be s and the smallest factor of n, respectively.
Note that the minimal degree non-monic polynomial must be unique up to
multiplication by a constant since the generating set only contains a single
nonzero polynomial of that degree or lower.

There exists a far simpler description of this minimal-degree polynomial,
namely n

p1
·x(xp1−1− 1) where p1 is the smallest prime divisor of n. Fermat’s

little theorem states that xp1−1 − 1 = 0 modulo p1 for any x not divisible
by p1. To take care of the p1 | x case we multiply the whole polynomial by
x. Thus, the polynomial x(xp1−1 − 1) is a multiple of p1 for any input, and
when multiplied by the leading coefficient n/p1 it vanishes over Zn. Since the
leading coefficient and degree matches the other formulation we have for the
minimal degree monic polynomial they must be the same polynomial over
Zn, which is an interesting identity.

While the generating set we found above is convenient in many ways
because it uses linear combinations, if we consider it from the point of view
of a generating set of an ideal, that is allow any coefficients in the ring, many
of the elements become redundant. In particular, if we have two polynomials
a·
(
x
i

)
·i! and a·

(
x
j

)
·j! for some integer a, and i < j then the second polynomial

is a polynomial multiple of the first and therefore redundant in a generating
set. Thus, to minimize our generating set we can remove any polynomials
k! · (n/ gcd(k!, n)) ·

(
x
k

)
for which k is not the minimal integer which gives the

same value of gcd(k!, n).
Let us return to the varying definitions of Bk(x) across multiple papers.

In fact, Bk(x) can be replaced with any sequence of terms such that the
product is divisible by gcd(n, k!) and the set of generators will remain valid
(for instance, Bk(x) = (x + i)(x + i + 1) . . . (x + i + k − 1) for any integer
i). The fact that a polynomial that uses any such Bk(x) is vanishing is easy
to prove. The coefficient on Bk(x) must be a multiple of n/ gcd(n, k!), thus
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the product is a multiple of n and the polynomial is vanishing. Furthermore,
any polynomial F (x) with degree d and integer coefficients can be uniquely
decomposed as

F (x) =
d∑

k=0

bkBk(x) (2)

using polynomial division as long as each Bk(x) has degree k and is monic.
It remains to show that every vanishing polynomial decomposed in this way
has coefficients conforming with the required conditions, namely showing that
bk = ak ·n/ gcd(n, k!) for an integer ak. We show this by polynomial division.
Let our starting vanishing polynomial F (x) have degree d. By Equation 1,
we know the leading coefficient must be of the form ad · gcd(n, d!) for some
integer ad. When we take F (x)−ad·gcd(n, d!)·Bd(x), we have the difference of
two vanishing polynomials, giving another vanishing polynomial F1(x) with
degree d1 < d. Applying Equation 1 again, the leading coefficient of F1(x)
must be of the form ad1 · gcd(n, d1!) so we can repeat the procedure to get a
new vanishing polynomial F2(x) with degree d2 < d1. Since the initial degree
d is finite, the process must terminate with dm = 0 at step m, showing that
bk = ak · n/ gcd(n, k!) in Equation 2 for a vanishing polynomial F (x), as
desired.

5 Generalization of Monic Vanishing Polyno-

mials

In Section 4, we discuss the notion of the monic vanishing polynomial of
minimal degree over a ring of the form Zn. This can be extended to more
general rings R: define s(R) to be the minimum positive integer m such
that there exists a polynomial P (x) ∈ R[x] of degree less than m for which
P (r) = rm for all elements r ∈ R. In other words, s(R) denotes the minimal
m for which the polynomial function x 7→ xm corresponds to a polynomial
in R[x] of degree less than m. Note that the degree of the aforementioned
minimal degree monic vanishing polynomial over Zn corresponds exactly with
s(Zn).

We can similarly define an extension of this notion to subrings of R[x].
Define s(S;R), where S is a subring of R, to equal the minimal degree m
such that a polynomial P (x) ∈ S[x] of degree less than m corresponds to the
polynomial function x 7→ xm. In essence, the distinction between s(S;R) and
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s(R) is that s(S;R) includes the additional restriction that the coefficients
of P (x) must be in the subring S, in contrast to the more relaxed condition
of being in R.

These two characteristic numbers of a ring, s(R) and s(S;R), are intro-
duced in [11]. In [11], the case when S = R′, where R′ denotes the subring
generated by 1, is specifically studied. Various number-theoretic and combi-
natorial bounds are given on the value of s(R′;R) if s(R) is finite. In this
section, we directly compute the value of s(R) for an infinite class of rings
that satisfy a specific form and use this to compute a bound on s(R′;R) for
this class of rings.

