
A Compromise Between Synchronous and Asynchronous

Systems

Tanisha Saxena

Lexington High School

Lexington, MA, USA

Jun Wan (Mentor)

Massachusetts Institute of Technology

Cambridge, MA, USA

Abstract

In this paper, we introduce a partially synchronous model for distributed systems

such that any protocol for our model can be transformed to a corresponding protocol

for the asynchronous model. Given a distributed system with n users, we define a

normal adversary as one that allows up to f (f < n/2) users to send any arbitrary

message at any time, and a special adversary that can, additionally, block up to f

message channels for any number of users. We prove that, for any synchronous pro-

tocol that is resilient to the special adversary, there is an equivalent protocol for the

asynchronous model that is resilient to the normal adversary. The special adversary

helps us relax the restriction of time-bounded delivery and provides a model that is

useful in analyzing if a synchronous protocol can be modified to work correctly in an

asynchronous distributed system. Our model provides a basis to use synchronous pro-

tocols to function on asynchronous systems such as electronic banking and Blockchain

systems distributed across the Internet.

1 Introduction

In this paper, we aim to analyze the relationship between synchronous and asynchronous
systems. The synchronous model is useful for theoretical analysis because its strong
assumptions of global synchronous clocks and time-bounded message delivery allow for
efficient protocols [CD+15], [Cri91]. However, these assumptions are impractical for mod-
elling real-world distributed systems where imposing a consistent time-bound may lead to
unrealistic protocols. For example, a time bound that is long enough to accommodate all
messages sent across a system distributed across the Internet may significantly degrade
the performance of the protocol due to timeouts. Similarly, a time bound that is too
short may result in the distributed system violating the model constraints, thus poorly
representing the system. Though asynchronous model ([MMR14]) makes no assumptions
about synchronicity, it results in protocols that are too complex to be realistic.

Our goal is to create in-between models that can transition synchronous protocols into
asynchronous protocols such that writing protocol for distributed systems can be simpler.
Our objective is to create a model that can accurately test the resilience of privacy with

1



the addition of a difficult adversary in real-world systems.

2 Background and Definitions

A distributed system is a network of n users that communicate by sending messages
to each other. For our purposes, the main goal of a distributed system is to, eventually,
come to a consensus in the form of one common decision between all users, once each
user has received an initial message.

Distributed systems use clocks to track time and send messages. A global clock is a
single global counter that tracks time for all users in a distributed system. The value of
the global clock may or may not be accessible by users of a distributed system. A local
clock is a counter used by a user to locally simulate time. A user can always access the
value of its local clock. Local clocks of users are independent of each other.

The existence of clocks in our models allows us to define events [seminalLamport].
Events can be actions such as the tick of a clock, sending of a message, or delivery of
a message. Each user in a distributed system goes through a sequence of events that is
ordered based on the clock time (local or global) that that user has access to.

Users of distributed systems send messages to other users through communication
channels at certain delivery speeds. We define delivery speed as follows.

Definition 2.1. Delivery speed of a distributed system with n users is an n × n array

called s where s[i, j] is the inverse of the time it takes to send a message from user i to

user j.

Delivery speed can be asymmetric; the speed at which messages are delivered from
user i to user j may be different than the speed of delivery from j to i (s[i, j] 6= s[j, i]). To
guarantee delivery within a certain time frame, systems can bound their delivery time.

Definition 2.2. A distributed system is said to be delivery time bounded if there exists

a Tr ∈ Z such that all messages sent at global time t are guaranteed to be delivered before

global time t + Tr.

A protocol is an algorithm that determines how each user in a distributed system
acts in order to achieve consensus. There are many ways of mathematically describing
a protocol. For our purposes. we specify protocols using a function between input and
output messages of users.

Definition 2.3. A protocol can be specified as a function P (i, s) where i is an input

vector containing the input messages for each user and s is the delivery speed array for

this system. The protocol creates an output vector o that specifies the output generated by

each user after they receive their input messages.

P (i, s) can be successively applied to determine the sequence of outputs a distributed
system generates for a given input.

We are now ready to define synchronous and asynchronous distributed systems.

Definition 2.4. A synchronous system is a delivery time bounded system where each

user can access the global clock with zero delay.

