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Abstract

Generating images of  the same scenes from different perspectives — whether that is from different
points, from different angles, under varying illumination, or with other parameters — has a myriad
of  use cases, stretching from creating debug models to producing smooth videos. In the X-Fields
model, hard-coded graphics tricks like lighting, 3D projection, and albedo are used to supplement
neural networks in creating a differentiable map for the image parameters and the actual pixels using
sample images and their corresponding coordinate values. Although X-Fields performs well on
datasets of  images concentrated on a 2D (x, y) plane relative to alternative interpolation methods,
the original model cannot support broader, practical use cases like the interpolation of  images in
different 3D (x, y, z) positions. In this paper, we use 3D images and coordinates generated by the
3DB framework in our dimensionally expanded X-Fields model. We find that the new model can
generate promising interpolation results with relatively sparse datasets and with large view angle
changes; parameters such as learning rate, the bandwidth parameter in soft blending, and others have
impact over the interpolation quality and construct trade-offs between training cost and
interpolation quality; and that adding certain backgrounds (like the ocean) reference images can pose
challenges for interpolation.



Introduction

Motivation
Generating images of the same scenes from different perspectives—whether that is from different
points (video), from different angles (light fields), under varying illumination (reflectance fields), or
with other parameters—has a myriad of use cases, stretching from creating debug models to creating
smooth videos.

[Bemana 20] proposes an approach to interpolation across view, light, and time for any set of
images, a process built on parameters defined as part of an "X-Field" (where X may be any
combination of view, light, time, or other dimensions, such as the color spectrum). Their research
shows how the right neural network (NN) can be used to create a universal, compact, and
interpolatable X-Fields representation.

Although X-Fields performs well on the given example datasets relative to alternative interpolation
methods, the current X-Fields model struggles in adapting to broader use cases. Presently,
compatible X-Fields training datasets contain very specific training examples that are not easy to
capture in real-world situations and involve an unnecessarily complicated file-naming process. I seek
to make X-Fields compatible with more data and simplify the user experience. Also, while X-Fields
are shown to be effective for interpolating viewpoints on an XY plane, I add another dimension (Z)
to allow interpolation in 3D space.

Background
In this section, I introduce the X-Fields model proposed by [Bemana 20] and the debugging
framework for computer vision models (3DB) [Leclerc 21]. I extend the X-Field model by adding
another coordinate feature and test the performance by samples generated from the 3DB
framework.

In the X-Fields model, [Bemana 20] proposes an approach to represent an X-Field of the same
scene from different views (video), from various angles (light fields), under varied illumination
(reflectance fields), and under a variety of other conditions allowing users to explore view, light, and
time changes by learning a neural network (NN) to map coordinates to 2D images. By knowing the
“basic tricks” of graphics (e.g., lighting, 3D projection, and occlusion) in a hard-coded and
differentiable form, the X-Fields NN encodes the input as an implicit map such that for any view,
light, or coordinate, it can quantify how it will move if view, time or light coordinates change for any
pixel.

The 3DB model is aimed to identify and evaluate the failure modes in computer vision models. It
leverages a 3D simulator to render realistic scenes that can be fed into any computer vision system.
Users can customize a set of transformations to apply to the scene, such as view points, background
changes, etc. The 3DB framework is used to generate training and testing datasets by specifying a set
of  pose changes on a predefined object.



Related work
This section summaries the previous techniques used to interpolate discrete images in terms of view.
The view interpolation also refers to the concept of light fields (LFs), which is the set of all images
of a scene for all views. [Levoy 96] and [Gortler 96] first formalize the concept of light fields and
develop the hardware to capture the views by generalizing from observers’ positions and
orientations. Results show that simple linear blending for view interpolations may lead to ghosting
effects.

The distance of a capture can also influence interpolation results. Sparse captures mean less number
of images with greater distinction among neighboring images. Examples of sparse capture include 34
views on a sphere [Lombardi 19] and 40 ones on a hemisphere [Malzbender 01]. On the other hand,
dense captures refer to a larger number of similar images. [Kalantari 16] applies dense images (very
close positions) for a Lytro camera.

In the early stage, Unstructured Lumigraph Rendering (ULR) is used to create proxy geometry to
warp multiple images into a target view and blend them with corresponding weights [Buehler 02].
Recent work includes per-view geometry [Hedman 16] and learned ULR blending weights [Hedman
18] to allow for sparse input and shade effects.

Later on, researchers focused on learning synthesized novel views for LF data. [Kalantari 16] learned
depth maps in an unsupervised way and interpolated views via a Lytro camera. [Flynn 16] proposed
to decompose LFs into multiple depth planes of output views and build a plan sweep volume (PSV)
mechanism with dependent views. [Zou 18] constructed multi-plane image (MPI) representations via
learning how neighboring views can impact the output one.

Another attractive idea has been to use a volumetric occupancy representation. [Penner 17] inferred
a good volumetric / MPI representation that can be facilitated with learned gradient descent, where
the gradient components directly encode visibility and effectively inform the NN of the occlusion
relations in the scene. The advantage of MPI techniques is in avoiding explicit depth reconstruction,
which allows for softer and better results. The X-Fields model involves a learning route as well, but
explains the entire X-Field and uses a NN to represent the scene implicitly. Deployment only
requires a few additional kilobytes of NN parameters on top of the input image data, and rendering
is real-time.