Let U denote the set of all rings of the form Z2[x]/(x
a + xa+1), where

a ≥ 3.

Lemma 2. For all rings R in the set U , we have s(R) ≤ 4.

Proof. It suffices to show that for all P ∈ Z2[x], it holds that

xa−2P + (xa−3 + xa−2)P 2 + xa−3P 4 ≡ 0 (mod xa + xa+1). (3)

Consider when P = xk for a positive integer k. Equation 3 evaluates to

xa−2(xk)+(xa−3+xa−2)(x2k)+xa−3(x4k) = xa+k−2+xa+2k−3+xa+2k−2+xa+4k−3.

To verify that this expression vanishes (mod xa+xa+1), we do casework
based on the value of k.

The cases when k = 0 and k = 1 are easy to verify manually. When k = 0,
the expression is equal to xa−2 + xa−3 + xa−2 + xa−3 ≡ 0 (mod xa + xa+1),
and when k = 1, the expression is equal to xa−1 + xa−1 + xa + xa+1 ≡ 0
(mod xa + xa+1).

When k ≥ 2, the expression can be greatly simplified by noting that
(mod xa + xa+1), we have that xa ≡ −xa+1. Since all the coefficients of the
terms are in Z2[x]/(x

a + xa+1), it follows that −xa+1 is identically equal to
xa+1. Thus, we have that

xa ≡ xa+1 ≡ xa+2 ≡ xa+3 ≡ . . . .

If k ≥ 2, then a+ k − 2, a+ 2k − 3, a+ 2k − 2, and a+ 4k − 3 are all at
least a, so the expression evaluates to xa+xa+xa+xa ≡ 0 (mod xa+xa+1).
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Suppose Equation 3 vanishes for P1 and P2. Then, due to the additive
properties of Z2[x], we have

xa−2(P1 + P2) + (xa−3 + xa−2)(P1 + P2)
2 + xa−3(P1 + P2)

4

=
2∑

i=1

xa−2Pi + (xa−3 + xa−2)P 2
i + xa−3P 4

i ≡ 0 (mod xa + xa+1),

demonstrating that P1+P2 vanishes in Equation 3 as well. Thus, any additive
combination of monomials vanishes in Equation 3, and since all polynomials
in Z2[x] can be expressed as the sum of monomials, we have shown that
Equation 3 vanishes for all P ∈ Z2[x], as desired.

Lemma 3. For all rings R in the set U , we have s(R) ≥ 4.

Proof. For the sake of contradiction, suppose that s(R) ≤ 3. In other words,
suppose that there exist coefficients b0, b1, b2, b3 ∈ R (not necessarily nonzero)
for which

b0 + b1P + b2P
2 + b3P

3 ≡ 0 (mod xa + xa+1) (4)

for all P ∈ Z2[x]. Then, in particular, Equation 4 must vanish when P =
0, 1, x, 1 + x.

When P = 0, Equation 4 evaluates to b0, so b0 = 0.
Plugging in P = 1 + x, the expression can be simplified as follows:

b1(1 + x) + b2(1 + x)2 + b3(1 + x)3

= b1(1 + x) + b2(1 + x2) + b3(1 + x+ x2 + x3) ≡ 0 (mod xa + xa+1). (5)

We can also plug in P = 1 and P = x to yield the following equations:

b1 + b2 + b3 ≡ 0 (mod xa + xa+1), (6)

b1x+ b2x
2 + b3x

3 ≡ 0 (mod xa + xa+1). (7)

We can then subtract Equation 6 and Equation 7, respectively, from
Equation 5, yielding b3(x+ x2) ≡ 0 (mod xa + xa+1).

As a result, b3 is forced to be divisible by xa−1, but since Equation 4 must
be monic according to the definition of s(R), this implies that b3 = 0.

Equation 6 now simplifies to b1+ b2 ≡ 0 (mod xa+xa+1) and Equation 7
simplifies to b1x + b2x

2 ≡ 0 (mod xa + xa+1). The former expression yields
that b1 = b2, and plugging this into the latter gives that b2(x + x2) ≡ 0
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(mod xa + xa+1). Using analogous logic as we did to conclude that b3 = 0,
we see that b2 = b1 = 0.

So we have that b3 = b2 = b1 = b0 = 0, a contradiction (Equation 4 no
longer has a well-defined degree), as desired.

