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Solution to General Math Problems

Problem G1

A polynomial f(x) has complex coefficients. It turns out that f(x) · f ′(x) is a
degree five polynomial whose x5, x4, x1, x0 coefficients are respectively 3, 10, 25,
12. Determine the polynomial f .

Solution

The answers are

f(x) = x3 + 2x2 + 3x+ 4,

f(x) = x3 + 2x2 +
−3 +

√
73

2
x+

9− 3
√

73

8
,

f(x) = x3 + 2x2 +
−3−

√
73

2
x+

9 + 3
√

73

8

and the negations of these (for a total of six possible answers).
Notice that we have

2f(x)f ′(x) = 6x5 + 20x4 + Fx3 + Fx2 + 50x1 + 24

where F represents coefficients that are not known. The left-hand side is the derivative
of the polynomial f(x)2, so it follows (by integrating both sides) that

f(x)2 = x6 + 4x5 + Fx4 + Fx3 + 25x2 + 24x+ F.

Apparently, f is a cubic polynomial. By replacing f with −f if necessary, we may as
well assume f is monic. So we are seeking constants a, b, c such that

(x3 + ax2 + bx+ c)2 = x6 + 4x5 + Fx4 + Fx3 + 25x2 + 12x+ F.

We therefore get the system of equations

2a = 4,

2ac+ b2 = 25,

2bc = 24.

Evidently a = 2, and now solving the resulting cubic equation gives (b, c) = (3, 4) as well

as the two solutions (b, c) =
(
−3±

√
73

2 , 9±3
√
73

8

)
. This gives the solutions claimed.
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Problem G2

Scientists have found a vaccine that produces undesirable side effects with probabil-
ity p. Initially, the number p is distributed uniformly across the interval [0, 0.1]. To
test the vaccine, the scientists test the vaccine on 148374 volunteers and find that
no one experiences adverse side effects.

Find the smallest real number λ such that the scientists can assert p < λ with
probability at least 95%. Round your answer to four significant figures.

Solution

Let n = 148374 for brevity. By Bayes’ theorem, we require λ to satisfy

0.95 ≤ P(p < λ)

=

∫ λ
0 (1− p)n dp∫ 0.1
0 (1− p)n dp

=
1

n+1(1− (1− λ)n+1)
1

n+1(1− (1− 0.1)n+1)

=
1− (1− λ)n+1

1− 0.9n+1
.

Using exact methods will give λ = 2.019 · 10−5 as the optimal choice. Actually, this can
be approximated very closely by hand by simply commenting the denominator is very
nearly 1 for large n; so essentially we want λ ≈ 1 − 0.051/(n+1) which gives the same
approximation above.
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Problem G3

Let p be an odd prime number. Calculate the number of triples (a, b, c) ∈ Fp×Fp×Fp
for which a+ b+ c = a3 + b3 + c3 = 1.

Solution

If p = 3, then we are simply counting the number of triples which satisfy a+ b+ c ≡ 1
(mod 3), which is 9.

Otherwise, notice that

0 = (a+ b+ c)3 − (a3 + b3 + c3) = 3(a+ b)(b+ c)(c+ a).

Hence the solution set is exactly the number of triples (a, b, c) such that a + b + c = 1
and some two are negatives of each other. In other words, (a, b, c) is a permutation of
(1, t,−t).

This is now a fairly routine counting problem. There are 3 ways to pick which entry
to be 1, and p choices for the other two entries. This overcounts (1, 1,−1) and so on
twice each. So the answer is 3p− 3.
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Problem G4

We roll a fair six-sided die and let s1 be the result of the roll. Then, we roll s1 fair
six-sided dice and let s2 be the sum of the rolls. Then, we roll s2 fair six-sided dice
and let s3 be the sum of the rolls. The process continues to generate an infinite
sequence (s1, s2, . . . ).

(a) Find the probability that 3 appears in the sequence.

(b) Find the expected value of sn, for each integer n.

(c) We say the sequence grows exponentially if there exists a constant c > 1 such
that sn > cn for all sufficiently large integers n. Does the sequence grow
exponentially almost surely?

Solution

(a): The sequence is nondecreasing, so we can solve this by considering just a finite
number of states. Let a be the probability of achieving 3 from sn if sn = 1, and let b be
the probability of achieving 3 from sn = 2. Then it follows that

a =
1

6
· a+

1

6
· b+

1

6
· 1 +

3

6
· 0,

b =
1

36
· b+

2

36
· 1 +

33

36
· 0.