This definition is aligned with the Universal Composablity model framework described
in [CD+15] and [Cri91] where users may use this global time as an event, i.e use a tick

2



of the global clock to trigger an action. However, there can also be distributed systems
without global clocks.

Definition 2.5. An asynchronous system is a system where users only have access to

a local clock, do not have access to a global clock, and the speed of messages is not bounded.

Therefore, in asynchronous systems, users may send messages to other users with only
the assumption that messages will be delivered eventually [MMR14], and asynchronous
protocols cannot assume any time bound on message delivery.

Based on these definitions, synchronous and asynchronous systems differ in a few key
ways. In synchronous systems, it is easier to define and coordinate instructions between
users because there is a guaranteed time when all users will receive all messages. As a
result, synchronous protocols are more efficient. However, synchronous models are less
practical since guaranteed time-bound delivery is hard to achieve in systems distributed
across large networks such as the Internet.

In asynchronous systems, on the other hand, a user may wait indefinitely before they
can take an action based on a new message. As a result, asynchronous protocols are more
complex since they cannot make any assumptions about when messages are delivered. The
complexities of these protocols may make them impractical.

3 Our Problem Statement and Methodology

We aim to find a synchronous model that relaxes the restriction of time-bounded delivery
while still being stronger than a pure asynchronous system. Such models can help identify
less complex synchronous consensus protocols that can be modified to correctly achieve
consensus on a subset of asynchronous systems without time-bounds on message delivery.

We first explore the properties of the asynchronous model with synchronized clocks, but
without the restriction of time-bound delivery. We prove that the asynchronous model with
synchronous clocks is no different than the asynchronous model with local asynchronous
clocks. Therefore, synchronous clocks are not useful in bringing properties of synchronous
systems to asynchronous systems.

Next, we explore if we can increase the flexibility of synchronous systems by removing
the strong restriction of time-bounded delivery. We accomplish this by using our proto-
col specification from Definition 2.3 to prove the equivalence of time-based synchronous
systems and round-based systems from [Del+07], [BFA21] and [roundConsensus]. That
enables us to talk about synchronous systems in terms of sequence of events rather than
clocks. We leverage this simplification to define a new adversary, resulting in a syn-
chronous model that is stronger than the asynchronous model, yet more flexible than the
pure synchronous model.

4 Adding Synchronicity to Asynchronous Systems

To bring synchronicity to the asynchronous models, we will use internal clocks to strengthen
the protocol.

Asynchronous and synchronous systems have two main differences: clocks and deliv-
ery time. Synchronous systems have synchronous clocks which allow them to coordinate
events. They also have finite delivery times such that for any message m sent at time t,
it will always be received before time t + Tr where Tr ∈ Z. Asynchronous systems, on the
other hand, do not have clocks nor any finite bounds on delivery time. They simply state

3



that any message m that is sent will eventually be received. In real-world systems, guar-
anteed delivery in a finite time is not always possible. However, can adding a synchronous
clock to an asynchronous system enable us to model systems that are stronger than pure
asynchronous systems, even if not as strong as synchronous systems? The answer turns
out to be negative. Here we prove that that clocks do not make any difference, and it is in
fact the delivery time that most differentiates the synchronous and asynchronous systems.

A standard asynchronous system has asynchronous clocks. Each user gets an individual
local clock that is independent of, and may move at speeds different from, the clocks of
other users. This is defined as a clock-driven execution of the asynchronous system, and
is equivalent to the standard asynchronous model in 2.4.

We now construct an asynchronous system with synchronous clocks, and eval-
uate how it is different from a standard asynchronous system, if at all.

Definition 4.1. An asynchronous system with synchronous clocks is one where:

• Each user has a local clock that is synchronized with clocks of other users, i.e., they

tick at exactly the same time.

• Users can access the time on their local clock with no time delay.

Since the clocks of all users are synchronized and can be accessed by users without
delay, this system is equivalent to a system with a global clock that all users can read
without delay. Both asynchronous models have clocks connected to each user, but the
asynchronous clock model can have different speeds for each clock while the synchronous
clock model has the same time on all clocks.

Before we compare the models, we want formally define what it means for two systems
to be equivalent.

Definition 4.2. Two systems are said to be equivalent if, for any protocol P for one

model, there exists a protocol P ′ for the other model that maintains the same order of

events.

