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Abstract. The master field on the plane is the large N limit of the Wilson loop functionals
from the two-dimensional Yang–Mills holonomy process. In this paper, we redefine the master field
purely through free Brownian motions, so that its definition is independent from finiteN Yang–Mills
theory. From this aspect, we prove that the master field does not depend on the lasso basis chosen
on a graph. We also give a new, elementary proof for the Makeenko–Migdal equations, which allow
us to efficiently calculate the master field of any loop via a system of differential equations. While
previous work in this field is mostly differential geometric in nature, our proofs all use combinatorial
techniques, heavily utilizing the moment-cumulant relation from free probability.

1. Introduction

1.1. Background. Quantum gauge theories are used to describe the fundamental interactions
between elementary particles, with the particular interaction characterized by the structure group.
In his 1974 seminal paper, ’t Hooft [tH74] investigated quantum gauge theories with structure group
U(N) when N → ∞. He noticed that the 1/N expansion simplifies considerably in the large N
limit. Following this discovery, many physicists began to study the large N limit of gauge theories
(see [DK93, Dou95, KK80, Pol80, Kaz81]), and the concept of the master field, a deterministic
large N limit for gauge theories, arose.

The idea of a mathematically rigorous master field was first introduced by Singer [Sin95] on the
Euclidean plane. The first formal definitions of the master field on the plane were later given by
Anshelevitch and Sengupta [AS12] as well as by Lévy [Lév17]. As conjectured by Singer [Sin95],
the master field is naturally described using the framework of free probability.

The large N limit of two-dimensional Yang–Mills theory also has connections to string theory
(see [GT93a, GT93b, GM95]) but not through the master field.

1.2. Defining the master field on the plane. Although rigorously making mathematical sense
of Yang–Mills theory remains a major open problem, in two-dimensional spacetime, thanks to a
series of works [Dri89, Fin91, Wit91, Sen97, Lév03, Lév10], we now have a relatively clear under-
standing through stochastic calculus. In this section, we briefly recall the basics of 2D Yang–Mills
theory, which leads to the master field on the plane. See [Lév20, Section 1] for more details.

1.2.1. The Yang–Mills measure. A Yang–Mills theory is specified by a compact surface Σ, a con-
nected compact Lie group G, called the structure group, and a principal G-bundle π : P → Σ.
Further, we require that Σ has a volume form and that the Lie algebra g of G is endowed with an
invariant scalar product. For this paper, we will take Σ = R2, which is not technically a compact
surface, but we can think of it as the limit of a sequence of disks with increasing radius. We also

1



2 NATHAN XIONG AND PU YU

take G = U(N), so that g = u(N) with scalar product

⟨X,Y ⟩ = NTr(X∗Y ).

The mathematical approach to the Yang–Mills measure constructs a probability measure on the
image of A(P ), the space of connections on P , under the holonomy mapping. Let Lo(Σ) denote
the set of rectifiable loops on Σ based at some origin o. Any connection ω induces a holonomy h,
which is a multiplicative map from Lo(Σ) to G, in the sense that

• For any l ∈ Lo(Σ), if l
−1 denotes the same loop traversed backwards, then h(l−1) = h(l)−1.

• For any l1, l2 ∈ Lo(Σ), if l1l2 denotes the concatenated loop, then h(l1l2) = h(l2)h(l1).

In general, we consider the space M(Lo(Σ), G) of multiplicative maps from Lo(Σ) to G. Then,
recalling that Aut(P ), the group of bundle automorphisms, is the gauge group, it turns out that
the following holonomy mapping is injective

hol : A(P )/Aut(P ) → M(Lo(Σ), G)/G,

where G acts on M(Lo(Σ), G) by conjugation. Thus, we can equivalently define the Yang–Mills
measure on M(Lo(Σ), G) and no information will be lost. In doing so, the Yang–Mills measure
becomes a collection (Hl)l∈Lo(Σ) of G-valued random variables indexed by loops in Lo(Σ).

1.2.2. Yang–Mills theory on planar graph. The traditional approach to constructing a Yang–Mills
theory first defines a lattice Yang–Mills theory and then takes the limit to a continuous setting.
The two-dimensional lattice Yang–Mills theory is defined on the configuration space of a graph.
Let P(R2) be the set of Lipschitz continuous maps c : [0, 1] → R2 up to reparametrization and
G = (V,E,F) be a planar graph whose edge set E ⊂ P(R2). Then exactly one of the faces in F
is unbounded, and we denote this face by F∞. Let Fb = F \ {F∞} be the set of bounded faces.
For any F ∈ Fb, write |F | for the area of F . Also, let ∂F be the loop formed by starting from an
arbitrary vertex adjacent to F and going clockwise once along the boundary of F . This loop is not
well defined because it does not have a base point, yet it turns out that this does not matter by the
conjugate invariance of the heat kernel (see below). Let P(G) be the set of paths on G formed by
concatenating edges of G, and let Lo(G) be the subset of P(G) consisting of loops on G based at o.

The invariant scalar product on g determines a Laplace-Beltrami operator ∆. Then, the heat
kernel on G is the unique function p : R∗

+ ×G → R∗
+ satisfying the heat equation (∂t − 1

2∆)p = 0
such that pt(g) dg converges weakly to the Dirac measure at the identity of G as t→ 0, where dg is
the Haar measure on G. By definition (see [Itô50]), pt(g) dg gives the distribution of the Brownian
motion on G at time t.

