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Abstract

Numerical semigroups are combinatorial objects that are easy to define, but have
rich connections to other fields. Certain families of numerical semigroups are of par-
ticular interest because of their connections to algebraic geometry. We focus on one
such family known as symmetric semigroups, and analyze the rate of growth of the
number of symmetric semigroups S(g) with genus g. Then, we partition semigroups of
genus g by their Frobenius number, and denote by N(g, F ) the number of semigroups
with genus g and Frobenius number F . We extend results from S(g) to N(g, 2g − k)
for k fixed in the range 1 ≤ k ≤ g. We state a conjecture about the local behavior
of the ratio S(g+1)

S(g) , depending on the residue of g (mod 3). Finally, we generalize this

conjecture to include N(g, 2g − k) for fixed k.

1 Introduction

Let Γ be a subset of the non-negative integers N0. We say that Γ is a numerical semigroup
if it is closed under addition, contains the additive identity 0, and has finite complement
N0 \ Γ. The integers in N0 \ Γ are called gaps, and the number of gaps is called the genus
of Γ, denoted by g or g(Γ). Finally, we define the largest gap to be the Frobenius number of
the numerical semigroup, denoted F (Γ).

The number of numerical semigroups with genus g, which we denote N(g), has been
explored in [2], [3], and [8], and a summary of known results is explained in [4]. In [3], N(g)
is bounded by 2Fg ≤ N(g) ≤ 3 · 2g−3 for all g ≥ 3, where Fg denotes the gth Fibonacci

number. In [8], it is shown that limg→∞
N(g)
φg

= C, where C is some constant greater than

3.78 and φ = 1+
√

5
2

. In [2], it is conjectured that N(g) ≥ N(g − 1) + N(g − 2) for g ≥ 2.
However, the much weaker statement N(g) ≥ N(g − 1) has not yet been proven. The
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simply-stated definitions that describe numerical semigroups often conceal complex proofs,
and many problems in the area are still unanswered.

Numerical semigroups have become a topic of interest over the last few decades because
of their connections to algebraic geometry. For example, given a field F , the valuations
of the elements of the ring of formal power series F [[tn1 , tn2 , . . . , tne ]] are precisely to the
elements of 〈n1, n2, . . . , ne〉 [6]. Because of this link, some invariants—such as the embedding
dimension for the cardinality of the minimal generators, or the conductor for the smallest
element greater than every gap—borrow terms from algebraic geometry [5, 6].

Certain families of numerical semigroups are also of interest because of their connection to
algebraic geometry. We explore one such family in Section 3, where we focus on the number
of symmetric semigroups S(g) with genus g. We begin by bounding S(g) with respect to the
total number of semigroups N(g).

Lemma 1.1. For all g ≥ 2, the inequality S(g) ≤ N(g − 2) + 1 holds.

We then prove the following stronger result.

Theorem 1.2. We have

lim
g→∞

S(g)

N(g)
= 0.

In Section 4, we define a partition of N(g) according to Frobenius number, and denote by
N(g, F ) the number of semigroups with genus g and Frobenius number F . We then rewrite
F = 2g − k for k in the range 1 ≤ k ≤ g such that the base case N(g, 2g − 1) = S(g).
Using this definition, we generalize our results from S(g) to every subset N(g, 2g− k) of the
partition.

Theorem 1.3. Fix any k ≥ 1. Then

lim
g→∞

N(g, 2g − k)

N(g)
= 0.

Finally, in Section 5, we study the local behavior of S(g) and N(g, 2g − k), and state
conjectures about the growth of each value depending on the residue of g (mod 3).

2 Preliminaries

We begin with a few definitions.