We now prove that an asynchronous system with synchronous clocks is equivalent to
an asynchronous system with asynchronous clocks. By transitivity, an asynchronous sys-
tem with synchronous clocks is equivalent to the standard asynchronous model. In other
words, we will prove that the added benefit of having local clocks that are synchronized
across users and accessible without delay does not add any functionality to, or improve,
an asynchronous system.

Theorem 4.1. An asynchronous system with synchronous clocks is equivalent to an asyn-

chronous system with asynchronous clocks.

Proof. For the purposes of this proof, we require that a message sent by a user contains

two pieces of data: the message itself, and the time TA of user A that is sending the

message. This assumption does not change the properties of the protocol because it only

increases the communication complexity of a protocol by a constant factor.

Messages in the asynchronous system with synchronous clocks are sent as P (A,m)

where A is the user sending the message m, and are stored in the event order as P (A,m, Ts, Tr)

where a message m is sent by user A at time Ts and is received at time Tr. Every mes-

sage in the asynchronous system with asynchronous clocks model is sent as P ′(A,m, Ta)

where A is sending message m at local clock time Ta, and is stored in the event order as

4



P (A,m, Ta, Tb) where message m is sent by user A at local clock time Ta and received at

another user’s local clock time Tb.

Given a protocol P in the asynchronous model with synchronous clocks, with inputs of

the starter messages i and delivery speed s, a separate protocol P ′ can be designed under

the asynchronous with asynchronous clocks model such that P (i, s) = P ′(i′, s′). This is

because the addition of synchronous clocks is rendered useless by the indefinite delivery

time of messages within the asynchronous model, and can be accurately described using

the asynchronous model with asynchronous clocks as follows.

We create a global synchronous time for the asynchronous system that can be ac-

cessed with no time delay by every user. This is same as the asynchronous system with

synchronous clock described earlier because:

1. Sending a message P (A,m, Ts) can be converted to sending a message P ′(A,m, Ta)

where Ta = Ts.

2. When user B receives the message in P ′, its local clock is changed such that Tb =

Ta + r where r is a random number and r > 0 and r ∈ Z.

3. Hence the message that is stored as P (A,m, Ts, Tr) can be converted to P ′(A,m, Ta, Tb)

after Tb has been adjusted such that Tb > Ta as described earlier,

4. The adjustment of clocks in P ′ ensures that all saved events of the protocol match

directly with the events in P , as a message sent at time Ta is always received after

time Ta and is therefore stored in the correct order.

5. Since all events in both protocol occur in the same order, they are proven to be

equivalent.

We have proven that adding a synchronous clock to an asynchronous model does not
change its asynchronicity. So we conclude that adding a synchronous clock to an asyn-
chronous model does not provide us with a model that is stronger than a pure asynchronous
system. In the next section, we look towards altering the functionality of the rigid syn-
chronous system to reach a middle ground between the synchronous and asynchronous
systems by establishing equivalence between round-based and time-based synchronous
systems and by using adversaries.

5 Adding Flexibility to Synchronous Systems

We will attempt to make synchronous systems more flexible with two steps. First, we will
simplify synchronous systems using the concept of rounds, and then we will add adversaries
to remove the requirement for time-bounded delivery of messages.

5.1 Round-Based Synchronous Systems

The concept of rounds was used in [Del+07] to develop an alternative definition of syn-
chronous distributed systems. In the round model, all users operate in lockstep. During
each round, all users receive messages from other users, perform their local computation,
and send new messages to other users. Therefore, any message sent in round r will be

5



received before round r+1 begins. A protocol may define a constant time interval T where
round r is defined as the time interval [i ∗ T, (i+ 1) ∗ T ]. We will prove that round-based
and time-based synchronous systems are equivalent by proving that they have the same
set of properties.

A property of a protocol can be described as a matching function between input
vectors i and output vectors o. Specifically, given a function F , we can say that a protocol
P satisfies property F if and only if F (i, o) = 1 for all input and output pairs (i, o) under
the protocol P . Notice that, per Definition 2.3, output vector o = P (i, s).