A useful fact about the pt is that they are conjugate invariant. That is, for all x, y ∈ G, we
have pt(x) = pt(yxy

−1). This invariance means that the quantity pt(h(∂F )) is well defined for all
h ∈ M(P(G), G). So, we can define the Yang–Mills measure on M(P(G), G) restricted to G by the
following Driver–Sengupta formula,

(1) µGYM(dh) =
∏
F∈Fb

p|F |(h(∂F )) dh

where dh is the normalized Haar measure on M(P(G), G).
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1.2.3. The Yang–Mills holonomy process. The most useful property of the discrete Yang–Mills
measure is that it is invariant under refinement [Lév03, Section 1.6]. That is, if G1 and G2 are
graphs such that G2 is finer than G1 (every path on G1 is also a path on G2), then under the

natural restriction mapping M(P(G2), G) → M(P(G1), G), the pushforward of the measure µG2
YM

is the measure µG1
YM. This result, along with the following continuity condition, is enough for us to

just take the limit of these graphs. If c1 and c2 are paths, define the length metric to be

d(c1, c2) = |ℓ(c1)− ℓ(c2)|+ inf
φ1,φ2

sup
t∈[0,1]

{|c1(φ1(t))− c2(φ2(t))|},

where ℓ(c) is the length of path c and the infimum is taken over all reparametrizations φ1, φ2 of
c1, c2 by [0, 1]. Under the length metric, P(Σ) becomes a metric space. Now, we can define the
G-valued random variables (Hl)l∈Lo(R2) hinted to in Section 1.2.1.

Proposition 1 (The Yang–Mills holonomy process). The Yang–Mills holonomy process is the
unique collection (Hl)l∈Lo(R2) of G-valued random variables satisfying the following conditions.

(a) For any l1, l2 ∈ Lo(R2), the equalities Hl−1
1

= H−1
l1

and Hl1l2 = Hl2Hl1 hold almost surely.

(b) The random variables are stochastically continuous in the space of loops, i.e., if (ln)n≥0 is a
sequence of loops converging to l, then the sequence (Hln)n≥0 converges in probability to Hl.

(c) The finite-dimensional distributions are described by (1).

1.2.4. The master field. After constructing the Yang–Mills holonomy process with structure group
U(N), SO(N), or Sp(N), the master field is traditionally defined to be the large N limit of the
Wilson loop functionals. Remarkably, this limit does not depend on the choice of the structure
group.

Proposition 2 (See also Chapter 6 of [Lév17]). For each N ≥ 1, let (HN,l)l∈Lo(R2) be the Yang–Mills

holonomy process on R2 with structure group U(N), SO(N) or Sp(N). Then for every l ∈ Lo(R2),
the convergence

1

N
Tr(HN,l)

N→∞−−−−→ Φ(l)

holds in probability toward a deterministic limit called the master field.

1.3. Defining the master field through free Brownian motions.

1.3.1. Free probability and free Brownian motions. A good introductory survey on free probability
is given by Mingo and Speicher [MS17]. Our main tool from free probability will be the moment-
cumulant relation.

Proposition 3 (Moment-cumulant relation; see also Section 3.2 of [Spe14]). Let (A, φ) be a non-
commutative probability space. The cumulants κn : An → C are multilinear functionals obeying the
relation

φ(a1 · · · an) =
∑

π∈NC(n)

κπ(a1, . . . , an)

for all a1, . . . , an ∈ A. The set NC(n) consists of the noncrossing partitions on {1, . . . , n}, and κπ
represents the product of the cumulants specified by the blocks in π.

Cumulants have the very useful property that mixed cumulants of free random variables vanish.
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Proposition 4 (See also Section 3.3 of [Spe14]). Let (A, φ) be a non-commutative probability space.
Then x, y ∈ A are free if and only if κn(a1, . . . , an) = 0 whenever n ≥ 2, all ai are either x or y,
and ai ̸= aj for some i, j.

Finally, we define free Brownian motions. Biane [Bia97] proved that the free Brownian motion
is actually the large N limit of the Brownian motion on U(N) (as defined in [Itô50]), where the
convergence refers to convergence in non-commutative distribution, i.e., all moments converge.

Theorem 5 ([Bia97]). The free (multiplicative) Brownian motion is a collection (ut)t≥0 of uni-
tary random variables in a non-commutative probability space (A, φ) satisfying the following three
properties.

• For all 0 ≤ s < t, the random variable utu
∗
s has the same distribution as ut−s.

• For all 0 ≤ t1 < · · · < tn, the random variables ut1 , ut2u
∗
t1 , . . . , utnu

∗
tn−1

are mutually free.
• For all n ∈ Z, we have

φ(unt ) = e−
nt
2

n−1∑
k=0

(−t)k

k!
nk−1

(
n

k + 1

)
.

1.3.2. The group of loops in a graph. Say that two loops in Lo(G) are equivalent if one can be
obtained from the other through a finite sequence of insertions and deletions of sub-loops of the
form ee−1, where e is an edge of G. After we quotient out Lo(G) by this equivalence relation, we
obtain RLo(G), the space of reduced loops on G. Lévy [Lév17] proved that RLo(G) is a free group
with rank equal to the number of bounded faces in G. One such basis for RLo(G) is the lasso basis,
whose definition we recall below.

We follow the definition given by Lévy [Lév17] for the dual graph G∗ = (V∗,E∗, s, t) of a planar
graph G. Pick a spanning tree T on G. Let T∗ be the dual tree defined on G∗. For two vertices
v1, v2, let [v1, v2]T be the shortest path along T from v1 to v2. Then for each bounded face F ∈ Fb,
consider the first dual edge e∗ ∈ E∗ along the path [F, F∞]T∗ . Let e ∈ E be the edge corresponding
to e∗, and let e denote the starting vertex of e. Finally, let ∂eF be the loop formed by tracing the
boundary of F once, starting with e. Define the lasso for F to be the reduced loop

λF = [o, e]T∂eF [e, o]T.

The lasso basis is then the set {λF : F ∈ Fb}.

