An Analysis of the Tor Handshake

Akhil Kammila
Mentor: Kyle Hogan
Outline

1. Tor Introduction
2. Tor’s Handshake
3. Improvements
Tor Introduction
Anonymity

- Relationship anonymity
Anonymity

- Relationship anonymity

Client ———> Destination
Anonymity

- Relationship anonymity

- Linkable
Normal Internet Connection

Client

Destination
Normal Internet Connection

Client

Destination

Source Address | Destination Address

Data

4
Normal Internet Connection

<table>
<thead>
<tr>
<th>Source Address</th>
<th>Destination Address</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Linkable by anyone viewing the connection ✗
VPN Connection

Client → VPN Server → Destination
VPN Connection

Client → VPN Server → Destination
VPN Connection

- Not linkable by anyone viewing the connection
VPN Connection

- Not linkable by anyone viewing the connection
VPN Connection

- Not linkable by anyone viewing the connection
- Linkable by the VPN server
Tor Internet Connection

Client

Relay

Relay

Relay

Destination
Tor Internet Connection

- Not linkable by anyone viewing the connection
Tor Internet Connection

- Not linkable by anyone viewing the connection
- Not linkable by relays

Client ➔ Relay ➔ Relay ➔ Relay ➔ Destination
Tor Internet Connection

- Not linkable by anyone viewing the connection
- Not linkable by relays
Tor Internet Connection

- Not linkable by anyone viewing the connection
- Not linkable by relays
2 Tor’s Handshake
Why Handshake?

1. Authentication
Why Handshake?

1. Authentication

Normal connection

Client → Destination

Image of a handshake with a wax seal, illustrating the authentication process.
Why Handshake?

1. **Authentication**

Normal connection

Client → Destination

Tor connection

Client → Relay → Relay → Relay → Destination
Why Handshake?

1. Authentication

Normal connection

Client → Destination

Tor connection

Client ← Relay ← Relay ← Relay ← Destination
Why Handshake?

1. Authentication

Normal connection

Client → Destination

Tor connection

Client → Relay → Relay → Relay → Destination
Why Handshake?

1. Authentication
Why Handshake?

Normal connection

Client → Destination

Tor connection

Client → Relay → Relay → Relay → Destination

1. Authentication
2. Key Exchange
Why Handshake?

1. Authentication
2. Key Exchange
Why Handshake?

1. Authentication
2. Key Exchange

Normal connection

Client ➔ Destination

Tor connection

Client ➔ Relay ➔ Relay ➔ Relay ➔ Destination
Why Handshake?

1. Authentication
2. Key Exchange
Why Handshake?

1. Authentication
2. Key Exchange
Handshakes

Normal

Client

Server

Starting message
Handshakes

Normal

Client

Server

Starting message

1

2
Handshakes

Normal

Client

Server

1. Starting message

2.

3.
Handshakes

Normal

Client

Server

1. Starting message

2.

3.

=
Handshakes

Starting message

1. Client
2. Starting message
3. Server

Key = Lock
Handshakes

Client

Server

1. Starting message

2.

3.

Tor
Handshakes

Starting message

1. Client
2. Server
3. =
Handshakes

1. Client → Server: Starting message
2. Server → Client:
3. Client → Server:
4. Server → Client: Starting message
Handshakes

Tor

1. Client
 - Starting message

2. Server
 - Envelope

3. Client
 - Key
 - Padlock

4. Client
 - Envelope
 - Padlock

5. Server
 - Starting message
 - Padlock
Handshakes

Tor

1. **Client**

2. **Server**

3. **Client**

4. **Server**

Starting message

5. **Client**

6. **Server**

=
3 Improvements
Improvements

Performance

Round trips
Bandwidth: Data being sent
Improvements

Performance
- Round trips
- Bandwidth: Data being sent

Security
- Sensitive information being leaked
Removing Handshake Redundancy

Tor

1. Client

2. Server

3. Starting message

4. Client

5. Server

6. Starting message

Starting message
Removing Handshake Redundancy

Tor

Client

Server

1. Starting message

2.

3.

4. Starting message

5.

6.

=
Removing Handshake Redundancy

1. Tor
2. Client
3. Server

Starting message

4. Client
5. Server

Starting message

=
Removing Handshake Redundancy

Tor

Client

Server

Starting message

Performance

Bandwidth: Data being sent

1

2

3

=

4

5

6
Removing Old Versions of Tor

Version 1
Version 2
Version 3
Removing Old Versions of Tor

Version 1
Version 2
Version 3
Removing Old Versions of Tor

1. Client
2. Server
3. Version 1
 Version 2
 Version 3
4. Client
 Starting message
5. Server
6. =
Removing Old Versions of Tor
Removing Old Versions of Tor

Version 1
Version 2
Version 3
Removing Old Versions of Tor

≈0% lose support
Removing Old Versions of Tor

- Only one Version
- Can use vanilla handshake

≈0% lose support

Version 1
Version 2
Version 3
Removing Old Versions of Tor

- Only one Version
- Can use vanilla handshake
- Reduced Round Trips
- Improved Security

≈0% lose support
Removing Old Versions of Tor

- Only one Version
 - Can use vanilla handshake
 - Reduced Round Trips
 - Improved Security

- ≈0% lose support

Performance
- Round trips

Security
- Sensitive information being leaked
Takeaways

Tor uses relays to achieve anonymity

Tor has a special handshake that hides two-way authentication

We propose 2 improvements to Tor’s handshake
 - Removing extra certificate
 - Removing old versions of Tor
Acknowledgements

Thank you to:
- My Mentor: Kyle Hogan
- Cristina Nita-Rotaru
- PRIMES
- My family