However, this definition doesn’t make sense in the presence of adversaries because they
can affect and control the system delivery speed s (see Definition 2.1). For example, an
adversary can delay or even corrupt a message, in which case the message may not be
delivered at the expected speed, or not delivered at all. To address adversaries, we define
a property as follows:

Definition 5.1. A protocol P satisfies property F if and only if for any possible input

vector i and delivery speed s, F (i, P (i, s)) = 1.

This enables us to define protocol equivalence as follows.

Definition 5.2. Two protocols P and P ′ are said to have protocol equivalence if for

any input vector i and delivery speed s, there exists a delivery speed s′ such that P (i, s) =

P ′(i, s′).

This implies that for any property F that P ′ satisfies, P satisfies that property F as
well. This is because for any i and s,

F (i, P (i, s)) = F (i, P ′(i, s′)) = 1.

This means that given two systems A and B if, for any protocol P under A, there
exists a protocol P ′ under B such that P and P ′ are equivalent, then the system B has
all the properties F of system A. We will use this approach to prove that the long-
known result that a synchronous system with synchronous clocks is equivalent to a round-
based system holds even under our formulation of the property in Definition 5.1 [Del+07],
[BFA21], [roundConsensus]. To establish this equivalence, we first show that given any
synchronous system, we can model a round-based system that has all properties of the
synchronous system, and then show that given any round-based system, we can create an
synchronous model with the same properties.

Lemma 5.1. For any protocol P in the round-based system, there exists a protocol P ′ in

the synchronous model that is equivalent to P , per Definition 5.2.

Proof. The intuition is that, for any event in the synchronous system’s time model, we

can convert any time into a corresponding round within the round model such that the

sequence of events remains the same and the output is equal.

The synchronous system contains two key event triggers: receiving a message at any

time, and reaching the end of a round. The round model contains two event triggers as

well: receiving a message at the beginning of round r and reaching the end of a round.

Also recall that in the sync model, every message takes a max of Tr time to be delivered

where Tr ∈ Z.

For convenience, we can denote how a protocol P ′ reacts to the event “a message m

from user i at time Ta” by P (m, i, Ta). Similarly, in the round model, we denote how a

6



protocol P reacts to the event “receiving a message m from user i in round r” by P (m, i, r).

We will show how to construct P given P ′ such that they are equivalent. Specifically, we

show that the sequence of events in the synchronous system can be described by a round

model that generates the same sequence of events, proving that both are equivalent.

First we reduce protocol P to P ′ as follows:

1. P (m, i, Ta): reduces to P ′(m, i,
⌊
Ta
Tr

⌋
). In other words, on receiving a message m in

time Ta, P simulates what P ′ would do if it receives m in round
⌊
Ta
Tr

⌋
. This ensures

that any message sent in the synchronous system can be converted to an accurate

counterpart in the round-based model.

2. Users only send message during the period T = 2k · Tr, T = (2k + 1) · Tr.

3. Reaching end of time T event: if T = 2k · Tr for some constant k, then simulate

what P would do at the end of round k. Otherwise, don’t do anything.

Next, we describe the actions of users in the synchronous system. We expand on

how, given the time it is sent and the time the message is received, any series of events

in the synchronous system can be described by the round-based model while fitting the

restrictions in the correct order. This means that for all events A in protocol P , there will

be a corresponding even B in protocol P ′

Now we establish that P ′ will generate events in the same sequence as P .

1. Using an integer k ∈ Z, we can clarify time transformations between the time model

and round model: in round k, any event that is taken within the round must end

before the next round starts, equal to the time interval (2kTr, (2k+1)Tr) in the time

model.

2. For event R(Ai) in the time model where user A is sending a message at time t, this

can be converted where R(Ai) = (send,A, b t
2Tr
c,m) where 2kTr ≤ t ≤ (2k + 1)Tr,

”send” is the action, and m is the message.

3. For event R(Bj) in the time model where user B is receiving a message from user A

at time t′, R(Bj) = (receive,B,A, b t′

2Tr
c,m) where t′ < t + Tr ≤ (2k + 2)Tr.

4. The described restrictions for t′ also mean that b t′

2Tr
c < k + 1, therefore, R(Bj) =

(deliver,B,A, k,m).

This proves that the events causing a message sent at time t and received at t′ all

take place within the same round k, meaning that any message events in the synchronous

system can be converted to the Round-based model while fitting the respective restrictions.