1.3.3. The master field on the plane. In this paper, we define the master field on the plane purely
through free Brownian motions, such that the definition is independent from finite N Yang–Mills
theory.

Proposition 6 (The master field; see also Chapter 0 of [Lév17]). The master field is a collection
(hl)l∈Lo(R2) of random variables in a non-commutative probability space (A, τ), where A is involutive
and τ is tracial. The distribution of the (hl)l∈Lo(R2) is uniquely determined by the following three
properties.

(1) The equalities hl−1
1

= h∗l1 = h−1
l1

and hl1l2 = hl2hl1 hold for any two loops l1, l2 ∈ Lo(R2).

(2) The (hl)l∈Lo(R2) are continuous in the space of loops, i.e., if (ln)n≥0 is a sequence of loops
converging to a loop l, then the sequence (hln)n≥0 converges in distribution to hl.
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(3) Let G be a planar graph in R2 containing the vertex o. For any lasso basis {λF : F ∈ Fb}
on G, the random variables (hλF

)F∈Fb are mutually free, and for each F , the distribution of
hλF

is given by a free Brownian motion stopped at time |F |, where |F | denotes the Euclidean
area of F .

Following Lévy [Lév17], we think of the master field as the function Φ: Lo(R2) → C with

Φ(l) = τ(hl).

To calculate τ(hl) for an arbitrary loop in Lo(R2), take any graph on which l lives and pick some
lasso basis, and then write l as a product of lassos λF . The first property of the master field lets us
rewrite hl as a product of hλF

terms, each of which is understood explicitly by the third property.

1.4. The Makeenko–Migdal equations. The Makeenko–Migdal equations give an efficient way
to actually compute the master field Φ(l) for some loop l. The initial proof of these equations
given by Makeenko and Migdal [MM79] relies on integration by parts with respect to an ill-defined
integral. Rigorous proofs were later given by Dahlqvist [Dah16], Lévy [Lév17], and Driver, Hall,
and Kemp [DHK17]. All of these proofs first show an analogue of the Makeenko–Migdal equations
in the finite N Yang–Mills theory and then take N → ∞.

The main idea of the equations is to treat Φ(l) as a function of the areas of the bounded faces
delimited by l. The theorem then gives us a system of first-order differential equations which we
can solve to find Φ(l).

Theorem 7 (Makeenko–Migdal [MM79]). Let l be a loop in Lo(R2). Fix a point of self-intersection
of l which has exactly two ingoing strands and two outgoing strands. Let l1 and l2 be the two
loops formed by swapping which outgoing strand connects to each ingoing strand. Label the four
surrounding faces F1, F2, F3, F4 cyclically so that F1 is between two outgoing strands (see Figure 1).

Figure 1. Setup for the Makeenko–Migdal equations

Then, Φ(l) satisfies the Makeenko–Migdal equation

(2)

(
d

d|F1|
− d

d|F2|
+

d

d|F3|
− d

d|F4|

)
Φ(l) = Φ(l1)Φ(l2).

If any of F1, . . . , F4 is the unbounded face, we just replace its corresponding term on the left by 0.
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1.5. Main Results. In this paper, we treat the master field as an object in its own right by defining
it purely through free Brownian motions as in Section 1.3, so that its definition is independent from
finite N Yang–Mills theory. Under this new definition, we prove in Section 2 that the master field
on a graph does not depend on the lasso basis chosen for that graph.

Theorem 8. Define the master field on the plane as in Proposition 6. Let l be a loop in Lo(R2)
and G be a graph induced by l. The value of Φ(l) does not depend on the lasso basis chosen on G.

We also present in Section 3 a new proof for the Makeenko–Migdal equations on the master field.
While previous proofs of these equations first prove a finite N analogue using tools from differential
geometry and then take N → ∞, we directly attack the N = ∞ case. As a result, our proof is
more elementary and combinatorial in nature.

2. The master field does not depend on the lasso basis

2.1. Setup and definitions. Let l be a loop in Lo(R2) and G = (V,E,F) be a graph induced by l.
We assume that G has finitely many faces. If G has infinitely many faces, then since l is rectifiable,
for any ε > 0, only finitely many faces have area greater than ε. We can then use the continuity of
Φ to evaluate Φ(l) by passing to a limit.

Let T and T̃ be two distinct spanning trees on G, and suppose that they define lasso bases λ and

λ̃ respectively. For any spanning tree T and a fixed orientation E+ ⊂ E, define the beta basis to be
the set {βe : e ∈ E+ \ T} consisting of the reduced loops

βe = [o, e]Te[e, o]T,

where e (resp. e) denotes the starting (resp. ending) vertex of e. It is easy to see that the beta
basis is always a basis for RLo(G). Furthermore, if ψ(e1, . . . , en) is a word in the edges e1, . . . , en
which forms a loop, then the loops ψ(e1, . . . , en) and ψ(βe1 , . . . , βen) are equal in RLo(G). That is,

we can always freely replace e by βe. Let β and β̃ be the beta bases under T and T̃ respectively.

Finally, let ψ1 and ψ2 be the words in the lasso bases λ and λ̃ respectively corresponding to the
loop l. Our goal is to prove Φ(ψ1) = Φ(ψ2). Here and throughout this section, we treat Φ not
as a function of loops but as the state of a non-commutative probability space generated by the
mutually free Brownian motions specified from a lasso basis on G.

2.2. Proof of Theorem 8. We use strong induction on the number of bounded faces in G. The
base case is |Fb| = 1. In this case, the graph G must be a cycle (it could have extra edges sticking
out from the cycle, but these do not affect anything because they do not border a bounded face).
By the symmetry of the cycle graph, any lasso basis will yield the same value for Φ(l).