Theorem 3. For all rings R in the set U, we have s(R) = 4.

Proof. This immediately follows from Lemma 2 and Lemma 3

We now obtain a corresponding upper bound for s(R′;R) based on the
value of s(R). Let lcm(n) denote lcm[1, 2, . . . , n]. The theorem below is
from [11].

Theorem 4 (Theorem 7, [11]). Let x = s(R). If x is finite, then the in-
equality s(R′;R) ≤ lcm(n) + n holds, where n = x!(2x)

xx.

We can apply the above theorem to the rings in U .

Corollary 2. We have s(R′;R) ≤ lcm(242
14
) + 242

14
for all rings R in U .

Although this bound may seem large for smaller values of a for R of the
form Z2[x]/(x

a + xa+1), an interesting property about this bound is that it
does not depend on the value of a. In other words, as the value of a becomes
increasingly larger and approaches infinity, the bound is not affected. Thus,
even when the size of the ring approaches infinity, Corollary 2 provides a
finite bound for the value of s(R′;R).

6 Vanishing Polynomials Over Product Rings

The results in Section 4 can be generalized to direct products of multiple
rings as follows.

Let k ≥ 2 be an arbitrary positive integer, and let R1, . . . , Rk be finite
commutative rings. Let R ∼= R1 × · · · × Rk, and let I be the vanishing
polynomial ideal of R[x], I1 be the ideal of vanishing polynomials of R1[x],
and so on. For any Ri, let πRi

: R → Ri be the canonical projection mapping
onto Ri.

First, we establish an isomorphism that maps vanishing polynomials in
R[x] to corresponding tuples of vanishing polynomials in R1[x], . . . , Rk[x] and
vice versa. The following well known lemma is found in [1], but we include
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the following proof as the notions developed in it are used in other results
throughout this section.

Lemma 4. Given R ∼= R1 × · · · ×Rk, we have

R[x] ∼= R1[x]× · · · ×Rk[x].

Proof. We define a mapping ϕ from R[x] to R1[x]× · · ·×Rk[x] which breaks
down a polynomial P (x) ∈ R[x] of degree m into a k-tuple of polynomials
by splitting up the components in the coefficients. More specifically, let

P (x) =
m∑
i=0

aix
i.

Then,

ϕ(P (x)) =

(
m∑
i=0

πR1(ai)x
i,

m∑
i=0

πR2(ai)x
i, . . . ,

m∑
i=0

πRk
(ai)x

i

)
.

Notice that ϕ is a homomorphism because for any arbitrary polynomials
P (x), Q(x) in R[x], ϕ(P (x) + Q(x)) is the componentwise sum of ϕ(P (x))
and ϕ(Q(x)), and ϕ(P (x)Q(x)) is the componentwise product of ϕ(P (x)) and
ϕ(Q(x)). In addition, we define ϕ−1 from R1[x]×· · ·×Rk[x] to R[x] mapping
k polynomials P1(x) ∈ R1[x], . . . , Pk(x) ∈ Rk[x] with highest degree m to a
polynomial P (x) ∈ R[x]. For any integer j from 1 to k, let

Pj =
m∑
i=1

ai,jx
i.

Then,

ϕ−1((P1(x), . . . , Pk(x))) =
m∑
i=1

(ai,1, ai,2, . . . , ai,k)x
i.

We now note that for any polynomial P (x) ∈ R[x], ϕ(ϕ−1(P (x))) = P (x)
Therefore ϕ is invertible, so it is an isomorphism.

Theorem 5. The ideal I of vanishing polynomials in R[x] is isomorphic
to the direct products of the ideals I1, . . . , Ik of vanishing polynomials in
R1[x], . . . , Rk[x], respectively. In other words,

I ∼= I1 × · · · × Ik.
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Proof. Consider a vanishing polynomial P (x) inR[x]. Let Pi(x) = πRi
(ϕ(P (x)))

be the canonical projection of P (x) onto Ri[x] for all integers i from 1 to
k, as defined prior. Then, each Pi(x) must be a vanishing polynomial in
Ri[x]. Therefore any vanishing polynomial in R has vanishing polynomials
in R1[x], . . . , Rk[x].

Going in the other direction, suppose we have a k-tuple of vanishing
polynomials (P1(x), . . . , Pk(x)), where Pi(x) is in polynomial ring Ri[x] for
1 ≤ i ≤ k. It then follows that there exists a polynomial P (x) in R[x] such
that P (x) = ϕ−1((P1(x), . . . , Pk(x))). It follows that P (x) is a vanishing
polynomial. Therefore, if we have a k-tuple of vanishing polynomials in each
of R1[x], . . . , Rk[x], we can construct a vanishing polynomial in R[x]. Thus,
I is isomorphic to I1 × · · · × Ik.