Definition 2.1. Given a numerical semigroup Γ, the set of elements of Γ that cannot be
expressed as a sum of nonnegative multiples of smaller elements is called the minimal set of
generators of Γ. Note that this set is finite and unique.
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〈1〉

〈2, 3〉

〈3, 4, 5〉 〈2, 5〉

〈3, 5, 7〉〈4, 5, 6, 7〉 〈3, 4〉 〈2, 7〉

〈5, 6, 7, 8, 9〉 〈4, 6, 7, 9〉 〈4, 5, 7〉 〈4, 5, 6〉 〈3, 7, 8〉 〈3, 5〉 〈2, 9〉

Figure 1: Tree containing all numerical semigroups.

Definition 2.2. Given a numerical semigroup Γ, the smallest minimal generator is called
the multiplicity of Γ, and is denoted m = m(Γ).

Example 2.3. The numerical semigroup {0, 3, 4}∪Z≥6 has gaps 1, 2, and 5, so the genus is
3 and the Frobenius number is 5. The minimal set of generators is {3, 4}, so the multiplicity
is 3.

We denote by 〈a1, a2, . . . , an〉 the numerical semigroup generated by {a1, a2, . . . , an}.
Then, we recursively define a partial ordering on the set of numerical semigroups as fol-
lows. (We refer the reader to Sections 3.1–3.3 of [7] for background on partially ordered sets
and trees.)

Let rank 0 contain only N0 = 〈1〉. Then for any two semigroups Γ1 and Γ2, let Γ1 cover Γ2

if Γ2 can be obtained by removing exactly one element of Γ1 greater than F (Γ1). Thus, rank
g contains precisely the semigroups of genus g. The first five ranks of the tree are depicted
in Figure 1.

We define a leaf to be any semigroup with no children in the semigroup tree. The leftmost
semigroup on each rank of the tree in Figure 1 is ordinary, or of the form {0}∪{i ∈ N0 | i ≥
c}. The following key lemma about the covering relations of the semigroup tree is a direct
consequence of the proof of Lemma 3.1 in [3].

Lemma 2.4. Let Γ be a non-ordinary numerical semigroup with minimal generators Λ =
{λ1 ≤ λ2 ≤ · · · ≤ λk}, and suppose that it has Frobenius number F such that λi ≤ F ≤ λi+1.
Then its children in the semigroup tree are precisely {Γ \ {λj} | j > i}. Furthermore, each
semigroup Γ \ {λj} is generated by Λ \ {λj} or {λ1 + λj} ∪ Λ \ {λj}.
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Proof. We closely follow the proof from [3]. Any minimal generator of Γ \ {λj} is either a
minimal generator of Γ or of the form λj+r for some r ∈ Γ. If r > λ1, then s = λj+r−λ1 ∈ Γ
because λj is greater than the Frobenius number. Thus, λj + r is not a minimal generator
of Γ \ {λj}, so the only element that may be a generator of Γ \ {λj} but not Γ is λj + λ1.
Finally, notice that any minimal generator λi of Γ other than λj must also be a generator of
Γ\{λj} since λi, by definition, cannot be expressed as a sum of multiples of smaller elements
of Γ ⊃ Γ \ {λj}.

Notice that Lemma 2.4 only applies to non-ordinary numerical semigroups. Thus, we
consider the special case of ordinary semigroups separately as follows.

Lemma 2.5. Let Γ = 〈g+1, g+2, . . . , 2g, 2g+1〉 be the unique ordinary numerical semigroup
with g gaps, and let Λ be the set of its minimal generators. Then its children in the semigroup
tree are precisely {Γ \ {g + k} | 1 ≤ k < g + 1}. Furthermore, each semigroup Γ \ {g + k}
where 2 ≤ k < g+ 1 is generated by Λ \ {g+ k} or {2g+ k}∪Λ \ {g+ k}, and the semigroup
Γ \ {g + 1} is generated by {g + 2, g + 3, . . . , 2g + 2, 2g + 3}.

Proof. The proof is analogous to Lemma 2.4 with the exception of Γ\{g+1} = {0}∪Z≥g+2.
In this case, the minimal generators are clearly {g + 2, g + 3, . . . , 2g + 2, 2g + 3}, so we are
done.