Henceforth, assume that Theorem 8 holds for all graphs with less than N bounded faces. We
prove that all graphs G with N bounded faces must satisfy the conclusion of Theorem 8. There

are two cases to consider depending on the structure of T and T̃.

2.2.1. Case 1. There exists some edge e ∈ E+ which borders the unbounded face and e /∈ T, T̃ (see
Figure 2).

Recall that ψ1 and ψ2 are words in the lasso bases λ and λ̃ respectively for the loop l. By
assumption, the face A is adjacent to the unbounded face in the dual graph through the dual edge
e∗. Then according to Lévy’s [Lév17] explicit change of basis formula between the lasso and beta
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Figure 2. The edge e belongs to neither T nor T̃.

bases, the λA (and λ̃A) terms appear in ψ1 (and ψ2) only when we traverse e. In particular, if we

compare ψ1 and ψ2, the λA and λ̃A terms occur in the “same” positions because the positions of
e in the loop l depend only on l itself. Expand Φ(ψ1) into a sum of cumulants using the moment-
cumulant relation. By Proposition 4, all nonzero cumulants will only involve one lasso (and its
inverse). We condition our sum on blocks of λA and λ−1

A terms which include some fixed λA (or

λ−1
A ).

Figure 3. Every block of λA and λ−1
A terms divides the word ψ1 into subwords

ψ1
1, ψ

2
1, . . .. The word ψ2 follows a similar division into subwords ψ1

2, ψ
2
2, . . ..

This block of λA and λ−1
A terms divides the word ψ1 into distinct subwords, such that no other

block of the noncrossing partition can contain terms from different subwords without breaking the
“noncrossing” condition (see Figure 3). So when we sum over all noncrossing partitions containing
this particular block, we are actually summing over all noncrossing partitions on the different
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subwords of ψ1. If we then apply the moment-cumulant relation in reverse on each subword, the
cumulants for each subword combine into the moment for that subword. That is, if the block B

splits ψ1 into the subwords ψ1
1, . . . , ψ

|B|
1 , we have

Φ(ψ1) =
∑

B∈S1(A)

κ|B|(h
ε1
λA
, . . . , h

ε|B|
λA

)

|B|∏
i=1

Φ(ψi
1),

where S1(A) consists of the blocks of λA and λ−1
A terms which include some fixed λA (or λ−1

A ) and
ε1, . . . , ε|B| ∈ {1, ∗} are chosen appropriately. Using the same idea and analogous notation for the

lasso basis λ̃,

Φ(ψ2) =
∑

B∈S2(A)

κ|B|(h
ε1
λ̃A
, . . . , h

ε|B|

λ̃A
)

|B|∏
i=1

Φ(ψi
2),

where S2(A) consists of the blocks of λ̃A and λ̃−1
A terms which include some fixed λ̃A (or λ̃−1

A ).

Because the positions of the λA and λ−1
A in ψ1 are the same as the positions of the λ̃A and λ̃−1

A
in ψ2, we only need to show that for each block B, the summands above are equal. Clearly, the
cumulants are equal, so we just need to prove that

|B|∏
i=1

Φ(ψi
1) =

|B|∏
i=1

Φ(ψi
2).

Because ψ1 and ψ2 have the same combinatorial structure as loops, for each i, the subwords ψi
1

and ψi
2 describe the same subloop. If ψi

1 (and ψi
2) does not include λA (and λ̃A), then this subloop

does not actually pass through e. So, we can imagine deleting e from G to obtain a graph with less
bounded faces than G. We can still define this subloop validly on this graph, so we can just apply
the inductive hypothesis to obtain Φ(ψi

1) = Φ(ψi
2).

If ψi
1 (and ψi

2) does include λA (and λ̃A), then the subloop cannot necessarily be defined on a
graph with less bounded faces than G. Instead, we repeat the above process with ψ1 = ψi

1 and
ψ2 = ψi

2. We expand Φ(ψi
1) using the moment-cumulant relation conditioned on blocks of λA and

λ−1
A terms which include some fixed λA (or λ−1

A ). The analogous expansion is done for Φ(ψi
2), and

we continue this downward process until eventually none of the moments in the expansion of Φ(ψi
1)

contain λA and λ−1
A terms. At this point, the edge e is not in any of the subloops, so every subloop

can be defined on a graph with less bounded faces than G. By the inductive hypothesis applied
to each subloop, the moments for each subloop must be equal. Since the corresponding cumulants
are also always equal, we can sum everything to get Φ(ψi

1) = Φ(ψi
2).

Having proved Φ(ψi
1) = Φ(ψi

2) for all i, we get Φ(ψ1) = Φ(ψ2), as desired.

2.2.2. Case 2. For every edge e ∈ E+ bordering the unbounded face, either e ∈ T or e ∈ T̃.
Call a bounded face F an exterior face if some edge of F also borders the unbounded face. We

first consider the case when G has exactly one exterior face (see Figure 4). There is exactly one
edge e ∈ E+ bordering the unbounded face which does not belong to T. Let A be the exterior face
of G.
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Figure 4. A graph with one exterior face

Let T be the spanning tree T, except that the edge e, which borders the exterior face A and the
unbounded face, is shifted one edge left to e (see Figure 5). Note that throughout this section, we
use e to refer to this edge, not the ending vertex of e. It suffices to prove that the value of Φ(l) is
equal under T and T. In particular, this would imply that we can continue “rotating” this special

edge e until it matches the corresponding edge ẽ /∈ T̃ on the boundary of G. Then we can finish by
applying the argument in Section 2.2.1.

Figure 5. “Rotate” the edge e in T once to the left to obtain the spanning tree T.