Now we consider an isomorphism between the rings of polynomial func-
tions over R and over R1 ×R2 × · · · ×Rk.

Theorem 6. Let R be the direct product of k rings R1, . . . , Rk. Then, the
ring of polynomial functions on R is isomorphic to the direct product of the
rings of polynomial functions on R1, . . . , Rk. In other words,

R[x]/I ∼= R1[x]/I1 × · · · ×Rk[x]/Ik.

Proof. We have already established that R[x]/I is the ring of polynomial
functions over R. Similarly, R1[x]/I1 is the ring of polynomial functions over
R1, and so on.

Now, consider a polynomial function over R. Each polynomial function
f is in essence a mapping of every possible input k-tuple to an output k-
tuple. If we consider only the ith component of each k-tuple, we construct
a mapping βi which maps a polynomial function f ∈ R[x]/I to a function fi
over Ri such that for any r ∈ R,

πRi
(f(r)) = fi(πRi

(r)).

Notice that given any two polynomial functions f 7→ fi and g 7→ gi, we have

πRi
(f(r)) + πRi

(g(r)) = fi(πRi
(r)) + gi(πRi

(r)).

Therefore, by the definition πRi
,

πRi
(f(r) + g(r)) = (fi + gi)(πRi

(r)).
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This means that
βi(f + g) = βi(f) + βi(g).

A similar argument holds over multiplication, so βi is a homomorphism.
Now we must show that fi is a polynomial function (note that not all

functions can be expressed as polynomials). Let F be a polynomial in R[x]
that corresponds to the polynomial function f . Then, take only the i-th
component of each coefficient in F . We now have a polynomial Fi in Ri[x]
that evaluates to fi. Therefore fi is a polynomial function, so every f over
R can be split into f1, . . . , fk over R1, . . . , Rk, respectively.

On the other hand, suppose we have a tuple of k polynomial functions
f1, . . . , fk over R1, . . . , Rk, respectively. We construct a function f over R
that maps any input tuple (a1, . . . , ak) to an output tuple (f1(a1), . . . , fk(ak)).

We now show that f is a polynomial function. Let F1, . . . , Fk be poly-
nomials in R1[x], . . . , Rk[x] which evaluate to f1, . . . , fk, respectively, and
G1, . . . , Gk their extensions in R. Let F = (1, . . . , 0)G1 + . . .+ (0, . . . , 1)Gk,
where every Gi is multiplied by an k-tuple whose ith component is 1 and
whose other components are 0. This polynomial F evaluates to the function
f . Therefore for all sets of k polynomial functions f1, . . . , fk over R1, . . . , Rk,
respectively, we have a polynomial function f over R. Thus, the ring of poly-
nomial functions over R is isomorphic to the direct product of the rings of
polynomial functions over R1, . . . , Rk, respectively.

We can extend our results to polynomial functions in multiple indetermi-
nates using the following theorem.

Theorem 7. Suppose R is a finite ring such that any function R → R can be
expressed as a polynomial in R. Then, any function Rn → R for any integer
n ≥ 2 can be expressed as a polynomial F in R[x1, x2, . . . , xn].

Proof. Let r be an element in the ring R, and let Fr(x) be a polynomial in
R[x] such that for all x ̸= r, Fr(x) = 0, and Fr(r) = 1. Let r1, r2, . . . , rn
be elements of R, and let us define fr1,r2,...,rn(x1, x2, . . . , xn) : Rn → R to
be a function such that if (x1, x2, . . . , xn) ̸= (r1, r2, . . . , rn), then we have
fr1,r2,...,rn(x1, x2, . . . , xn) = 0, and fr1,r2,...,rn(r1, r2, . . . , rn) = 1. For any
choice of elements r1, r2, . . . , rn, x1, x2, . . . , xn in R, f satisfies the equation
fr1,r2,...,rn(x1, x2, . . . , xn) = Fr1(x1)Fr2(x2) . . . Frn(xn), and so it follows that
fr1,r2,...,rn(x1, x2, . . . , xn) can be expressed as a polynomial for any choice of
r1, r2, . . . , rn in R. Clearly, any function f : Rn → R can be expressed as a
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finite sum of fr1,r2,...,rn(x1, x2, . . . , xn), so any function f : Rn → R can be
expressed as a polynomial with coefficients in R and n indeterminates, as
desired.