Remark 2.6. The Frobenius number of Γ \ {λj} for a numerical semigroup Γ is λj.

Lemma 2.4 shows that one way to construct the tree is to recursively find the children of
any given semigroup. It also inspires the following definitions.

Definition 2.7. For any numerical semigroup Γ with minimal generators Λ = {λ1 ≤ λ2 ≤
· · · ≤ λk} and Frobenius number F , we call λi ∈ Λ an effective generator if λi > F .

Definition 2.8. The efficacy of a numerical semigroup Γ, denoted h(Γ), is the number of
effective generators of Γ.

Definition 2.9. Suppose the semigroup Γ has parent Γ′. If the minimal generators of Γ
are strictly contained in the set of minimal generators of Γ′, then we say that Γ is weakly
descended. Otherwise, we call Γ strongly descended.

We provide an example of the procedure described in Lemma 2.4 below.

Example 2.10. Consider the semigroup Γ = 〈3, 5, 7〉. The Frobenius number of Γ is 4, so
it has effective generators 5 and 7, and multiplicity λ1 = 3. Now Γ \ {5} is generated by
{3, 7, 3 + 5} = {3, 7, 8}, and Γ \ {7} is generated by {3, 5}. Notice that, since 3 + 7 = 10
already belongs to the semigroup 〈3, 5〉, it is not a minimal generator of Γ \ {7}. Thus, the
children of 〈3, 5, 7〉 are 〈3, 7, 8〉 and 〈3, 5〉.
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Notice that every numerical semigroup with g gaps appears on rank g of the semigroup
tree. We demonstrate this briefly using induction. Clearly, every semigroup with 0 gaps
(only 〈1〉) appears on rank 0. Now assume that any numerical semigroup with g − 1 gaps
belongs to rank g − 1 of the tree. Consider any semigroup Γ with g gaps and Frobenius
number F . Then the semigroup Γ ∪ F has g − 1 gaps. Furthermore, F must be an effective
generator of Γ because, by definition, F cannot be obtained by summing elements of Γ, and
every integer greater than F already belongs to Γ. Thus, Γ is a child of Γ ∪ F , and by
induction, belongs to the semigroup tree on rank g. The number of semigroups on each rank
of the tree has been studied by a number of mathematicians, as discussed in Section 1.

Now, we describe a family of numerical semigroups known as symmetric semigroups,
which are a central focus of this paper.

Definition 2.11. Suppose the semigroup Γ has Frobenius number F . Then Γ is symmetric
if it contains exactly F+1

2
elements less than or equal to F .

We provide an example of a symmetric semigroup below.

Example 2.12. The semigroup 〈3, 4〉 has Frobenius number 5, and contains 0, 3, and 4,
but not 1, 2, or 5. Thus, it contains precisely half of the elements less than or equal to its
Frobenius number, so it is symmetric.

Symmetric semigroups arise naturally from the definition of a numerical semigroup. If
a semigroup has Frobenius number F , then the semigroup may only contain one element of
each pair (k, F − k) for every 0 ≤ k ≤ F . Thus, a semigroup may contain at most half of
the positive integers below or equal to its Frobenius number, and symmetric semigroups are
defined to contain exactly half. Furthermore, the number symmetric semigroups in N(g)
minus one provides a lower bound for the number of leaves in N(g) [1].

Lemma 2.13 ([1], Lemma 4). Every symmetric numerical semigroup is either a leaf or of
the form 〈2, 2n+ 1〉 for some n ∈ Z≥1.

3 Bounding Symmetric Semigroups

In this section, we explore the number of symmetric semigroups with g gaps, denoted
S(g). We begin by comparing the cardinality of symmetric semigroups of genus g and
semigroups with genus g − 1 and minimal generator 2g − 1.