Now, assume that the common vertex of e and e has degree greater than 2, i.e., there is some
loop starting at this common vertex which lies within the boundary of G. Further assume without
loss of generality that the orientation of e and e follows that of Figure 5. Let X1, . . . , Xn denote
the faces in the loop between e and e, and let Y1, . . . , Ym denote the other faces in G (excluding A).
It is always possible to order the X1, . . . , Xn and the Y1, . . . , Ym and to orient the edges such that

βe = λAλY1 · · ·λYmλX1 · · ·λXn .
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For convenience, define the words α = AY1 · · ·Ym and σ = αX1 · · ·Xn. Let λα and λσ be the
corresponding words in the lasso basis, i.e.., λα = λAλY1 · · ·λYm and λσ = βe. Through a series of
omitted lasso basis calculations, we can obtain the following change of basis formula.

Proposition 9. Let λ and λ be the lasso bases under T and T respectively.

• For all 1 ≤ i ≤ m, we have λYi = λYi.

• For all 1 ≤ i ≤ n, we have λXi = λσλXiλ
−1
σ .

• We have λA = λσλ
−1
α λAλαλ

−1
σ .

To prove Φ(ψ1) = Φ(ψ2), we prove the following more general statement.

Proposition 10. Let ψ(X1, . . . , Xn, A) denote any word in the alphabet X1, . . . , Xn, A, interpreted
as a loop under the lasso basis λ. Define ψ(X1, . . . , Xn, A) = ψ(σX1σ

−1, . . . , σXnσ
−1, σα−1Aασ−1).

Then,

Φ(ψ(X1, . . . , Xn, A)) = Φ(ψ(X1, . . . , Xn, A)).

Indeed, it is obvious that proving

Φ(ψ(X1, . . . , Xn, Y1, . . . , Ym, A)) = Φ(ψ(X1, . . . , Xn, Y 1, . . . , Y m, A))

would complete the proof for all G with one exterior face. However, since Y i = Yi for all 1 ≤ i ≤ m,
it suffices to just prove the equality in Proposition 10. To prove this, we first need a useful lemma
on the “conjugate invariance” property of Φ.

Lemma 11. Let A1, . . . , Ak be an alphabet of k letters such that the k random variables associated
with A1, . . . , Ak are mutually free. If W is some word in this alphabet not containing A1 or A−1

1 ,
then

Φ(ψ(A1, A2, . . . , Ak)) = Φ(ψ(WA1W
−1, A2, . . . , Ak)).

Proof. The proof is very similar to the argument in Section 2.2.1. We apply the moment-cumulant
relation to expand Φ(ψ(A1, . . . , Ak)) into a sum of cumulants. Since the k random variables
are mutually free, all the nonzero cumulants will only involve one random variable (and its in-
verse). We condition our sum on blocks of A1 and A−1

1 terms which include some fixed A1 (or

A−1
1 ). Such a block subdivides the word ψ(A1, . . . , Ak) into distinct subwords, such that no

other block can contain terms from different subwords. We use the same strategy to expand
Φ(ψ(WA1W

−1, A2, . . . , Ak)) into cumulants. This sum runs over the same blocks because W does
not contain A1 or A−1

1 .
Like in Section 2.2.1, it suffices to prove that the Φ values of any two corresponding subwords

are equal. Because ψ(WA1W
−1, A2, . . . , Ak) is obtained by replacing every A1 in ψ(A1, . . . , Ak)

by WA1W
−1, every subword in the former word starts with W (or W−1) and ends with W−1 (or

W ). Hence, these two ends cancel out when we apply Φ onto this subword. However, the resulting
subword is not necessarily equal to the corresponding subword in ψ(A1, . . . , Ak) because there could
still be W and W−1 terms in the middle of the subword. Again, we use the same idea as in 2.2.1 by
applying the moment-cumulant relation onto the subword. Eventually, none of the moments in the
expansion will contain A1 or A−1

1 terms, and hence W and W−1 terms. At this point, the equality
becomes trivial. □
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Obviously, we can extend Lemma 11 to replacing any Ai withWAiW
−1 forW not containing Ai

or A−1
i . We will use this lemma extensively throughout our proof of Proposition 10. The idea is to

slowly transform Φ(ψ(X1, . . . , Xn, A)) into Φ(ψ(X1, . . . , Xn, A)) through a series of replacements
of the form X 7→ WXW−1, where W does not contain X or X−1. By Lemma 11, the Φ value
remains constant throughout these transformations.

Proof of Proposition 10. First, note that

σXnσ
−1 = αX1 · · ·XnXnX

−1
n · · ·X−1

1 α−1

= αX1 · · ·Xn−1XnX
−1
n−1 · · ·X

−1
1 α−1.

Define σn = αX1 · · ·Xn−1, so that Xn = σXnσ
−1 = σnXnσ

−1
n . Note that the word σn does

not contain Xn. For all Xn in ψ(X1, . . . , Xn, A), transform Xn 7→ σ−1
n Xnσn. All Xn are hence

transformed Xn = σnXnσ
−1
n 7→ σnσ

−1
n Xnσnσ

−1
n = Xn. For i < n, the Xi are transformed

σXiσ
−1 7→ αX1 · · ·Xn−1σ

−1
n XnσnXiσ

−1
n X−1

n σnX
−1
n−1 · · ·X

−1
1 α−1

= XnσnXiσ
−1
n X−1

n .

For now, we will ignore A and just say that it was transformed A 7→ An. Then by Lemma 11,

Φ(ψ(X1, . . . , Xn, A)) = Φ(ψ(XnσnX1σ
−1
n X−1

n , . . . , XnσnXn−1σ
−1
n X−1

n , Xn, An)).

For the next step, note that

XnσnXn−1σ
−1
n X−1

n = XnαX1 · · ·Xn−1Xn−1X
−1
n−1 · · ·X

−1
1 α−1X−1

n

= XnαX1 · · ·Xn−2Xn−1X
−1
n−2 · · ·X

−1
1 α−1X−1

n .

