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Abstract

We investigate decentralized gradient descent among a network of
nodes where an adversary has corrupted certain nodes. We focus on the
case where the utility functions of all nodes are 1-dimensional quadratics,
and where each corrupted node is connected to all honest nodes.

1 Introduction

Decentralized gradient descent (DGD) is a variant of gradient descent where
multiple users have different cost functions and want to collectively minimize
some combined version of all their cost functions. In DGD, the users never
directly tell each other their own cost functions, but can tell less revealing in-
formation to each other. Furthermore, the communication network of the users
is not necessarily the complete graph, so it may be impossible for certain pairs
of users to directly communicate with each other without relaying information
between intermediate users.

DGD has applications in machine learning problems that also require a level
of confidentiality. For example, several hospitals could each hold some confi-
dential medical data and want to collectively create a machine learning model
that takes all of their data into account, without any of the hospitals directly
sharing their data to each other or to a third party. If all hospitals agree to use
the same kind of model for machine learning (e.g. if all hospitals use a neural
network with the same number of input nodes, output nodes, number of hidden
layers, and number of nodes in each hidden layer), then each hospital can use
its data to create a cost function, and the objective is now for all hospitals to
minimize the sum of all their cost functions.

Previous research has been done on DGD [1], including experimental results
and asymptotic bounds on the error of the agents’ final values from the optimum,
i.e. the argument minimum of the objective function. We are most interested
in seeing what happens when we add corrupt users to the graph, users who can
send arbitrary information to try and throw off the DGD. We are also interested
in how the density of the communication network affects DGD.
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2 Model

For this paper, each agent’s cost function fi(x) is of the form (aix − vi)
2 for

x ∈ R and uniformly random parameters ai ∈ [0, 1), vi ∈ [−100, 100). The
function we want to minimize is denoted as tf(x) = 1

N

∑
i fi(x). Note that all

fi and tf are upward-facing parabolic functions. Figure 1 shows what these
functions fi(x) look like when graphed on the xy-plane.

The number of honest agents, N , is fixed at 50 throughout this paper. The
agents are connected in a graph, where edge (i→ j) ∈ E means that there exists
a communication channel from agent i to agent j. Every honest agent also has
a loop that goes to itself. Initially, all graphs we deal with will be generated as
follows: a probability P is selected; for every unordered pair {i, j}, i 6= j, the
edges (i → j) and (j → i) will be included in E with probability P ; if the re-
sulting graph is not connected, restart the process. Because all communication
channels will be effectively two-way, we call these graphs “undirected”. In Sec-
tion 6, graphs will be directed, and in the generation procedure, the unordered
pair is replaced with the ordered pair (i, j), the edges are replaced with the
directed edge (i→ j), and the condition is replaced with the condition ’strongly
connected’.

At round 0, each agent i has a uniformly random initial value xi(0) ∈
[−200, 200). We take inspiration from [1] and use the following DGD proce-
dure: at each round k, each agent updates their value as follows:

xi(k)← F ({xj(k − 1), ∀j|(j → i) ∈ E})− Tf ′
i(xi(k − 1)),

where F is some aggregation function that takes a set of real numbers and
outputs a real number, and T is the step size. For this paper, we arbitrarily fix
the total number of rounds for each decentralized gradient descent to 10 000.

Figure 1: Graph plots of a sample randomly generated set of functions fi(x),
along with final xi values of all agents after 10 000 iterations of DGD, with the
graph parameter P = 0.05.
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To evaluate the DGD, we focus our attention on three quantities, which will
usually (but not always) be displayed on logarithmic plots:

sd(k) :=
1

N

(∑
i

xi(k)
)
− argmin

x
tf(x)

od(k) :=
1

N
(
∑
i

tf(xi(k)))−min
x

tf(x)

s(k) := stdevi(xi(k))

Initially we will examine communication network consisting of only honest
agents. Later we will add A corrupt nodes to the N honest nodes, each of
whom has edges to all honest nodes (i.e. each corrupt agent can communicate
with all honest agents), and each of whom can send arbitrary information to
try and mess up the decentralized gradient descent. An example graph with
N = 6, A = 1, with honest nodes in black and corrupt nodes in red, is shown in
Figure 2.