Lemma 3.1. The number of semigroups with g − 1 gaps such that 2g − 1 is a minimal
generator is precisely S(g).
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Proof. Given any semigroup Γ and any effective generator λj of Γ, the Frobenius number of
Γ \ {λj} is λj. Since any symmetric semigroup of genus g has Frobenius number 2g − 1, it
can be expressed as Γ\{2g−1}, where Γ has genus g−1 and 2g−1 is an effective generator.
Conversely, notice that the maximum possible Frobenius number of a numerical semigroup
on rank g − 1 is 2g − 3 (else two elements would necessarily sum to the Frobenius number).
Thus, if 2g − 1 is a minimal generator of Γ, then it is an effective generator, so Γ \ {2g − 1}
is a symmetric semigroup. This completes the proof.

We can also relate S(g) to the number of semigroups on rank g − 2, denoted N(g − 2).

Lemma 3.2. For all g ≥ 2, the inequality S(g) ≤ N(g − 2) + 1 holds.

Proof. We claim that every non-ordinary numerical semigroup has at most one symmetric
grandchild. By Lemma 3.1, any symmetric semigroup with g gaps is obtained from its parent
by removing 2g − 1. Thus, no semigroup can have two symmetric children. Now suppose
that a semigroup Γ has a symmetric grandchild with g gaps. Then Γ must have a child Γ1

with minimal generator 2g − 1. However, 2g − 1 cannot be a minimal generator of Γ (else
Γ would have a child with g − 1 gaps and Frobenius number 2g − 1). Thus, Γ must contain
the minimal generator 2g − 1− λ1 > F , where λ1 is the smallest element of Γ, and F is the
Frobenius number of Γ. Thus, a maximum of one of the children of Γ contains 2g − 1 as a
minimal generator, so Γ has at most one symmetric grandchild.

Now consider an ordinary semigroup Γ. In this case, we claim that Γ has exactly two
symmetric grandchildren, with the exception of Γ = 〈1〉, in which case there is only one.
If Γ 6= 〈1〉, then by Lemma 2.5, precisely two of its children contain 2g − 1 as a minimal
generator. Thus, exactly two of its grandchildren are symmetric. If Γ = 〈1〉, it is clear that
it has exactly one symmetric grandchild.

Notice that there is exactly one ordinary semigroup on each rank. The inequality S(g) ≤
N(g − 2) + 1 easily follows.

Finally, we prove that S(g) vanishes with respect to N(g).

Theorem 3.3. We have

lim
g→∞

S(g)

N(g)
= 0.

Before we state the proof, we must summarize Zhai’s argument in [8]. He proves the
following theorem.

Theorem 3.4 (Zhai). Let φ represent the golden ratio. Then

lim
g→∞

N(g)

φg
= C

for some constant C.
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Let T denote the set of strongly descended numerical semigroups. Let Ng(Γ) denote
the number of weakly descended semigroups of Γ with genus g. In other words, Ng(Γ) is
the number of semigroups with genus g whose nearest strongly descended ancestor is Γ.
Since every numerical semigroup is weakly descended from exactly one strongly descended
semigroup, we have

N(g) =
∑
Γ∈S

Ng(Γ).

Zhai partitions T into the following three subsets:

T1 = {Γ ∈ S | h(Γ) + g(Γ) < g}

T2 =
{

Γ ∈ S | h(Γ) + g(Γ) ≥ g and g(Γ)− h(Γ) <
g

3

}
T3 =

{
Γ ∈ S | h(Γ) + g(Γ) ≥ g and g(Γ)− h(Γ) ≥ g

3

}
.

Manipulating the inequalities defining T2 yields

3(g(Γ)− h(Γ)) < g ≤ g(Γ) + h(Γ) (1)

g(Γ) ≤ 2h(Γ). (2)

Zhai introduces the following definition using these inequalities.

Definition 3.5. A numerical semigroup Γ satisfying equations (1) and (2) is called orderly.