Define σn−1 = XnαX1 · · ·Xn−2, so that XnσnXn−1σ
−1
n X−1

n = σn−1Xn−1σ
−1
n−1. Note that the word

σn−1 does not contain Xn−1. For all Xn−1 in ψ(XnσnX1σ
−1
n X−1

n , . . . , XnσnXn−1σ
−1
n X−1

n , Xn, An),
transform Xn−1 7→ σ−1

n−1Xn−1σn−1. All XnσnXn−1σ
−1
n X−1

n are transformed XnσnXn−1σ
−1
n X−1

n =

σn−1Xn−1σ
−1
n−1 7→ Xn−1. For i < n− 1, the XnσnXiσ

−1
n X−1

n are transformed

XnσnXiσ
−1
n X−1

n 7→ XnαX1 · · ·Xn−2σ
−1
n−1Xn−1σn−1Xiσ

−1
n−1X

−1
n−1σn−1X

−1
n−2 · · ·X

−1
1 α−1X−1

n

= Xn−1σn−1Xiσ
−1
n−1X

−1
n−1.

Again, suppose that An was transformed An 7→ An−1. By Lemma 11,

Φ(ψ(X1, . . . , Xn, A)) = Φ(ψ(Xn−1σn−1X1σ
−1
n−1X

−1
n−1, . . . , Xn−1, Xn, An−1)).

For the third step, note that

Xn−1σn−1Xn−2σ
−1
n−1X

−1
n−1 = Xn−1XnαX1 · · ·Xn−2Xn−2X

−1
n−2 · · ·X

−1
1 α−1X−1

n X−1
n−1

= Xn−1XnαX1 · · ·Xn−3Xn−2X
−1
n−3 · · ·X

−1
1 α−1X−1

n X−1
n−1.

Define σn−2 = Xn−1XnαX1 · · ·Xn−3, and transform Xn−2 7→ σ−1
n−2Xn−2σn−2. Repeat this process

all the way to X1 and σ1, where in general we define σi = Xi+1 · · ·XnαX1 · · ·Xi−1. After applying
these n transformations in order, Lemma 11 gives

Φ(ψ(X1, . . . , Xn, A)) = Φ(ψ(X1, . . . , Xn, A1)).
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Finally, we just need to examine the A term. Recall that

A = αX1 · · ·Xnα
−1AαX−1

n · · ·X−1
1 α−1.

After the transformation Xn 7→ σ−1
n Xnσn, the term A is transformed into

An = XnαX1 · · ·Xn−1α
−1AαX−1

n−1 · · ·X
−1
1 α−1X−1

n .

After the transformation Xn−1 7→ σ−1
n−1Xn−1σn−1, the term An is transformed into

An−1 = Xn−1XnαX1 · · ·Xn−2α
−1AαX−1

n−2 · · ·X
−1
1 α−1X−1

n X−1
n−1.

Continuing this pattern, after n transformations, we have

A1 = X1 · · ·Xnαα
−1Aαα−1X−1

n · · ·X−1
1

= X1 · · ·XnAX
−1
n · · ·X−1

1 .

Apply the final transformation A 7→ X−1
n · · ·X−1

1 AX1 · · ·Xn, and Lemma 11 gives

Φ(ψ(X1, . . . , Xn, A)) = Φ(ψ(X1, . . . , Xn, A)),

as desired. □

Now, consider the case when G has more than one exterior face. Since T is a spanning tree,
there exists some edge e ∈ E+ on the boundary with e /∈ T. Let A be the bounded face bordered

by e. Similarly, there exists some edge ẽ ∈ E+ on the boundary with ẽ /∈ T̃. Let Ã be the bounded
face bordered by ẽ.

If A = Ã, the situation is almost identical to the case when G has one exterior face (see Figure 6).

Figure 6. In this case, there is some face A = Ã which has both an edge e /∈ T on

the boundary and an edge ẽ /∈ T̃ on the boundary.

We want to apply the same “rotation” above to rotate e to ẽ so that we can reduce the problem
to 2.2.1. The only difference here is that the edges of A bordering the unbounded face do not
necessarily form a cycle which we can naturally rotate along. However, it is not hard to see that
we can slightly generalize our proof above to allow us to skip over edges of A which do not border
the unbounded face.

Otherwise, assume A ̸= Ã (see Figure 7). This is possible because G has more than one exterior
face.
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Figure 7. In this case, the faces A and Ã are distinct.

Define a new spanning tree T as follows. If ẽ ̸∈ T, let T = T. Otherwise, let e
Ã

be the edge

whose dual edge e∗
Ã
is the first edge traversed on the path [Ã, F∞]T∗ . By definition, e

Ã
/∈ T. Let

T be the tree T with ẽ replaced by e
Ã
. It is easy to check that T is indeed a spanning tree (see

Figure 8).

Figure 8. Construct a spanning tree T which does not include e or ẽ.

Now, since T and T both do not include the edge e, from Section 2.2.1 we know that the Φ(l)

values under these two spanning trees must agree. Similarly, since T̃ and T both do not include
the edge ẽ, the Φ(l) values under these two spanning trees must agree. Putting these two equalities

together, we get that the Φ(l) values under T and T̃ must agree, i.e., Φ(ψ1) = Φ(ψ2), hence
completing the proof.

3. Proof for the Makeenko–Migdal equations

3.1. Proof of Theorem 7. Let l be a loop in Lo(R2), and define l1 and l2 like in the statement of
Theorem 7. The loop l naturally induces a planar graph G = (V,E,F) along with an orientation
E+ ⊂ E. Fix a point of self-intersection with exactly two ingoing edges and two outgoing edges.
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For each sufficiently small ε > 0, we will define a loop l′ε by slightly modifying G and l. This family
of loops will be defined such that as ε→ 0, the loops l′ε will converge to l. Henceforth, we fix ε and
omit the ε in the subscript of l′ε. Also note that in this section, we assume that Φ is a well-defined
function on Lo(R2).