Solving gives b = 2/35 and a = 37/175, so the answer is 37/175.
(b): sn = (7/2)n by induction. Indeed, sn+1 in general is equal to the sum of sn

independent dice rolls, and each dice roll contributes 7/2. To make this rigorous we may
write

sn+1 =
∑
k≥1

Xk · 1sn>k

where Xk is a dice roll, and 1sn>k is the relevant indicator variable. Then by taking
linearity of expectation we get

E[sn+1] =
∑
k≥1

7

2
·P(sn > k) =

7

2

∑
k≥1

P(sn > k) =
7

2
E[sn]

proving the claim.
(c): Yes (and the bounds are quite weak).
Notice that sn+1 ≥ 3

2sn holds as long as at least half the dice roll greater than 1, so it
holds with probability at least 1

2 , say.

Now by the central limit theorem, if we take c = 3
√

3/2, then for sufficiently large
N , the probability that sn < cn = (3/2)n/3 decays exponentially in n. Taking a union
bound across large enough N will give a total probability less than 1, as desired.
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Problem G5

For each positive integer n ≥ 4, find all positive real numbers a1, a2, . . . , an such
that

a2i = 19ai+1 + 20ai+2 + 21ai+3

holds for all i = 1, . . . , n with indices taken modulo n.

Solution

The answer is that all numbers must be equal to 60 (which works).
The largest number is at most 60, since if M is maximal, then M2 ≤ 60M .
The smallest number is at least 60, since if m is minimal, then m2 ≥ 60m.
So all the numbers are equal to 60.
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Problem G6

If s is a finite binary string, then we denote by f(s) the sum of the squares of the
lengths of the consecutive runs of f . For example, f(10110001111100) = 12 + 12 +
22 + 32 + 52 + 22 = 44.

Suppose that a binary string s of length n is specified by letting the ith bit be
1 with probability pi and 0 with probability 1 − pi, all independent. We wish to
calculate the expected value of f(s) given the values of n, p1, p2, . . . , pn.

(a) Exhibit an algorithm with the best runtime you can find, in terms of n.

(b) Give the best lower bounds you can on the runtime of such an algorithm.

Solution

The answer is that O(n) time is possible (and this is asymptotically best possible since
it takes time to read the input). This is essentially the same as CodeForces 235B Let’s
Play Osu!, which in turn appears to be inspired by the rhythm game Osu (in which
hitting k consecutive notes correctly earns 300(1 + 2 + · · ·+ k) points).

In what follows, we abbreviate “consecutive run” to “block”.
We first show how to calculate the contribution from blocks of 1’s; the analogous

calculation from blocks of 0’s then gives the solution.
The idea is that the score due to a block of length k may be written as n2 = 1 + 3 +

5 + · · ·+ (2k − 1), which lets us simply sum the scores from left to right. For example,
the input string 10110001111100 can be decomposed as the following gains:

Bit 1 0 1 1 0 0 0 1 1 1 1 1 0 0

Score +1 +1 +3 +1 +3 +5 +7 +9

So let Xi be the number of additional points scored by the i’th bit, which means that

Xi =


Xi−1 + 2 ith bit is 1 and (i− 1)st bit is 1

1 ith bit is 1 and (i− 1)st bit is 0

0 otherwise.

In other words,
Xi = 1ith bit is 1 ·

(
Xi−1 + 2− 1(i− 1)st bit is 0

)
with 1E be the indicator variable for event E. Taking expectation of both sides,

E[Xi] = pi(E[Xi−1] + 2− (1− pi−1)).

So E[Xi] can be computed recursively for i = 1, 2, . . . , n in linear time.
Similarly the contribution of analogously defined variable for the runs of 0’s can be

computed. This completes the solution.
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Solution to Advanced Math Problems

Problem M1

For positive integers n, find a closed form for∑
a+b+c+d=n
a,b,c,d≥0

2a+2b+3c+4d

in terms of n.
Possible hint: use generating functions.

Solution

We use generating functions. Because 1
1−2X =

∑
k 2kXk, it follows the desired answer

is equivalent to the coefficient of xn in

F (X) =
1

1− 2X
· 1

1− 4X
· 1

1− 8X
· 1

1− 16X
.

We may express F (X) using partial fractions as

−1/21

1− 2X
+

2/3

1− 4X
− 8/3

1− 8X
+

64/21

1− 16X
.