He then proves the following (in Proposition 1 of [8]).

Lemma 3.6. If Γ is orderly, then F (Γ) < 2m(Γ).

Denote by N(g, i) the number of numerical semigroups in N(g) and Ti. Zhai proves (in
Section 3 of [8]) that N(g, 1) = 0 and that

lim
g→∞

N(g, 3)

N(g)
= 0. (3)

We demonstrate the following.

Lemma 3.7. Given any g ≥ 2, there is precisely one semigroup of genus g that is both
symmetric and orderly.
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Proof. Suppose a symmetric semigroup Γ has multiplicity m and genus g ≥ 2. Then it has
at least m gaps. Since Γ is symmetric, the minimum possible Frobenius number is 2m− 1.
By Lemma 3.6, any orderly semigroup satisfies F (Γ) < 2m(Γ). Thus, we must have F (Γ) =
2m−1. To satisfy the symmetric condition, Γ must contain every integer between m(Γ) and
F (Γ). Thus, Γ is must be of the form {0,m+ 1,m+ 2, . . . , 2m− 2, 2m, 2m+ 1, 2m+ 2, . . .}.
Notice that Γ has precisely m+1 gaps. Thus, given g ≥ 2, there exists exactly one symmetric
and orderly semigroup with g gaps, as desired.

Recall that every orderly semigroup belongs to T2, and that T1 is empty. Then Lemma 3.7
implies that every symmetric semigroup, except for one on each rank, belongs to T3. Thus,
equation (3) implies

0 ≤ lim
g→∞

S(g)

N(g)
≤ lim

g→∞

N(g, 3) + 1

N(g)
= 0.

This completes the proof of Theorem 3.3.

4 Bounding Generalized Symmetric Semigroups

Recall that any symmetric semigroup with genus g has Frobenius number 2g − 1. This
motivates the following generalization.

Let N(g, 2g − k) denote the number of semigroups with genus g and Frobenius number
2g−k, where 1 ≤ k ≤ g. Notice that k = 1 represents the number of symmetric semigroups.
Likewise, k = g represents the number of ordinary semigroups with g gaps, which is precisely
1. Notice that N(g, 2g − k), for 1 ≤ k ≤ g, forms a partition of N(g).

Lemma 4.1. Given any g ≥ 1,

g∑
k=1

N(g, 2g − k) = N(g).

Proof. A semigroup with g gaps clearly has Frobenius number F ≥ g. Furthermore, if
the Frobenius number F ≥ 2g, then the semigroup must contain at least one of the pairs
{n, F − n} for some 0 ≤ n ≤ F , a contradiction. Thus, g ≤ F ≤ 2g − 1, as desired.

We can extend 3.3 to N(g, 2g − k) for any fixed value of k.

Theorem 4.2. Fix k ≥ 1. Then

lim
g→∞

N(g, 2g − k)

N(g)
= 0.
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Proof. Fix k ≥ 1. Similarly to the proof of Theorem 3.3, we aim to count the number of
orderly semigroups with g gaps and Frobenius number F = 2g − k. Consider any such
semigroup Γ, and suppose that it has multiplicity m. By Lemma 3.6, we must have 2m > F .
Then m ≤ g+ 1, so F = 2g− k ≥ 2m− k− 2. So far, we have bounded F above and below:

2m− k − 2 ≤ F ≤ 2m− 1.

For simplicity, assume that Γ is not ordinary. (We can ignore this case because there is
exactly one ordinary semigroup with g gaps for every g ≥ 0.) Then the inequality becomes
2m− k ≤ F ≤ 2m. Notice that F = 2g − k and k have the same parity. Thus, we can write
F = 2m− k + 2n, for 2n in the range 0 ≤ 2n ≤ k − 1. We have F = 2m− k + 2n = 2g − k,
which implies that m + n = g. Now note that Γ contains 0 and m, but excludes the
integers 1, 2, . . . ,m− 1 and the Frobenius number 2m−k+ 2n. Thus, there must be exactly
g − m = n gaps of Γ within the range (m, 2m − k + 2n), which yields a maximum of(
m−k+2n−1

n

)
=
(
g−k+n−1

n

)
possibilities. We can sum over all possible values of n to find an

upper bound for the number of semigroups with g gaps and Frobenius number 2g − k:

N(g, 2g − k) ≤
∑

0≤n≤ k−1
2

(
g − k + n− 1

n

)
+ 1.