To modify G, add one vertex on each of the four edges connected to the point of self-intersection,
and join the four new vertices cyclically to create four new faces. If ε is small enough, it is always
possible to do this such that these four faces all have area ε. Without loss of generality, orient the
four new edges in counter-clockwise direction. For later convenience, we will still use G = (V,E,F)
to refer to this modified graph. If we apply this modification to the graph in Figure 1, we obtain
the graph in Figure 9.

Figure 9. Build four new faces, each with area ε, around the point of self-
intersection.

Zoom in and label the four new faces and edges as shown in Figure 10.

Figure 10. Label the four new faces FI, FII, FIII, FIV and the eight new edges
e1, . . . , e8.

Note that the highlighted red and blue paths in Figure 9 are no longer loops, and we call them c1
and c2 respectively instead. The loop l can be written as l = e1c1e2e4c2e3. We define the modified



THE MASTER FIELD AND FREE BROWNIAN MOTIONS 15

loop l′ to be

l′ = e−1
2 e−1

5 c1e2e4c2e7e
−1
4 .

The key idea of our proof is to focus on the value

lim
ε→0

Φ(l′)− Φ(l)

ε
.

We will prove that this expression is equal to both sides of (2). Note that we will only actually
take the right limit ε → 0+. We could easily modify the definition of l′ to include negative ε.
However, because (Φ(l′)− Φ(l))/ε is a smooth function in ε (it is polynomial in ε and e−ε/2) over
some domain of the form (−δ, δ) \ {0}, it suffices to only consider ε > 0.

3.1.1. Left hand side of (2). Imagine erasing the four edges e1, e3, e6, e8, thus deleting the four
faces FI, FII, FIII, FIV (see Figure 11).

Figure 11. The edges e1, e3, e6, e8 have been erased from G.

Our definition of l′ still stands because it does not involve any of e1, e3, e6, e8. Furthermore, the
value of Φ(l′) remains unchanged because the loop itself did not change. Note that this new graph
is almost the same as the original G (before the modification), except that the areas of F1 and F3

have both increased by ε, while the areas of F2 and F4 have both decreased by ε. So by treating
Φ(l) as a function of the areas of the bounded faces delimited by l, basic properties of derivatives
imply the equality

lim
ε→0

Φ(l′)− Φ(l)

ε
=

(
d

d|F1|
− d

d|F2|
+

d

d|F3|
− d

d|F4|

)
Φ(l).

3.1.2. Right hand side of (2). First, choose a spanning tree T on G which includes the edges
e2, e5, e7, e8 (see Figure 12 for an example).
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Figure 12. The spanning tree (highlighted in green) includes the edges e2, e5, e7, e8.

Let {λF : F ∈ Fb} and {βe : e ∈ E+\T} be the lasso and beta bases respectively. For convenience,
abbreviate λi = λFi and βi = βei . We have

β1 = λII

β3 = λIVλ
−1
II λ

−1
I

β4 = λIλII

β6 = λIIIλIVλ
−1
II λ

−1
I .

For later convenience, define the loops

γi = [o, ci]Tci[ci, o]T

for i = 1, 2, where ci (resp. ci) is the starting (resp. ending) vertex of the path ci. Because we are
working in RLo(G), we can always replace ci by γi and the loop will remain unchanged. Hence, we
can write l′ = e−1

2 e−1
5 γ1e2e4γ2e7e

−1
4 and l = e1γ1e2e4γ2e3.

Our next replacement involves the beta basis. Recall that for any loop l written as a concate-
nation of edges, we can replace each edge e in the concatenation by βe and the loop will remain
unchanged in RLo(G). Applying this replacement to the loop l′, we get

l′ = γ1β4γ2β
−1
4 ,

where we understand γ1 and γ2 to be words in the beta basis. We can then change from the beta
basis into the lasso basis to get

l′ = γ1λIλIIγ2λ
−1
II λ

−1
I ,

where we now understand γ1 and γ2 to be words in the lasso basis. We can do the same process
with the loop l to get

l = β1γ1β4γ2β3 = λIIγ1λIλIIγ2λIVλ
−1
II λ

−1
I .

Now that we have explicitly expanded both l′ and l in terms of the lasso basis, we can compute
the value of Φ(l′)− Φ(l). First, we will show that the terms λI, λII, λIII, λIV and their inverses can
only appear in γ1 and γ2 through a fixed pattern.

Lemma 12. Treat γ1 and γ2 as words in the lasso basis. Then the terms λI, λII, λIII, λIV and their
inverses can only appear in γ1 and γ2 through the word λIIIλIVλ

−1
II λ

−1
I or its inverse.
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Proof. It suffices to prove that for each edge e ∈ E+ \ T, the expansion of βe in terms of the lasso
basis only contains the terms λI, λII, λIII, λIV and their inverses through the word λIIIλIVλ

−1
II λ

−1
I or

its inverse. We already know that the statement is true for e1, e3, e4, e6 from our calculations above.
And since β6 = λIIIλIVλ

−1
II λ

−1
I , Lévy’s [Lév17] explicit formula for the change of basis between the

beta and lasso bases quickly implies the result for the other edges of G. □

We also need a short lemma on the cumulants of free Brownian motions.

Lemma 13. Let ut be a free Brownian motion at time t. For all n ≥ 3 and ε1, . . . , εn ∈ {1, ∗}, the
constant and linear terms in the expansion of κn(u

ε1
t , . . . , u

εn
t ) as a power series in t are both zero.