Therefore, given any protocol P for the round-based model, we have defined a protocol P ′

for the synchronous system that is equivalent to P , hence proving the lemma.

Now we prove the other direction, that is, for any protocol under the round-based
model, we can create an equivalent protocol in the synchronous system.

Lemma 5.2. Given any protocol P in the synchronous system, there exists a protocol P ′

in the round-based model that is equivalent to P per Definition 5.2.

7



Proof. Given a protocol P for the synchronous system, we construct P ′ for the round-based

model as follows:

1. Sending a message at the start of round r, represented by P (m, i, r) can be reduced

to P ′(m, i, r ∗ Tr) where the round model starts at round 0.

2. Reaching the end of round r is equivalent to starting round r+1, so the same method

as above can be applied to transform the protocol.

If we send a message at the beginning of the round, it will be delivered by the end of

the round. So after reduction, the message takes at most Tr time to deliver. This implies

that P and P ′ are equivalent.

Theorem 5.3. Given any synchronous system S, there is an equivalent round-based model

R, such that if F (i, o) is a property of S then it is also a property of R, and vice-versa.

Proof. Lemma 5.2 shows that given any synchronous system, we can create a round-based

such that all protocols in the synchronous system have an equivalent protocol in the round-

based model. That means, given any synchronous system, we can create a round-based

model that has all the properties of the synchronous system, which proves the theorem

in one direction. Lemma 5.1 similarly shows that given any round-based model, we can

create a synchronous system with the same properties.

Since we have already proven that the synchronous and round-based models are equiv-
alent, we can simply use round-based models to describe synchronous systems. In our
proofs, we described round-based models using order of events. This is a useful technique
which we will now generalize, and formally define so we can use it to define all models.

Definition 5.3. An Event-order-based (EOB) Description is a description of a

model using a sequence of the following events:

• Send(i, j, m) where user i sends user j a message m

• Deliver(i, j, m) where user j receives the message m sent by user i

• Round(begin/end, r) where round r either begins or ends in that event

• Block(i, j) where the messages that user i sends to j are blocked in one direction.

Since the output of a computation in a distributed system is determined by the ordering
of events executed by the model, we can define special types of distributed systems by
simply placing restrictions on these events. For example, as used in our proof, the EOB
description to define synchronous systems is as follows:

Definition 5.4. A synchronous system places the following restrictions on the sequence

of events:

1. Send(i, j, m) must occur after Round(begin, r)

2. Deliver(i, j, m) must come after Send(i, j, m)

3. Deliver(i, j, m) must come before Round(end, r)

We can also use EOB model to describe Asynchronous models as follows:

8



Definition 5.5. An asynchronous system places the following restriction on the sequence

of events:

1. Send(i, j, m) must come before Deliver(i, j, m)

Now that we have proven that round-based systems are equivalent to synchronous
systems, and used the EOB description, borrowed from round-based systems to describe
synchronous systems, we are ready to introduce adversaries to increase the flexibility of
synchronous systems so we can used them to model real-world distributed systems.

5.2 Using Adversaries to Remove Synchronicity

We know that asynchronous systems are too broad, and synchronous systems are too
restrictive to model real-world systems. We will show how the concept of adversaries
can be used to define a hybrid distributed system that is more flexible than synchronous
systems, but not as broad as an asynchronous system.

Adversaries are a new type of user that do not follow the restrictions in Definitions
5.4 and 5.5. To distinguish adversaries from other users, we now call users that follow
restrictions imposed by their distributed system as honest users. We further define two
types of adversaries - normal, and special, and will prove that a synchronous model with
a special adversary is equivalent to an asynchronous model with a normal adversary.

Definition 5.6. A normal adversary can effect (corrupt) at most f users, and allows

them to send any arbitrary message at any time. That is, up to f users can Send(i, j, m)

at any time with any j and any m.

A normal adversary cannot prevent a system from reaching consensus because it does
not block any messages , simply adds messages.

We want to define a special adversary as one that can corrupt users to send arbitrary
messages like a normal adversary and, additionally, can also block messages. That is, for
any number of honest users, it can block up to k messages from other users in each round.
Note that, by blocking messages with the special adversary, we break the time-bounded
restriction over the synchronous model and help introduce asynchronous behaviour. How-
ever, such a special adversary is problematic because it can prevent a distributed system
from reaching consensus. In order for a system to reach consensus, each user must be
able to reach a conclusion. Therefore, we allow each honest user to define their own set of
”safe” users whose messages they need to reach a conclusion.