7 Vanishing Polynomials Over Rings of Prime

Power Order

In Section 6 we established that if a ring R is a direct product of rings
R1, R2, . . . , Rn, then its vanishing polynomial ideal I is a direct product of
the vanishing polynomial ideals of R1, R2, . . . , Rn. As a consequence, if we
have a unique representation of all vanishing polynomials over R1 and R2

and so on, we have a unique representation of all vanishing polynomials over
R.

We want to find unique representations of all vanishing polynomials over
all rings, and one big step is to find such representations for all finite commu-
tative rings with identity. We also know that every finite commutative ring
with identity can be expressed as the direct product of local commutative
rings with identity of prime power order, as given in [2]. Therefore, if we
find unique representations of all vanishing polynomials over all commuta-
tive rings of prime power orders with identity, we have such representations
over all finite commutative rings with identity.

7.1 Rings of order p

Naturally, we begin by considering rings of prime order p, since proving or
disproving a property for all rings of prime order will cover a large portion of
the general case. Because p is prime, we know that all commutative rings of
prime order with identity are isomorphic to Zp, over which we already have
a description of all the vanishing polynomials.

7.2 Rings of order p2

We can now consider rings of order p2, where p is prime. This case is more
nuanced than the last, but still within reach: every ring of order p2 is iso-
morphic to either Zp × Zp, Zp2 , GF(p2), or Zp[x]/(x

2). We examine these
subcases one by one.
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First, Zp×Zp is a direct product of two rings that we already have desired
representations for, so we have such a representation for Zp × Zp.

Second, Zp2 is a ring of integers modulo an integer, so we already have a
unique representation for its vanishing polynomials.

The third subcase is GF(p2) (the finite field of p2 elements), whose ele-
ments we represent as f1, . . . , fp2 . We analyze this case presently.

Let V (x) = (x − f1)(x − f2) . . . (x − fp2), where {f1, f2, . . . , fp2} are
all the elements of GF(p2). Then, V (x) is a vanishing polynomial, so all
multiples of V (x) are vanishing polynomials. Also, since there are no zero
divisors in GF(p2), all vanishing polynomials are necessarily multiples of
(x− f1), (x− f2), . . . , (x− fp2). Therefore, all vanishing polynomials are nec-
essarily multiples of V (x). Thus, there exists a one-to-one correspondence
between vanishing polynomials and multiplies of V (x), so any vanishing poly-
nomial G(x) in GF(p2) can be uniquely represented as

G(x) = F (x)V (x)

where F (x) is a polynomial which is uniquely defined based on G(x).
The fourth subcase Zp[x]/(x

2) is the trickiest. To summarize the structure
of the ring, it can be interpreted as the ring Zp adjoined with a square
nilpotent element. Because x appears as an element of Zp[x]/(x

2), we will
use the indeterminate y when dealing with polynomials over Zp[x]/(x

2). For
example, F (y) = yx is a polynomial F (y) ∈ (Zp[x]/(x

2))[y], and it maps 1
to x and x to 0.

Definition 5. Let polynomial P (y) = any
n + · · · + a1y + a0, where n ≥ 2.

Then, the formal derivative is P ′(y) = nany
n−1 + · · ·+ 2a2y + a1.

Proposition 3. Let J and K be vanishing polynomials over Zp. Then, the
polynomial

G(y) = J(y) + xK(y)

vanishes in Zp[x]/(x
2) if and only if J ′ vanishes over Zp.

Proof. Let G(y) be a vanishing polynomial in Zp[x]/(x
2). Then,

G(y) =
n∑

i=0

Ciy
i.
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Substituting y = Ax+B and Ci = Dix+ Ei we have

G(y) =
n∑

i=0

(Dix+ Ei)(Ax+B)i

=
n∑

i=1

(Dix+ Ei)(Ax+B)i +D0x+ E0

=
n∑

i=1

(Dix+ Ei)(iAB
i−1x+Bi) +D0x+ E0

=
n∑

i=1

EiB
i + E0 + x

n∑
i=1

(DiB
i) +D0x+ xA

n∑
i=1

iBi−1Ei

=
n∑

i=0

EiB
i + x

n∑
i=0

(DiB
i) + xA

n∑
i=0

(i+ 1)Ei+1B
i

= J(B) + xK(B) + xAJ ′(B)

where J(B) and K(B) are polynomials in Zp. We immediately see that J(B)
is vanishing, and if we plug in A = 0 we get that K(B) is vanishing. If we
now plug in A = 1 we get that J ′(B) is also vanishing. Now, if we plug in
B = y and A = 0 we get G(y) = J(y) + xK(y).