Proof. First, if all the ε1, . . . , εn are equal to 1 or ∗, it is well known that

κn(ut, . . . , ut) = κn(u
∗
t , . . . , u

∗
t ) = e−nt/2 (−n)n−1

n!
· tn−1.

Otherwise, induct downwards using the recursive formula

κn(u
ε1
t , . . . , u

εn
t ) = −

n−1∑
m=1

κm(uε1t , . . . , u
εm
t ) · κn−m(u

εm+1

t , . . . , uεnt )

proven by Demni, Guay-Paquet, and Nica [DGPN15]. Note that to use this formula, we require
that ε1 = 1 and εn = ∗, but this can always be achieved by taking a suitable cyclic permutation of
(ε1, . . . , εn). The cases n = 1, 2 can easily be calculated explicitly. □

Now, we are ready to attack Φ(l′) and Φ(l). We only need the O(ε) term in Φ(l′)−Φ(l). Recall
our expansions for l and l′ in the lasso basis:

l = λIIγ1λIλIIγ2λIVλ
−1
II λ

−1
I ,

l′ = γ1λIλIIγ2λ
−1
II λ

−1
I .

The two expressions only differ in that l contains an extra λII at the start and an extra λIV after
γ2. For clarity, these two terms are marked in red in the diagrams below. We will focus on these
two terms when we expand Φ(l) using the moment-cumulant relation. By Proposition 4, all the
nonzero cumulants will only involve one lasso (and its inverse). There are three cases to consider
for this noncrossing partition.

Case 1: The terms λII and λIV are each in a block with size one. Then, we can naturally project
the rest of the blocks in the noncrossing partition onto the blocks of a noncrossing partition in
the expansion of Φ(l′). Hence, if we sum over all such noncrossing partitions, this case contributes
e−εΦ(l′) = Φ(l′)− εΦ(l′) +O(ε2) to the value of Φ(l).

Case 2: Exactly one of the terms λII and λIV is in a block with size greater than one. If this
block happened to have size greater than two, then Lemma 13 would imply that the contribution
from this cumulant would be O(ε2). Otherwise, assume that this block has size two. We take
subcases depending on where the other term in this block is located. The first subcase is shown in
Figure 13.

In this subcase, we can assume that the terms λ−1
I (marked in magenta below) and λIV are both in

blocks of size one, as otherwise the contribution from this cumulant would be O(ε2). After making
these assumptions, we can naturally project the rest of the blocks in the noncrossing partition onto
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Figure 13. In the noncrossing partition, the terms λII (marked red) and λ−1
II form

a block.

the blocks of a noncrossing partition for the expansion of Φ(l′) where the terms λ−1
I and λ−1

II are
both in blocks with size one. If this subset of noncrossing partitions for Φ(l′) (the noncrossing
partitions for which λ−1

I and λ−1
II are both in blocks with size one) contributes e−εf(ε) to the value

of Φ(l′), where f(ε) is some power series in ε, then this subcase contributes e−ε(1− e−ε)f(ε) to the
value of Φ(l). Since Φ(l′) = e−εf(ε)+O(ε), we deduce that this subcase contributes εΦ(l′)+O(ε2)
to the value of Φ(l).

The second subcase is shown in Figure 14.

Figure 14. In the noncrossing partition, the terms λII (marked red) and λII form
a block.
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Similar to the previous subcase, we can assume that the other four terms not in γ1 and γ2 are
all in blocks with size one, as otherwise the contribution of the cumulant would be O(ε2). Note
that the block containing the terms λII (marked red) and λII essentially separates γ1 from γ2. This
implies that no block of the noncrossing partition can contain terms from both γ1 and γ2. In
particular, when we sum over all noncrossing partitions containing the green block, we are actually
summing over all noncrossing partitions on γ1 and then on γ2. Hence, this subcase contributes
−εe−3εΦ(γ1)Φ(γ2) = −εΦ(γ1)Φ(γ2) +O(ε2) to the value of Φ(l).

For the third subcase, we can assume that one of the terms λII and λIV is connected to a term
in either γ1 or γ2. Assume without loss of generality that the block includes λII. As expected, we
can assume that there are no other blocks with size greater than one that contain one of the terms
λI, λII, λIII, λIV or their inverses. If such a block existed, the contribution of this cumulant would
be O(ε2). Then by Lemma 12, the other term in the block containing λII belongs to the word
λIIIλIVλ

−1
II λ

−1
I or its inverse. We can then consider the noncrossing partition which instead has a

block containing λIV (marked red) and the λIV or λ−1
IV in that particular word, with everything else

unchanged (see Figure 15).

Figure 15. We can pair up noncrossing partitions when exactly one of λII (marked
red) and λIV (marked red) is in a block with a term in γ1 or γ2.

This allows us to pair up the noncrossing partitions within this subcase. However, the contribu-
tion from each pair of cumulants is always −εe−εg(ε) + (1 − e−ε)g(ε) for some power series g(ε).
In particular, this contribution is always O(ε2). Thus, this subcase only contributes O(ε2) to the
value of Φ(l).

Overall, this case contributes εΦ(l′)− εΦ(γ1)Φ(γ2) +O(ε2) to the value of Φ(l).
Case 3: Both λII and λIV are in blocks with size greater than one. Clearly, this case contributes

O(ε2) to the value of Φ(l).
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Finally, we can sum over all three cases to get

Φ(l) = Φ(l′)− εΦ(l′) + εΦ(l′)− εΦ(γ1)Φ(γ2) +O(ε2)

= Φ(l′)− εΦ(γ1)Φ(γ2) +O(ε2).

To finish, we take advantage of the continuity of Φ to get

lim
ε→0

Φ(l′)− Φ(l)

ε
= lim

ε→0
Φ(γ1)Φ(γ2) = Φ(l1)Φ(l2).

This completes the proof.
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