This gives the answer of

−1

21
· 2n +

2

3
· 4n − 8

3
· 8n +

64

21
· 16n.
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Problem M2

We say a real number α is good if there exist nonzero integers m and n such that
eαm is an integer divisor of 2020n.

(a) Let V denote the set of real numbers which are the sum of two good numbers.
Show that V is a Q-vector space under addition.

(b) Calculate dimV and give an example of a basis of V .

Solution

In general, if θm is an integer divisor of 2020n for some n, then θ = 2x5y101z for some
rational numbers x, y, z, with the same sign. This gives a characterization of good
numbers.

Hence V consists of those β such that eβ = 2x5y101z for rational numbers x, y, z.
This immediately implies that V is closed under addition and rational multiplication,
and so it is indeed a vector space, spanned by log 2, log 5, log 101. By the fundamental
theorem of arithmetic it follows readily that these numbers are Q-linearly independent,
so they actually form a basis, and in particular dimV = 3.
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Problem M3

Let T be a finite tournament. For any vertex v, the indegree and outdegree of v is
denoted by indeg v and outdeg v, respectively. For each positive integer d we then
define

Ad =
∑
v

(indeg v)d Bd =
∑
v

(outdeg v)d.

(a) Find all d such that Ad = Bd holds for any tournament T .

(b) Prove or disprove: if A3 ≥ B3 then A4 ≥ B4.

(c) Prove or disprove: if A4 ≥ B4 then A5 ≥ B5.

Solution

For d = 1 the statement is true since A1 = B1 =
(
n
2

)
; we claim also A2 = B2. Indeed,

A2 −B2 =
∑
v

(indeg v)2 −
∑
v

(outdeg v)2

=
∑
v

(indeg v + outdeg v)(indeg v − outdeg v)

=
∑
v

(n− 1)(indeg v − outdeg v)

= 0.

However, for d ≥ 3 one can take a tournament with outdegree sequence (3, 1, 1, 1), (and
hence indegree sequence (0, 2, 2, 2)), so Ad = 3d+3 while Bd = 3 ·2d, which forces d ≤ 3.

Part (b) is true, and the inequalities are equivalent actually. In what follows, we let
k = n− 1 and set

indeg v =
k

2
+ xv

outdeg v =
k

2
− xv

for some (integer or half-integer) xv. Since
∑

v indeg v =
∑

v outdeg v =
(
n
2

)
it follows

that
∑

v xv = 0. Now

A3 −B3 =
∑
v

(
k

2
+ xv

)3

−
∑
v

(
k

2
− xv

)3

=
∑
v

[
2x3v + 6

(
k

2

)2

xv

]
= 2

∑
v

x3v

while

A4 −B4 =
∑
v

(
k

2
+ xv

)4

−
∑
v

(
k

2
− xv

)4

=
∑
v

[
4x3v

(
k

2

)
+ 4xv

(
k

2

)3
]

= 2k
∑
v

x3v
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and so one is nonnegative if and only if the other is.
Part (c) is false. One counterexample is to consider a tournament on 16 vertices

which has 1 vertex of indegree 5, 10 vertices of indegree 7, and 5 vertices of indegree 9.
(One can verify, say by Landau’s theorem, that a tournament with this degree sequence
actually exists). In that case we have

A4 = B4 = 57440

A5 = 466440

B5 = 466560

so this exhibits the desired counterexample.
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Problem M4

A particle is initially on the number line at a position of 0. Every second, if it is
at position x, it chooses a real number t ∈ [−1, 1] uniformly and at random, and
moves from x to x+ t.

Find the expected value of the number of seconds it takes for the particle to exit
the interval (−1, 1).

Possible hint: for each 0 < x < 1, let E(x) denote the expected value of the
amount of time until the particle exits the interval. You may assume without proof
that E(x) is a well-defined and analytic function on the interval (0, 1).

Solution

We let E(x) be the expected value of the time until exiting if the particle starting from
a position of x, where 0 < x < 1. For x ≥ 0, obviously E(x) = E(−x) by symmetry.

Apparently,

E(x) = 1 +
1

2

∫ x+1

x−1
E(y) dy.