Definition 5.7. A special adversary can have two effects. First is the same effect as

the normal adversary. Additionally, for any number of honest users, it can block up to f

messages from other users in each round, but not from ”safe” users of that honest user.

That is, affected users can Block(i, j) for any j and i up to k times per round, except when

i is in the ”safe” user list of j.

We now prove that special adversaries cannot prevent systems from reaching a con-
sensus.

Theorem 5.4. A special adversary cannot prevent a distributed system from reaching

consensus under dishonest minority (n > 2f).

Proof. By definition, each user of a synchronous model with n users must wait for n− f

messages where at least n−2f messages are honest. If this condition is broken, the protocol

9



cannot reach a conclusion because there will not be agreement across users. Since special

adversaries cannot block safe users, we place at least f users in the safe list of every users

so that they will be able to receive at least n − 2f honest users’ messages within n − f

message every round. This guarantees that a system-wide agreement is met.

Now we can prove what we set out to do, namely that introduction of a special ad-
versary to a synchronous system results in a system that is less restrictive than a pure
synchronous system, but not as open as a pure asynchronous system. In fact, it is exactly
equivalent to an asynchronous system with normal adversaries. To show this, we prove
equivalence in both directions.

Lemma 5.5. Given any normal adversary A applied to the asynchronous system, there

exists a corresponding special adversary A′ that can be applied to the synchronous system

to create the same output.

Proof. We construct a special adversary A′ from a normal adversary A as follows:

1. Based on Definition 5.6, a normal adversary A can corrupt up to f users. Let’s label

these users U1, U2, U3, . . . , Uf .

2. To match the blocked channels of the asynchronous system, we create a special

adversary A′ which also corrupts the exact same set of users, U1, U2, U3, . . . , Uf .

3. Now, to simulate the indeterminate delivery speed of an asynchronous system, we

use the special adversary to block the channels from which the users do not receive

messages in the asynchronous systems.

As shown in Theorem 5.4, a special adversary may not block enough users to prevent a

user from receiving n − 2f messages to reach a conclusion. Therefore, we can guarantee

that the number of users from which another user does not receive a message will not

exceed f .

As proven by the above paragraphs, the special adversary is able to impose the same

restrictions on the synchronous system as the normal adversary does on the asynchronous

system in addition to the restrictions of the asynchronous system itself. This proves that

for any normal adversary there exists a special adversary that can simulate the effects of

the asynchronous system and the normal adversary onto the synchronous systems. Since

the restrictions from the effects are equivalent, the outputs with also be the same, proving

the lemma.

Lemma 5.6. For any special adversary A applied to the synchronous system, there exists

a corresponding normal adversary A′ that can be applied to the asynchronous system to

create the same output.

Proof. We construct a normal adversary and an asynchronous system as follows:

1. Let all users of the synchronous system corrupted by the special adversary A be

marked U1, U2, U3, . . . , Uf .

10



2. To simulate the same corrupted users, we construct A′ such that it also the same set

of users U1, U2, U3, . . . , Uf in the asynchronous system.

3. Let the users of the synchronous system blocked by A be Ub1, Ub2, Ub3, . . . , Ubr.

4. To simulate blocked users, we create an asynchronous system where messages sent

by users Ub1, Ub2, Ub3, . . . , Ubr are not received before consensus is reached, and hence

their message are effectively disregarded to simulate blocking.

We can guarantee that the last step above is possible in an asynchronous system because

we have shown in Theorem 5.4 that an adversary may not block any users that would

prevent the system from reaching a conclusion, therefore the number of users blocked will

not exceed f .

Similar to lemma 5.5 this ensures that any restriction imposed by the special adversary

A onto the synchronous system can be simulated by creating a specific normal adversary

A′ and applying it to a specific asynchronous system. Since the restrictions on the systems

are equivalent they will both produce the same output, hence proving this lemma.

With these two lemmas proven, it is now easy to show that:

Theorem 5.7. A synchronous system with a special adversary is equivalent to an asyn-

chronous system with a normal adversary.