Figure 2: Example communication network with N = 6 honest nodes and A = 1
corrupt nodes.

3 No corrupt nodes

For the case A = 0, we set the function F to be the simple mean. We tested
DGD on all values P ∈ {0.05, 0.10, . . . 0.95, 1.0}. For each P , we ran DGD for
10 000 iterations on each of 100 test sets, where each test set consists of a list of
functions fi(x), a list of initial values xi(0), and a communication network, all
randomly generated according to the rules described in the previous section; we
then plotted the arithmetic means of the quantities |sd(10000)| and od(10000)
obtained for all the test sets for that value of P . We repeated this procedure
for each of 4 different step values T ∈ {0.01, 0.005, 0.002, 0.001}.

As shown in Figure 3, higher values of P tend to lead to lower mean
|sd(10000)| and od(10000), which is to be expected, since higher P means
higher connectivity between the honest nodes and thus better knowledge of the
agents’ xi(k). When P = 1, we observed an especially sharp decrease in mean
|sd(10000)| and od(10000). The step size T did not seem to affect these two
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quantities as much. However, lower T did lead to significantly lower s(10000),
meaning the agents’ final values xi(10000) were much closer to each other for
lower T .

Figure 3: Graph of mean |sd(10000)|, od(10000), and s(10000) for parame-
ters P ∈ {0.05, 0.10, . . . 0.95, 1.0}, T ∈ {0.01, 0.005, 0.002, 0.001}, and no cor-
rupt nodes (A = 0). For each pair (P, T ), DGD was tested on 100 randomly
generated test sets.

4 One and two corrupt nodes

The first strategy we chose for the corrupt nodes was to send the value 1000
000 to every honest node during every round. This is because intuitively, the
corrupt nodes want to maximally influence the values that the honest nodes
calculate with the aggregation function F , preferably in a single direction, so
we chose the large positive number direction. For comparison, all honest nodes’
xi(k) values stay between -1000 and 1000.

In order for the DGD to become affected arbitrarily badly, we change the
function F so that it is now a trimmed mean where the lowest A values and the
highest A values are trimmed. We must trim on both sides, because otherwise,
it would be easy for the corrupt nodes to counter our new DGD. If there is an
honest node i that has ≤ 2A edges coming into it, then instead of using the
formula xi(k) ← F ({xj(k − 1), ∀j|(j → i) ∈ E}) − Tf ′

i(xi(k − 1)), we replace
it with the standard single-user gradient descent formula: xi(k)← xi(k − 1)−
Tf ′

i(xi(k − 1)).
As shown in Figure 4, higher P also tends to lead to lower mean |sd(10000)|

and od(10000), although this time there is a sharp decrease around low values
of P instead of at around P = 1. Also, mean |sd(10000)| and od(10000) are
both much higher in both the A = 1 and A = 2 cases than in the no corrupt
nodes case. Except for P = 0.05, the step size T did not have a strong affect on
mean |sd(10000)| and od(10000). However, lower T again correlated with lower
s(10000), although somehow this effect was rather diminished in the case of
A = 2, P < 0.2. Additionally, the mean s(10000) for P ≥ 0.2 was similar across
A = 0, 1, 2 and all values of T that we examined, meaning that the corrupt nodes

4



did not artificially spread out agents’ final values xi(10000) for high enough P .

Figure 4: Graph of mean |sd(10000)|, od(10000), and s(10000) for parameters
P ∈ {0.05, 0.10, . . . 0.95, 1.0}, T ∈ {0.01, 0.005, 0.002, 0.001}, and A = 1, 2 cor-
rupt nodes. For each pair (P, T ), DGD was tested on 100 randomly generated
test sets.