The opposite is clear: let A,B be elements of Zp and y = Ax + B,
and suppose J , K, J ′ are vanishing over Zp. Then, the polynomial given by
G(y) = J(B)+xK(B)+xAJ ′(B) evaluates to 0. Therefore, since all elements
of Zp[x]/(x

2) can be represented as Ax+B, G is vanishing on Zp[x]/(x
2).

Example 2. To illustrate this theorem, we will now consider some examples
over Z2[x]/(x

2).

1. Suppose J(y) = 0 and K(y) = y(y + 1). Then, both J and K vanish
over Z2. In addition, J ′(y) = 0 vanishes over Z2. Now, notice that
G(y) = J(y) + xK(y) = xy(y + 1) vanishes over Z2[x]/(x

2).

2. Suppose J(y) = y4 + y2 and K(y) = 0. Then, both J and K vanish
over Z2. In addition, J ′(y) = 4y3 + 2y = 0 vanishes over Z2. Now,
notice that G(y) = J(y) + xK(y) = y4 + y2 vanishes over Z2[x]/(x

2).

3. Suppose J(y) = y(y + 1) and K(y) = 0. Then, both J and K vanish
over Z2. However, J ′(y) = 2y + 1 = 1 does not vanish over Z2. Now,
notice that G(y) = J(y) + xK(y) = y(y + 1) does not vanish over
Z2[x]/(x

2): for a counterexample, see K(x) = x ̸= 0.
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8 Vanishing Polynomials Over General Rings

We can apply a generalization of the method used in Section 4 to find vanish-
ing polynomials over an arbitrary commutative ring R with identity. Given
an element r ∈ R, we denote the ideal generated by r as (r) = {qr | q ∈ R}.
We begin with a definition that simplifies the construction.

Definition 6. Given an element y ∈ R such that the quotient R/(y) parti-
tions R into a finite number of equivalence classes of the form a1 + (y), a2 +
(y), . . . , an + (y), let Fy(x) = (x − a1)(x − a2) . . . (x − an). If R/(y) is not
finite we say Fy(x) is not defined.

We claim that Fy(x) evaluates to a multiple of y for any input x ∈ R.
Note that x must fall into some equivalence class ai + (y), so x − ai ∈ (y).
Since Fy(x) contains the factor (x−ai) ∈ (y) and (y) is an ideal, Fy(x) ∈ (y)
so Fy(x) is a multiple of y.

Theorem 8. Consider a set of zero divisors {y1, y2, . . . , yn} which satisfies
y1y2 . . . yn = 0. Let N ⊂ N be an indexing set which can contain i if Fyi(x) is
defined (but does not necessarily contain i if Fyi(x) is defined). Let M ⊂ N
contain all integers 1 ≤ j ≤ n such that j /∈ N . Then the polynomial

G(x) =

(∏
j∈M

yj

)(∏
i∈N

Fyi(x)

)

is vanishing.

Proof. This follows directly from the definition of Fy(x). For any input x,
G(x) evaluates to a multiple of y1y2 . . . yn = 0 so it is vanishing.

Observe that if all quotients R/(y1), R/(y2), . . . , R/(yn) are finite, we can
take the subset of yi’s to be the whole set in which case we get a monic
polynomial. Also, if R is finite, setting y1 = 0 gives us the monic vanishing
polynomial F0(x) whose degree is |R| (such as for a finite field which has no
other zero divisors).

Example 3. This method allows us to find vanishing polynomials not only
for finite rings but also for infinite ones. For instance, in the ring

∏∞
n=1 Z2,

consider the pair of zero divisors (0, 1, 1, 1, 1, . . .) and (1, 0, 0, 0, 0, . . .). Since
the quotient of this ring by the ideal generated by (0, 1, 1, 1, 1, . . .) is finite
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(it is isomorphic to Z2), there exists a degree 2 vanishing polynomial for this
ring. Furthermore, since we can pick any representatives from the cosets in
the quotient there exists an infinite number of degree 2 vanishing polynomials
for this ring.