Let’s define the constant C = 2 +
∫ 1
0 E(y) dy. Then for 0 ≤ x < 1, we recover the

statement

2E(x) = C +

∫ 1−x

0
E(y) dy.

Actually, note that by setting x = 0 we get 2E(0) = 2C − 2 or E(0) = C − 1.
Differentiate once:

2E′(x) = −E(1− x) (1)

Differentiate again:

2E′′(x) = E′(1− x) = −1

2
E(x) (2)

Consequently, from E′′ = −E/4 (by (2)) we conclude

E(x) = a sin
x

2
+ b cos

x

2

for some constants a and b, valid for 0 < x < 1.
Returning to (1) we should have, for all 0 < x < 1, the identity

a cos
x

2
− b sin

x

2
= −a sin

1− x
2
− b cos

1− x
2

= −a
[
sin

1

2
cos

x

2
− cos

1

2
sin

x

2

]
− b

[
cos

1

2
cos

x

2
+ sin

1

2
sin

x

2

]
=

(
−a sin

1

2
− b cos

1

2

)
cos

x

2
+

(
a cos

1

2
− b sin

1

2

)
sin

x

2

This can only hold for all 0 < x < 1 if we have

a = −a sin
1

2
− b cos

1

2

−b = a cos
1

2
− b sin

1

2

which both imply
a

b
= −

cos 1
2

1 + sin 1
2

= −
1− sin 1

2

cos 1
2
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So, let us write

E(x) = λ

[
− cos

1

2
sin

x

2
+

(
1 + sin

1

2

)
cos

x

2

]
.

for some constant λ.

C = E(0) + 1 = 2 +

∫ 1

0
E(y) dy

=⇒ λ

[
1 + sin

1

2

]
= 1− λ cos

1

2

∫ 1

0
sin(y/2) dy + λ

(
1 + sin

1

2

)
·
∫ 1

0
cos(y/2) dy

= 1− λ cos
1

2

(
2− 2 cos

1

2

)
+ λ

(
1 + sin

1

2

)
· 2 sin

1

2

λ =
1

cos 1
2 ·
(
2− 2 cos 1

2

)
+
(
1− 2 sin 1

2

) (
1 + sin 1

2

)
=

1

2 cos 1
2 − sin 1

2 − 1

Finally, we seek E(0):

E(0) = λ ·
(

1 + sin
1

2

)
=

1 + sin 1
2

2 cos 1
2 − sin 1

2 − 1
≈ 5.3653.
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Problem M5

Suppose G is a finite group and ϕ : G→ G a homomorphism. Denote by 0 ≤ k ≤ 1
the fraction of elements g ∈ G which satisfy

ϕ(g) = g2.

(a) Give an example where k = 0.03.

(b) If k 6= 1, how large can you get k to be?

Solution

This problem is based off an infamous exercise in Herstein’s Topics in Algebra in which
the condition ϕ(g) = g2 is instead ϕ(g) = g−1. The solution is analogous.

For (b), the answer is k = 3/4. An example achieving the equality case is to choose
G = Q8 the quaternion group, and let ϕ(i) = ϕ(j) = −1 and ϕ(k) = +1.

To show k > 3/4 can’t work, we define the set

S =
{
ϕ(g) = g2

}
.

Fix any s ∈ S. Note that if g ∈ S is an element for which gs ∈ S, then

gsgs = ϕ(gs) = ϕ(g)ϕ(s) = ggss =⇒ gs = sg

and so g is in CG(s), the centralizer of s. By principle of inclusion-exclusion, the number
of g ∈ S which have this property is greater than 3

4 |G|+
3
4 |G| − |G| =

1
2 |G|, so in other

words, |CG(s)| > 1
2 |G|. Since CG(s) is a subgroup of G though, we need CG(s) = G. In

other words, s lies in the center of G.
Thus the center of G contains all of S, but since |S| ≥ 3

4 |G| >
1
2 |G|, the center coincides

with G — that is, G is abelian. But now if g ∈ G is any element, again we can find some
s ∈ S such that gs ∈ S, and now we have

gsgs = ϕ(gs) = ϕ(g)ϕ(s) = ϕ(g)ss =⇒ ϕ(g) = g2

so ϕ is actually the map g 7→ g2 on the whole group. Hence k = 1, violating the
assumption.

As for (a), one may take the product of the quaternion group G = Q8 × Z/25Z, with
ϕ : Q8×Z/25Z→ Q8×Z/25Z acting on the first component as in the previous example
and trivially on the second component. This gives 3

4 ·
1
25 = 0.03.
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Problem M6

A unit regular tetrahedron is a tetrahedron whose edge lengths are all equal to 1.
Two unit regular tetrahedrons ABCD and WXY Z lie in Euclidean space. The
labelings of ABCD and WXY Z are oppositely oriented.

(a) How small can max(AW,BX,CY,DZ) be?

(b) Generalize from 3 dimensions to n dimensions.