To examine the effect of corrupt nodes on agents’ final values xi(10000), we
also plotted mean sd(10000) (without the absolute value function) for A = 0, 1, 2
and the same sets of values for P, T . Figure 5 shows that for A = 0, sd(10000)
hovers around 0, whereas in A = 1, 2, sd(10000) is a large positive number for
low P and smaller positive number for higher P . This result indicates that the
current strategy of corrupt nodes causes honest nodes’ xi(k) values to be skewed
higher than they should be.
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Figure 5: Graph of mean sd(10000) for parameters P ∈
{0.05, 0.10, . . . 0.95, 1.0}, T ∈ {0.01, 0.005, 0.002, 0.001}, and A = 0, 1, 2
corrupt nodes. For each pair (P, T ), DGD was tested on 100 randomly
generated test sets.

5 Equivocation

For A = 1, another strategy for the corrupt node we tried was to send a very
low value to half of the nodes and a very high value to the other half. In
our implementation, the corrupt node sends the value 1000 000 to all honest
nodes with index i < N

2 , and the value -1000 000 to all other honest nodes.
(Because all graphs were randomly generated with all vertices treated equally,
this implementation is equivalent to having a randomly selected subset of N

2
honest nodes receive the very low value.) This means that for any single honest
node, whether they receive a very low or a very high value from the corrupt
node stays fixed throughout the entire DGD. Figure 6 shows that once again,
higher P correlates to lower mean |sd(10000)| and od(10000).

Figure 6: Graph of mean |sd(10000)|, od(10000), and s(10000) for parameters
P ∈ {0.05, 0.10, . . . 0.95, 1.0}, T ∈ {0.01, 0.005, 0.002, 0.001}, and A = 1 equiv-
ocating corrupt node. For each pair (P, T ), DGD was tested on 100 randomly
generated test sets.
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Although this strategy did not increase mean |sd(10000)| and od(10000) as
much as the previous strategy for corrupt nodea did, the final xi(10000) values
did end up becoming more spread out, as evidenced by mean s(10000) being
larger in A = 1+equivocate than in A = 1 for P < 0.2.

6 Directed Graphs

We repeated all the previous experiments on undirected graphs in this paper on
directed graphs. The results are similar to those of undirected graphs, except for
mean sd(10000) (without the absolute value) being slightly higher for A = 0, 1, 2,
and the plot of mean sd(10000) for A = 0 looking different for directed graphs
than for undirected graphs.
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Figure 7: Graph of mean |sd(10000)|, od(10000), and s(10000) for parameters
P ∈ {0.05, 0.10, . . . 0.95, 1.0}, T ∈ {0.01, 0.005, 0.002, 0.001}, A = 0, 1, 2 on di-
rected graphs. For each pair (P, T ), DGD was tested on 100 randomly generated
test sets.
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Figure 8: Graph of mean |sd(10000)|, od(10000), and s(10000) for pa-
rameters P ∈ {0.05, 0.10, . . . 0.95, 1.0}, T ∈ {0.01, 0.005, 0.002, 0.001}, A =
1+equivocation on directed graphs. For each pair (P, T ), DGD was tested on
100 randomly generated test sets.

Figure 9: Graph of mean sd(10000) for parameters P ∈
{0.05, 0.10, . . . 0.95, 1.0}, T ∈ {0.01, 0.005, 0.002, 0.001}, and A = 0, 1, 2
corrupt nodes on directed graphs. For each pair (P, T ), DGD was tested on
100 randomly generated test sets.

7 Conclusions and Future Directions

We have seen that the parameter P has a negative correlation with the error of
decentralized gradient descent (DGD), measured with the functions sd(), od(),
and s(). Adding a corrupt node that always sends a very high value to all honest
nodes will significantly worsen the DGD by making all honest nodes’ values skew
higher than they should, and adding another corrupt node intensifies this effect.
Having a single corrupt node that instead equivocates by sending a very low
value to half of the honest agents to a very high value to the other half still
disrupted the DGD, although not as much, but it also made the agents’ final
values more spread apart.

In future, we would like to perform the following:
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• Expanding current experiments to d-dimensional functions fi(
−→x ) that are

convex and L-Lipschitz continuous;

• Making more advanced strategies for DGD and corrupt nodes;

• Deriving asymptotic bounds on DGD error (whether using sd(), od(), s(),
or some other metric) w.r.t. N,P,A, d;

• Investigating more pathological communication networks;

Our source code for this paper can be found at:
https://github.com/jasonLLyang/Decentralized-Gradient-Descent
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