Note that a polynomial generated in this way will often have a lot of
redundant terms since if we have two finite quotients R/(yi) and R/(yj),
there will often be pairs of factors (x − c) = (x − d) with c chosen from
one of the cosets of R/(yi) and d chosen from one of the cosets of R/(yk).
To remove such redundancies we can create groups of identical factors with
the additional condition that factors corresponding to quotients R/(yi) and
R/(yj) can only be grouped together if being a multiple of both yi and yj
implies being a multiple of yiyj (analogous to yi and yj being coprime over
the integers). Once such a grouping is carried out in a way minimizing the
number of groups (including picking representatives from cosets to facilitate
this process), we simply keep a single factor from each of the groups.

Example 4. Consider (x− 1)(x− 2) · (x− 1)(x− 2) · (x− 1)(x− 2)(x− 3),
a polynomial over the ring Z12 using the zero divisors 2 · 2 · 3 = 0. We
cannot group terms corresponding to the two instances of Z12/(2) but we can
group terms corresponding to Z12/(2) with terms corresponding to Z12/(3).
We can also replace one of the terms (x − 1) with (x − 3) as it belongs
to the same equivalence class modulo 2. Thus, we get the grouping pairs
(x− 1)(x− 1) · (x− 2)(x− 2) · (x− 3)(x− 3) · (x− 2), giving the final reduced
polynomial (x− 1)(x− 2)(x− 3)(x− 2).

Proposition 4. If R = Zn, this description is sufficient to classify all van-
ishing polynomials when we take y1 . . . yk = n to be the prime factorization
of n.

Proof. This is essentially the proof found at the end of Section 4. Let us
define N such that

∏
i∈N yi = gcd(n, k!). Then G(x) as defined in Theorem 8

behaves identically to n
gcd(k!,n)

Bk(x) in Equation 1. In particular, note that
we get the same leading coefficients.

Thus, to completely reuse the proof in Section 4 it simply remains to show
that this G(x) has degree less than or equal to k after removing duplicate
terms. Let us define ze11 ze22 . . . zell = gcd(n, k!) to be the prime factorization
of gcd(n, k!). Using the method above we can chose representatives to get
Fzi(x)Fzi(x) . . . Fzi(x) = (x − 1)(x − 2) . . . (x − ziei) for each zeii . After per-
forming the grouping as described, we simply get (x− 1)(x− 2) . . . (x− zjej)
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for whichever zjej was maximal (since all zi are coprime). Now, if k! has the
factor zeii , k is at least ziei so the polynomial we get has degree less than or
equal to k. From this point, the proof is identical, except with n

gcd(k!,n)
Bk(x)

replaced by an appropriate G(x) for each value of k.

This is not the case in general. For instance, the polynomial x(x +
(1, 1, 1, 1, . . .)) is vanishing over

∏∞
n=1 Z2 but does not correspond to any

pair zero divisors as described previously. This gap, however, can be easily
fixed by noticing that if a ring R can be represented as a direct product of a
ring S with itself and some other ring T , namely R = S×S×T , a vanishing
polynomial for the ring S×T can be trivially generalized to a vanishing poly-
nomial for the ring R by replacing any terms (s, t) with (s, s, t). In particular,
doing this infinitely for S = Z2, we get the polynomial x(x + (1, 1, 1, 1, . . .))
over

∏∞
n=1 Z2.

With this generalization, we do not currently know if this gives a complete
description of vanishing polynomials but do not have any examples suggesting
otherwise.

9 Counting Roots of Polynomials

Before considering the problem of counting and bounding the number of roots
of polynomials over rings, we start by considering a weaker notion, namely,
considering whether the number of roots of these polynomials is finite.

More specifically, we aim to study what characteristics we can discern
about a commutative nonzero ring (not necessarily with identity) with the
property that every polynomial has a finite number of roots. In the case
where the ring is finite, it easily follows that every polynomial has a finite
number of roots as there are only a finite number of elements in the ring.
In the case where the ring is infinite, the following theorem provides a char-
acterization of rings that satisfy the desired property. A similar result was
given in [3], but we extend their proof to include rings that don’t necessarily
have an identity element.

Theorem 9. The only infinite rings R which satisfy the property that all
polynomials in R[x] have finitely many roots are rings with no nonzero zero
divisors.

Proof. Suppose that the infinite ring R satisfies the given property. We wish
to show that this implies that R has no nonzero zero divisors.
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Suppose for contradiction that R does have a zero divisor, call it a. Then
the roots of the polynomial ax over R are by definition the annihilator of a
over R (denoted Ann(a)), which is well known to be an ideal of R. By our
assumption that all polynomials with coefficients in R have a finite number
of roots, we have that the size of Ann(a) is finite.