Solution

The answer to (b) is
√

(n+ 1)/
⌊
1
2(n+ 1)2

⌋
and hence the answer to (a) is

√
2/2. This

problem was suggested by Nikolai Beluhov, who previously proposed the special case
n = 2 as problem 4 of grade 10 on the 2012 Autumn Mathematical Tournament in
Bulgaria.

Let A1 . . . An+1 and B1 . . . Bn+1 be the two unit regular n-simplices with opposite
orientations. We are going to use two lemmas and one well-known theorem.

Lemma M6.1. Let f : Rn → Rn be any isometry which flips orientation. Let P be any
point, Q = f(P ), and let M denote the midpoint of PQ. As P varies, the locus of M is
contained in some (n− 1)-hyperplane.

Proof. Suppose that f maps the orthonormal basis Oe1e2 . . . en onto O′e′1e
′
2 . . . e

′
n. Then

f is the composition of some linear isometry h with transformation matrix H and the

translation
−−→
OO′.

Since h is an isometry, HH> = E, and since h flips orientation, detH = −1. We have
that

H>(E +H) = H>E +H>H = H> + E = (E +H)>.

Therefore

−det(E +H) = detH> det(E +H) = det
[
H>(E +H)

]
= det(E +H)> = det(E +H),

implying that det(E +H) = 0.
Now ~OM satisfies

~OM =
1

2
( ~OP + ~OQ) =

1

2
(E +H) ~OP +

1

2
~OO′.

Since det(E + H) = 0, the rank of the transformation matrix E + H is at most n − 1,
and so all points M lie in some (n− 1)-hyperplane when P varies, as needed.

Lemma M6.2. We say that two faces of an n-simplex are complementary when their
vertex sets form a partitioning of the vertex set of the entire simplex. The shortest
distance between two complementary faces of A1A2 . . . An+1 equals

d =

√
n+ 1⌊

1
2(n+ 1)2

⌋
and is attained exactly when one face is a b(n+ 1)/2c-face and the other one is a
d(n+ 1)/2e-face.
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Proof. Let Ci be the point whose ith coordinate is 1 and other coordinates are 0. The
points C1, C2, . . . , Cn+1 then form a regular n-simplex in Rn+1 whose side length is√

2. The distance from its center O = (1/(n+ 1), 1/(n+ 1), . . . , 1/(n+ 1)) to its k-face
C1C2 . . . Ck equals the distance from O to the center of this k-face. That center is

Ok = (1/k, 1/k, . . . , 1/k, 0, 0, . . . , 0),

and so that distance is
√

`
k(n+1) , where ` = (n+ 1)− k.

The distance between two complementary faces of dimensionalities k and `, then,
equals the sum of the distances from O to these faces, which is given exactly by√

`

k(n+ 1)
+

√
k

`(n+ 1)
=

k + `√
k`(n+ 1)

=

√
n+ 1

k`
.

For a unit n-simplex, the corresponding distance will instead equal
√

n+1
2k` , and so it will

be minimized exactly when the difference |k − `| is as small as possible.

Lemma M6.3 (Radon’s theorem). Let P1, P2, . . . , Pn+2 be n+2 points in n-dimensional
Euclidean space. Then there exists at least one partitioning of the set {P1, P2, . . . , Pn+2}
into two subsets A and B such that their convex hulls H(A) and H(B) have a common
point.

We now solve the problem. By Lemma M6.1, the midpoints M1, M2, . . . , Mn+1 of
segments A1B1, A2B2, . . . , An+1Bn+1 lie in some (n− 1)-hyperplane α.

Consider the n+ 1 balls S1, S2, . . .Sn+1 of centers A1, A2, . . .An+1 and radii d/2.

Claim. There is at least one ball Si such that α does not intersect the interior of Si.

Proof. Suppose, for the sake of contradiction, that α intersects all of these balls in interior
points R1, R2, . . . , Rn+1. By Radon’s theorem, there exists at least one partitioning of
the set {1, 2, . . . , n+ 1} into two subsets U and V such that the convex hulls of subsets
RU = {Ri | i ∈ U} and RV = {Ri | i ∈ V } have a common point X.

Consider, then, the complementary faces

FU = H({Ai | i ∈ U}) and FV = H({Ai | i ∈ V })

of A1A2 . . . An+1 together with the (n− 1)-hyperplane β that is parallel to both of them
and lies mid-way between them.