[Zou 18]’s work on Appearance Flow combines the idea of warping pixels with learning how to
warp. They typically take a single input view in account and [Sun 18] utilizes multiple views to
improve warped view quality. Both methods use an implicit representation of  the warp field

(i.e. a NN that for every pixel in one view predicts from where to replicate the value of each pixel in
one image in the new view). While those approaches worked best for training with fixed camera
positions, [Chen 19] introduced an implicit NN of per-pixel depth that allows for variable view
interpolations. All these methods require extensive training for certain types of scenarios such as
cars, chairs, or urban city views. The X-Fields model expands on this line of work further by creating
an implicit NN representation that generalizes entire geometry, motion, and illumination changes. Its
task on one hand is simpler since they do not generalize across different scenes, yet it is at the same
time more difficult as I generalize over more dimensions and strive for state-of-the-art visual quality.



Figure 1: Data flow for an example with three dimensions.

Proposed Method

Objective
I adopt the original X-Field [Bemana 20], as a nonlinear function,
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dimension of  X-Fields for our 3D  implementation would be three spatial coordinates.
As illustrated in X-Fields models, The subset of observed X-Fields coordinates is denoted as
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images using known coordinates in order to capture unobserved coordinates. The proposed 𝐿
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method is based on interpolation and it requires is convex combination of .𝒳 𝒴



Architecture

The X-Field is modeled from three aspects. First, the output appearance is an interpolation of𝐿
𝑜𝑢𝑡

appearance from known images. Second, appearance is assumed to be a product of shading and
albedo. Third, it is assumed that the unobserved shading and albedo at is a warp of obsessed𝑥
shading and albedo at . The whole pipeline is illustrated in Figure 1 and each step of the𝑦
implementation including de-light, interpolation, warping and consistency is described in the
following sections.

De-light
The functioning of de-light is to decompose appearance into a combination of shading. Then the
observed image is splitted into , where is the pixel-wise product between𝐿

𝑖𝑛
(𝑦) = 𝐸(𝑦) ⊙ 𝐴(𝑦) ⊙

a shading image and an albedo image . And the shading and albedo images are𝐸(𝑦) 𝐴(𝑦)
interpolated independently by
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where operator (interpolation) will be introduced in the following.𝑖𝑛𝑡

Interpolation
All observed images are warped by interpolation and the individual results are merged. The
operator is defined as𝑖𝑛𝑡

𝑖𝑛𝑡(𝐼,  𝑦 → 𝑥) =
𝑦∈𝒴
∑ (𝑐𝑜𝑛𝑠( 𝑦 → 𝑥) ⊙ 𝑤𝑎𝑟𝑝( 𝐼(𝑦),  𝑦 → 𝑥)) 

where input refers to shading or albedo , as they share the same operation in operator .𝐼 𝐸 𝐴 𝑖𝑛𝑡

Warping
Based on the observed and unobserved X-Field coordinates, warping deforms an observed image
into an unobserved image by

𝑤𝑎𝑟𝑝(𝐼,  𝑦 → 𝑥)   ∈ ℐ ×  𝒳 ×  𝒴 → ℐ 

Flow
The Jacobian of  a specific pixel is defined as𝑝

𝑓𝑙𝑜𝑤
∂
(𝑥)[𝑝] =  ∂𝑝(𝑥)
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2×𝑛

𝑑  
where the X-Field coordinate is the only input to the flow computation, and the above Jacobian𝑥
equation is the only output. This function is implemented using CNNs in particular. And details can
be found in [Bemana 20].

Consistency
Each image pixel is weighted by its flow consistency to merge all observed images warped to the
unknown X-Field coordinates. The consistency of one pixel , warped to coordinate from , is𝑝 𝑥 𝑦
the partition of  unity of  a weight function:
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where the weight function is decreasing with the delta of  the pixel position and the backward𝑤 𝑝
flow at the position , defined as𝑞
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Implementation
In my model, the original X-Fields model is improved by generalizing the input information of
image datasets and adding the 3D view coordinates.

The original X-Fields model derives parameter (view, light, time, etc) values from image file names,
and the information from file names implicitly contains the coordinates of view and light and steps
in time by a fixed sequence of numbers. It may be not convenient for users to label the image file
names manually. My program extracts information from JSON files with a specified format. In
addition to being more intuitive, this change is compatible for further generalization with more
parameters.

Also, I add another coordinate Z to construct a 3D view interpolation instead of the 2D one from
the original model. I made sure that my extension preserves the functionality of the original X-Fields
program by manually inputting the coordinates of the example “island” dataset and successfully
replicating the resulting interpolation video after setting Z as a dummy variable. After exploring the
tugboat dataset containing viewpoints from the surface of an entire sphere surrounding the object, I
find that the interpolation results are relatively poor. This prompted me to perform more controlled
experiments with more defined and less sparse viewpoints. I generated new image datasets to lessen
the view change and to separate the background and foreground (in some datasets I replace the
default ocean background with pure black). I also vary the resolutions of such datasets to find the
resolution’s impact over interpolation and video rendering.