Let a nonzero element in Ann(a) be denoted by y. It follows that yR
is finite because yR ⊆ Ann(a), and we have already shown that Ann(a)
is finite. Consider the R-module homomorphism ϕ : R → yR given by
ϕ(r) = yr. Because yR is finite and R is infinite, it follows that there is
an element yr in yR that has infinitely many elements of R mapping to it.
Denote the set of elements in R mapping to yr by M . If M is countably
infinite, then denote the elements in M by {r1, r2, r3, . . .}. Otherwise, we
can choose a countably infinite subset of M , and denote the elements in this
subset by {r1, r2, r3, . . .}. This follows directly from the axiom of choice.

Thus, for all n ≥ 2, we have that yr1 = yrn, and so y(r1 − rn) = 0. But
because all the elements in {r1, r2, r3, . . .} are distinct, it follows that all the
elements in {r1 − rn}∞n=2 are also distinct, so there are an infinite number of
roots to the equation yx = 0. But since yx ∈ R[x], it is supposed to have a
finite number of roots, a contradiction.

Thus, infinite rings which have zero divisors do not satisfy the condition
that all polynomials in the ring have a finite number of roots.

We now show that if a ring has no zero divisors, then all polynomials
over the ring have a finite number of roots. Suppose that R has no zero
divisors, and suppose F (x) is a polynomial in the ring R[x]. Note that
the set K = {a

b
| a, b ∈ R, b ̸= 0} is a field. F (x) is an element of R[x],

which is contained in K[x]. Since every polynomial over a field has a finite
number of roots, it follows that F (x) has a finite number of roots over R[x],
as desired.

We now present a result that allows us to limit the number of roots a
polynomial could have over a commutative ring that can be represented as
a ring product. In contrast to the previous theorem, this result allows us
to restrict the possible number of roots of a polynomial, not just determine
whether this number is finite or infinite.

Consider a finite commutative ring R with identity which can be written
as R ∼= R1 × R2 × · · · × Rk. Thus, each element x ∈ R can be repre-
sented as some tuple (x1, x2, . . . , xk) where each xi is an element of Ri. Let
us also call n = |R| and n1 = |R1|, n2 = |R2|, . . . , nk = |Rk|. Take any
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polynomial F : R → R. Equivalently, we can view F as a set of k polynomi-
als F1, F2, . . . , Fk over R1, R2, . . . Rk, respectively, as described by Lemma 4.
Note that if an element x is a root of F , that is F (x) = 0, it must be a root
of F1, F2, . . . , Fk in each of R1, R2, . . . Rk. However, rather than counting
roots, we count elements that are not roots. Let us define 0 ≤ ai to be the
number of elements that are not roots of Fi in each of the rings Ri. To find
the number of non-roots of F over R, we must find the number of tuples
(F1(x1), F2(x2), . . . , Fk(xk)) where not all elements are 0.

We can use the principle of inclusion-exclusion to calculate this number.
Each set of ai non-roots overRi contributes (n/ni)·ai tuples that are non-zero.
However, all tuples where two entries are non-zero are double counted so we
must subtract (n/(ninj)) · (aiaj) for every pair of i, j. Now all tuples that
contain three non-zero entries have been added three times and subtracted
three times so they must be added back. Continuing in this way we find that
the number of non-roots of F over R is

k∑
i=1

∑
j1<j2<...<ji≤k

(−1)k+1 · naj1aj2 . . . aji
nj1nj2 . . . nji

.

Thus, we can conclude that if a number cannot be represented in this way for
any set of a1, a2, . . . , ak, a polynomial cannot have that number of non-roots.
The converse is not necessarily true since it is not necessarily true that any
value of ai is possible over the ring Ri. Note that since we know |R|, if we
know a polynomial can’t have q non-roots over R, it directly follows that a
polynomial cannot have |R| − q roots.

In the case of the squarefree integers, however, any function is possible
over a field such as Zp for prime p, so all ai’s are possible and the converse
of the above statement holds.

For example, consider Z6 = Z3 × Z2. In this case every polynomial must
have 2a1+3a2−a1a2 non-roots for some integers 0 ≤ a1 ≤ 3 and 0 ≤ a2 ≤ 2.
Thus, one may easily verify that a polynomial over Z6 cannot have exactly
1 non-root but can have 0, 2, 3, 4, 5, or 6 non-roots. By complimentary
counting, we can conclude that a polynomial over Z6 can have 0, 1, 2, 3, 4,
or 6 roots but cannot have 5 roots.
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