Since d is at most the distance between FU and FV , we have that β separates all balls
with indices in U from all balls with indices in V . Consequently, β separates RU and
RV , and hence also their convex hulls. We have arrived at a contradiction with H(RU )
and H(RV ) having a common point X.

Suppose α does not intersect the ball S1. Then the distance between A1 and B1 is at
least twice the radius of S1, that is, at least d.

On the other hand, a longest segment of length exactly d is attained whenB1B2 . . . Bn+1

is the reflection of A1A2 . . . An+1 across any (n − 1)-hyperplane that lies mid-way be-
tween two complementary faces of dimensions

⌊
n+1
2

⌋
and

⌈
n+1
2

⌉
. This completes the

main part of the solution.
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Problem M7

Let G be a finite simple graph with n vertices. Say that two Hamiltonian paths P1

and P2 of G are neighbors if they have exactly n − 2 edges in common; also say a
Hamiltonian path P and a Hamiltonian cycle C of G are neighbors if every edge of
P is also an edge of C. Finally, we say that two Hamiltonian cycles C1 and C2 of
G are equivalent if there exist some number of Hamiltonian paths P1, P2, . . . , Pk of
G such that every pair of consecutive terms in the sequence C1, P1, P2, . . . , Pk, C2

are neighbors.

(a) Give an example of a graph G with at least two inequivalent Hamiltonian
cycles.

(b) Give an example of a graph G with at least 2020 inequivalent Hamiltonian
cycles or prove that no such graph exists.

Solution

This problem is exercise 79 in the current draft of section 7.2.2.4, Hamiltonian Paths
and Cycles, of Donald Knuth’s book The Art of Computer Programming. (See https:

//cs.stanford.edu/~knuth/fasc8a.ps.gz for the most recent version.)
We start with the solution to (a). Let H be the graph whose vertex set is V (H) =

Z/12Z, the integers modulo 12. Draw an edge between x and x + 1 for all x ∈ V (H),
as well as an edge between y and y + 5 for y ∈ {0, 3, 6, 9}, for a total of 16 edges. This
gives the graph H below.

0

1

23

4

5

6

7

8 9

10

11

This graph has exactly two Hamiltonian cycles, C1 = 0—1—· · ·—11—0 and C2 = 0—
1—2—9—10—11—6—7—8—3—4—5—0. It is straightforward to check by hand that
they are not equivalent. (We need to examine only a small number of cases because the
graph is highly symmetric.)
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We now proceed to part (b).
For the problem, we construct graph G as follows. Let k be any positive integer such

that 2k ≥ 2020.

• First we take k copies of H, denoted H0, H1, . . . , Hk−1, where for all i the vertices
of graph Hi are vi,j with 0 ≤ j ≤ 11, so that vertex vi,j of Hi corresponds to vertex
j of H. (Thus vertices vi,j′ and vi,j′′ of Hi are joined by an edge if and only if
vertices j′ and j′′ of H are joined by an edge.)

• Create k additional vertices u0, u1, . . . , uk−1.

• For all i we join vertex ui to vertices vi,0 and v(i+1 mod k),1.

This completes our description of graph G. It has a total of 13k vertices and 18k edges.

We claim that G has exactly 2k Hamiltonian cycles, and describe them. Every Hamil-
tonian cycle of G must contain all edges of G that are incident with a vertex of the form
ui; we call these edges of G special. Consequently, every Hamiltonian cycle of G can be
obtained as follows:

• Inside each copy Hi of H, we place a copy of either C1 or C2.

• Then we delete all edges of the form vi,0—vi,1 from these copies, and we replace
them with the 2k special edges of G so as to connect everything up.

Therefore, G has exactly 2k ≥ 2020 Hamiltonian cycles.
On the other hand, every Hamiltonian path ofG can be obtained in one of the following

ways:

(i) By omitting one special edge from a Hamiltonian cycle of G.

(ii) By omitting one special edge from a Hamiltonian cycle of G, and then replacing
the copy of C1 or C2 in the copy Hi of H incident with that special edge by any
Hamiltonian path of Hi one of whose endpoints is also a vertex of the other special
edge incident with Hi.

(iii) In the exact same way as the Hamiltonian cycles of G, except that in one copy Hi

of H we must take a Hamiltonian path of Hi that contains edge vi,0—vi,1, instead
of a copy of either C1 or C2.

Since Hamiltonian cycles C1 and C2 are not equivalent in H, from this description of the
Hamiltonian paths of G we derive that no two Hamiltonian cycles of G are equivalent,
either. This concludes the solution.
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