In addition, I vary different parameters in training—including learning rate, learning stop threshold,
sigma and scaling down factor—to study these parameters’ impacts on results.

Results
I generated datasets containing images of a tugboat from different viewpoints using the 3DB
framework. Altering factors like dataset size (dimensions per axis), viewpoint angle range (defined by
data points distributed on the surface area of 1/8th versus a whole sphere), image resolution, and
backgrounds (ocean and black in the case of my experiments), I study the parameters’ effect on
interpolation quality and computational complexity. In addition to experimenting with 3DB input
rendering settings, I investigated how changing X-Fields parameters like output resolution, learning
rate, learning stop threshold, sigma, and factor influenced model results and training resources
consumed. Training the model on datasets of 5, 10, and then 15 dimensions per axis consistently
increased quality at the tradeoff of greater necessary computational power and memory. For
example, when learning rate reduces, training time increases and quality of interpolation improves.



Also, my attempt to train my revised X-Fields on a 20x20x20 dataset failed because it required more
than the 10GB of  memory available to me.

The biggest 3DB datasets in my experiment include 15 images with equal distance. In my parameter
experiment, I first tried different learning rate values. As shown in Figure 2, the results with learning
rate 0.00001 (the lowest setting) are best.

Learning rate = 0.005 Learning rate = 0.001

Learning rate = 0.0001 Learning rate = 0.00001

Figure 2: Sample Interpolation With Different Learning Rates



I also tried changing sigma, the bandwidth parameter in soft blending, from 0.1 to 0.5, which
improved the interpolation quality. The sample interpolations are provided in Figure 3.

Sigma = 0.1 Sigma = 0.5

Figure 3: Sample Interpolation With Different Values of  Sigma

Adding water to the reference frames increased the ghosting effect. One likely reason for this is the
various unpredictable reflections on the surface of the water. Note that one reason for the images’
lower quality overall (including the one of the tugboat with the black background) is that these
results come from 10x10x10 datasets because using 3DB to generate renders with the water
background is very computationally expensive. Sample interpolations are shown in Figure 4.

Figure 4: Sample Interpolation With Different Backgrounds



dims/a
xis

lr thresh
old

scope backgr
ound

resoluti
on

factor Video
resoluti
on

sigma nfg num_
n

5 0.0005 0.01 full black 224 2 128 0.1 16 6

5 0.0000
1

0.01 positive black 512 1 512 0.1 16 6

10 0.0005 0.01 full black 224 2 128 0.1 16 6

10 0.0005 0.01 positive black 224 2 128 0.1 16 6

10 0.0005 0.01 positive water 224 2 128 0.1 16 6

15 0.005 0.001 positive black 2160 6 360 0.1 16 6

15 0.001 0.001 positive black 2160 6 360 0.1 16 6

15 0.0001 0.001 positive black 2160 6 360 0.1 16 6

15 0.0000
5

0.001 positive black 2160 6 360 0.1 16 6

15 0.0000
1

0.001 positive black 2160 6 360 0.5 16 6

15 0.0000
1

0.001 positive water 2160 6 360 0.1 16 6

15 0.0000
1

0.001 positive black 2160 4 560 0.1 16 6

Table 1: Record of  Different Experiments



Conclusions & Future Work
In conclusion, by controlling dataset generation and adjusting separate parameters, I have found that
the X-Fields model has the following capabilities and limitations:

1. It can generate promising interpolation results with relatively sparse datasets and with large
view angle changes.

2. Parameters such as learning rate and the bandwidth parameter in soft blending have impacts
over the interpolation quality and construct trade-offs between training cost and
interpolation quality.

3. Certain backgrounds added to reference images can pose a challenge for interpolation.

Computer vision is a dynamic area of research in which interpolation is an important application.
New types of neural networks, such as Transformer Network [Choi 20][Zhihao 21][Khan 21][Ye 21],
can be combined with CNN to reduce training cost and improve interpolation accuracy. The
combination of Transformer Networks and X-Fields hard-coded graphics knowledge is worth
further investigation and experimenting. Zhizhao et al. [Zhihao 21] presents a Transformer-based
video interpolation framework that addresses the problem of content-aware aggregation weights and
long-range dependencies with self-attention operations. The proposed method avoids the high
computational cost by use of local attention into video interpolation and the spatial-temporal
domain. Choi et al. [Choi 20] proposes a novel end-to-end deep NN for video frame interpolation
that synthesizes an intermediate frame effectively without the explicit estimation of motion. The
empirical results show that the motion estimation can be simply replaced by a combination of
PixelShuffle, parameter-free feature transformations.

I have generated some sample frames from Choi’s [Choi 20] pretrained CAIN model with the
default interpolation ratio of 3:1 as an initial exploration. Comparison of interpolation results with
X-Fields with the same reference frames is shown below:

X-Fields CAIN
Figure 5: Comparison of  X-Fields and CAIN Interpolation Samples
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