(Recall that we ignored ordinary semigroups; to account for this, we add one to the right
hand side of the inequality.) Since n varies within a fixed range independent of g, this
expression is polynomial in g. Because N(g) grows exponentially, we must have

lim
g→∞

N(g, 2g − k)

N(g)
= 0,

as desired.

5 Local Growth of S(g) and N(g, 2g − k)
So far, we have studied the global growth of S(g) and N(g, 2g − k) as g goes to infinity.

Now, we turn to the patterns displayed by both quantities on a local scale.
First, consider the sequence S(0), S(1), S(2), . . .. Define the sequence a0, a1, a2, . . . such

that

ag =
S(g + 1)

S(g)
.
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Figure 2: Growth of S(g+1)
S(g)

The graph in Figure 2 demonstrates a pattern in the values of ag that correlates with the

residue of g (mod 3). Thus, it is natural to ask about the ratio S(g+3)
S(g)

. This ratio, graphed

in Figure 3, appears to converge. This suggests that the growth of S(g) is exponential. We
state these observations more formally as follows.

Conjecture 5.1. For an appropriate constant C, limg→∞
S(g+3)
S(g)

= C.

Conjecture 5.2. For any g ≥ 0, the inequality a3g < a3g+2 < a3g+1 holds.

We can extend this conjecture from S(g) to N(g, 2g − k). Graphed in Figure 4 is the
ratio

bg =
N(g + 1, 2(g + 1)− k)

N(g, 2g − k)
,

where every color represents a fixed value of k. (For clarity, we have also included the same
graph with only k = 1, 2, 3 in Figure 5.)

Notice that the sequence bg for each value of k appears to be bounded above by its first
peak. We can precisely state the value of each of these peaks as follows.

Lemma 5.3. Fix k ≥ 1. Let gk be the first rank that contains an element with Frobenius
number 2g − k. Then

N(gk + 1, 2(gk + 1)− k)

N(gk, 2gk − k)
=

⌈
k

2

⌉
.
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Figure 3: Growth of S(g+3)
S(g)

Figure 4: Growth of N(g+1,2(g+1)−k)
N(g,k)
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Figure 5: Growth of N(g+1,2(g+1)−k)
N(g,k)

for k = 1, 2, 3

Proof. Notice that gk = k, since the ordinary semigroup has the minimum possible Frobenius
number when the genus is fixed. Then every semigroup with gk+1 = k+1 gaps and Frobenius
number 2(gk + 1) − k = k + 2 must contain exactly one integer between 0 and k + 2; in
other words, it must be of the form {0,m, k + 3, k + 4, k + 5, . . .}, where 0 < m < k + 2.
However, to preserve closure under addition, we must have m > k+2

2
. Thus, there are a

total of k + 1 −
⌊
k+2

2

⌋
=
⌈
k+2

2

⌉
− 1 =

⌈
k
2

⌉
possibilities for m. Thus, N(k+1,k+2)

N(k,k)
=
⌈
k
2

⌉
, as

desired.

Finally, notice that each sequence corresponding to a fixed k appears to converge to a
pattern, again depending on the residue of g (mod 3). We state this conjecture as follows.

Conjecture 5.4. Given any k ≥ 1, there exists n ≥ 1 such that, for all g ≥ 0, the inequality
b3g+n ≤ b3g+n+2 ≤ b3g+n+1 holds.
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