Proof. Lemma 5.5 and 5.6 show that given any asynchronous system and normal adversary,

we can construct an equivalent synchronous system and special adversary that produce

the same output.

With this theorem, we can conclude that a special adversary, when applied to a syn-
chronous model, gives us a model that is equivalent to an asynchronous model with a
normal adversary. That is, it gives us a model that is less restrictive than a pure syn-
chronous model, yet more realistic than a pure asynchronous model. This is the main
result of our paper.

6 Conclusion

In this paper we identified the aspects of a synchronous system that affect its synchronicity.
We also defined a ”special adversary” and showed that a synchronous system with a special
adversary is stronger than a pure asynchronous system yet less restrictive than a pure
synchronous system. Adding a special adversary helped us remove the requirement to
deliver messages in a bounded time from synchronous models. This allows us to transform
synchronous protocols into protocols that can work on asynchronous systems.

Our construct of adversaries also helped us create a hierarchy of distributed system
models based on how restrictive they are. Our results show that the asynchronous model
is the least restrictive, followed by the two equally restrictive asynchronous model with a
normal adversary and synchronous model with a special adversary which are less restrictive
than the synchronous model with a normal adversary, and lastly, the most restrictive model
is the pure synchronous model.

11



7 Future Work

We want to consider and apply some changes to our initial problem regarding the adver-
saries research. Specifically, we want to investigate if it is possible to remove the normal
adversary all together (given that the special adversary is equivalent to the normal ad-
versary with some properties added) and exclusively apply the second part of the special
adversary (block up to f channels for each user) to a synchronous model and make it
equivalent to the plain asynchronous model.

Beyond that, we also question the practical effects of the normal adversary on the
asynchronous model. As the asynchronous model is defined in 2, it is not clear whether
adding the normal adversary affects the performance of the users, as they are allowed to
send messages at anytime, regardless of the addition of the normal adversary.

On a larger scale, we want to continue our research on adversaries and explore the
effects they can have on systems when they effect more than just the quantity of messages
and the delivery time. We aim to determine if it is possible to generalize adversary effects
such that, given a criteria on how strong a model should be, an adversary can be created
with a limited selection of events it can manipulate that will accurate change the strength
of any model to match the criteria.

Given that our work so far is theoretical, we would like to identify the practical ap-
plications and prove the functionality of our work in a more tangible way. To do this, we
would run algorithms on distributed systems simulations to observe the efficiency of our
adversaries and their ability to convert synchronous protocols to asynchronous protocols.

8 Acknowledgements

I would like to thank my mentor Jun Wan for providing his valuable insight and guidance
as well as his time to help support me through this research. I would also like to thank
Yu Xia, for his help in revising our research, and Srini Devadas, Slava Gerovitch, and the
entire MIT PRIMES program for giving me the opportunity to participate in this research.

References

[BFA21] Raul Barbosa, Alcides Fonseca, and Filipe Araujo. “Reductions and abstrac-

tions for formal verification of distributed round-based algorithms”. In: Soft-

ware Quality Journal (2021), pp. 1–27.

[CD+15] Ronald Cramer, Ivan Bjerre Damg̊ard, et al. Secure multiparty computation.

Cambridge University Press, 2015.

[Cri91] Flaviu Cristian. “Reaching agreement on processor-group membership in syn-

chronous distributed systems”. In: Distributed Computing 4.4 (1991), pp. 175–

187.

[Del+07] Carole Delporte-Gallet, Hugues Fauconnier, Rachid Guerraoui, and Bastian

Pochon. “The perfectly synchronized round-based model of distributed com-

puting”. In: Information and Computation 205.5 (2007), pp. 783–815.

12



[MMR14] Achour Mostefaoui, Hamouma Moumen, and Michel Raynal. “Signature-free

asynchronous Byzantine consensus with t¡ n/3 and O (n2) messages”. In: Pro-

ceedings of the 2014 ACM symposium on Principles of distributed computing.

2014, pp. 2–9.

13


	Introduction
	Background and Definitions
	Our Problem Statement and Methodology
	Adding Synchronicity to Asynchronous Systems
	Adding Flexibility to Synchronous Systems
	Round-Based Synchronous Systems
	Using Adversaries to Remove Synchronicity

	Conclusion
	Future Work
	Acknowledgements

