
The Effectiveness of
Transformer for Analyzing

Low-Level Languages
Zifan (Carl) Guo - St. Mark’s School

Mentor: William S. Moses

MIT PRIMES Conference - Oct. 18th

Compiler

u High Level Languages

u (C, Java, Python)

u High abstraction

u English-like

Series of Transformation

u LLVM-IR (Intermediate Representation)

u Less abstract but still readable

u Platform independent

u Assembly Language

u Even less abstract and readable

u Platform dependent

u X86_64

u AArch64

u RISC-V

u Machine Language

u Not readable

u 1s and 0s

Example: sum
C

LLVM-IR X86-64 Intel:

Compiler Optimization

u Code transformation to make the program run faster (under the hood)

Unoptimized: Θ(#$) Loop invariant code motion
(LICM)

Optimized: Θ(#)

Compiler Optimization cont.

u Compilers provide standardly named optimization flags, such as -O1, -O2, -O3, or -Os

u Never the best but good enough for casual users

u Need to figure out what optimization combinations are best:

u Two biggest issue: optimization selection and phase ordering

u Previously compilers adopt rule-based analyzers that are resource-intensive and error-prone

u Now a growing trend to use machine learning models to replace rule-based ones

Transformers

u Attention is all you need (Vaswani et al. 2017)

u Unlike RNN or LSTM, not sequential à no locality bias

u No drop in performance for long-distance context

u Allow parallel computation that saves time

u Process sequences as a whole instead of word by word

Transfer Learning (BERT)

Transfer Learning cont.

u Pretraining Task – Masked Language Modeling (MLM):

u Downstream Fine-tuning Tasks:

u Sentiment Analysis

u Summarization

u Question & Answering

u Machine Translation

u …

Advantage of Transfer Learning

u Utilize unlabeled data and need less labeled data

u Creating labels is labor-intensive

u Allow us to feed in more data

u Empirically higher accuracy

Research Context

u Transformer has shown success on natural languages

u Transformer has shown success on high-level programming languages

u Previous machine learning models that optimizes compilers never used
Transformer before

Our Goal

u Test to see if Transformer language modeling can extract high-level
information about the program from low-level programs

u Such information would be able to better inform us where and how to apply
compiler optimization

TransCoder (Roziere et al. 2020)

u Unsupervised Translation of Programming Languages

First Case Study: Translating C to LLVM-IR
u Built our own LLVM-IR tokenizer and learned Byte-Pair Encoding (BPE)

u CSmith and CodeNet dataset for C code and generated their LLVM-IR
counterparts

u Pretrained with MLM on all data but only fine-tuned on functions

u Overfitting

TransCoder BLEU

C++ à Java 85.4

C++ à Python 70.1

Modifications

u Removing unnecessary syntax while making sure it compiles

u Prefix Notation

u A * B + C / D = + * A B / C D

u Based on a paper on Transformer performing arithmetic, prefix notation performs
better than infix or postfix notion, yielding a 94.43 BLEU Score comparing to 87.72
for infix and 92.37 for postfix.

u { 8, [3, 5.0, Carl] } = STRUCT2 8 ARR3 3 5.0 Carl

u Masking variables to be have random names rather than %1, %2, %3…

Performed better but still not satisfactory…

Fundamental Challenges

u Low-level language highly repetitive à MLM performing less well

u New code-specific pretraining objective

u Low-level language needs longer length of sequences to represent a short
sequence in high level language

u Low-level language assumes too much information unknown to the high-level
language

u Doesn’t perform well with high-level tasks that interact with high-level
languages

Second Case Study: Throughput
Estimation of X86_64 Basic Blocks

u Basic block = chunks of assembly code without branches

u Throughput = clock cycles for executing a basic block in steady state

u Accurate throughput estimation is an essential tool that informs choosing the
proper optimization passes

u Ithemal (Mendis et al. 2018) uses a hierarchical LSTM for its estimation

u Some struggles but overall shown better results than code translation

DynamoRIO Tokenizer

u Recovers hidden information in the Intel syntax

u !"# $%& = !"# $(& $%&, $*& $(&
u Automatically gets rid of unnecessary syntax, such as brackets and memory

displacements

u The LLVM-IR tokenizer would recognize brackets as separate tokens

u No need to BPE because vocab is already small

Throughput Estimation Experiment

u BHive benchmark dataset with 320,000+ basic blocks mapping to the
throughput under Intel’s Haswell microarchitecture

u While the majority of data points fall under value between 20.0 and 1000.0, the
maximum can go up to 1,600,450

u Pretrained on MLM and fine-tuned with MSE loss for regression on the same
dataset

mov rdx, qword ptr
[rbx+0x50]
xor ecx, ecx
mov esi, 0x01178629
mov rdi, rbp

110.00

1,000 Case Proof of Concept
Fine-tuning projection layer Fine-tuning projection layer and embedding space

Full dataset
Fine-tuning projection layer Fine-tuning projection layer & embedding

With lab2id
Fine-tuning projection layer
With lab2id

Observations

u Both Ithemal and Transformer struggle with large values

u Lab2id tries to mitigate the issue

u The model has to truncate sequences to a max length of 512

u While Ithemal can be more exact for the small data points but is really far off
for these big outliers, Transformer seems to model the big data points better
but be less exact for all data points.

Pearson Correlation Spearman Correlation

Ithemal 91.8 96.0

Proj. Layer 94.95 90.04

Proj. Layer with Lab2id 91.15 93.6

Proj. Layer &
Embedding with Lab2id

93.69 95.74

Some Prediction Examples

Predicted Actual

53.0 49.0

345.0 301.0

1779.0 1697.0

3287.5 3087.5

61.0 59.0

2481.25 2295.0

111.0 100.0

Fine-tuning projection layer
With lab2id

Fine-tuning projection layer
& embedding with lab2id

Predicted Actual

56.0 49.0

277.0 301.0

1479.0 1697.0

3107.0 3087.5

61.0 59.0

2415.0 2295.0

100.0 98.0

My reproduction of Ithemal

Predicted Actual

33.02 33.00

99.13 98.00

309.76 304.00

31.38 31.00

139.45 1400.00

70.00 399.00

644.00 2295.00

Future Plans to explore

u More data to saturate the model

u Other pretraining objectives (NSP, Denoising)

u More ablation studies on tokenization

Conclusion
u Transformer on low-level languages has shown more success on low-level tasks

than on high-level tasks

u MLM and traditional NLP tokenizers might not perform that well

u DynamoRIO, as an assembly language specific tokenizer, is more helpful

u Despite current struggles, Transformer shows strong potential for future usage
in the compiler optimization genre

Acknowledgement

u My Mentor, Billy Moses, for his tireless support

u MIT PRIMES, for this incredible opportunity

u My parents

u All of you, for listening

Questions?

Thank you!

