Consensus under a Dynamic Synchronous Model

Author: Kunal Kapoor
Mentor: Jun Wan
Byzantine Broadcast

- Background: Byzantine Generals need to attack or retreat
- Generals are split apart and communicate via messengers
- Some messengers are traitors/secret enemies
- How do they proceed?
General Problem Definition

- \(n \) users in a system
 - Honest Users
 - Corrupt Users
- GOAL: Achieve Consensus
 - Consistency
 - Validity
Real World Applications

- Area: Distributed Computing
- Blockchain
- Other Distributed Systems
Past Work

- Known \(n \) and \(h \)
 - \(n \) represents **Total Population**
 - \(h \) represents **Online Honest Population**
 - \(f \) represents **Online Corrupt Population**
- Honest Majority
 - \(h > n/2 \)
- No Sleepy Users
 - Sleepy users can **go offline**
- Blockchain Approach vs Trust Graph
Dynamic Synchronous Model

- n, h - unknown
- A constant c is known s.t. $c < h/n$
- Sleepy users

Solution
- 2 Building Blocks
 - Byzantine Broadcast Proper
- Main Result: Adapting the Post Processing algorithm
Building Block 1: Trust Graph

- Graph mapping relations between users
 - Edge signifies mutual trust
- Each user has unique trust graphs
- Honest users remain connected
- Edge Removal
 - Distrust Messages
 - Equivocation Evidence
Trust Graph: Post Processing Algorithm

- Post Processing Goal: Set an upper bound on the diameter
- Why? Large diameter (d) trades off with efficiency
- Previous work has shown an upper bound of $2n/h$ is satisfactory
- Two important adaptations
 - Sleepy User adaptation
 - Unknown h adaptation
Trust Graph: Post Processing Algorithm

- Layer k \((S_k)\): Set of all nodes a distance of \(k\) away from the “origin”

Figure 1: A multi-layer graph with the layer size alternating between 1 and \(h - 1\). Each layer is completely connected within itself.
Trust Graph: Post Processing Algorithm

- Algorithm: Find the minimum value of $|S_k| + |S_{k+1}|$ and remove all edges in between these two layers.

Figure 1: A multi-layer graph with the layer size alternating between 1 and $h - 1$. Each layer is completely connected within itself.
Trust Graph: Post Processing Algorithm

- Two claims to prove
 - Diameter bounded within n/h
 - Never removes edges between honest nodes

- Claim 1 - Diameter bounded
 - Algorithm discards fraction of layers
 - $2/c \geq 2n/h$
Trust Graph: Post Processing Algorithm

- Claim 2: Honest nodes remain connected
- Scenario: Corrupt node attempts to remove edges between honest nodes

- Diameter > $\frac{2n}{h}$ AND $\frac{2}{c}$ when algorithm applied
- Average sum of two layers $\rightarrow \frac{n}{(2n/h)*2} = h$ is greater than the average minimum layer sum
Building Block 2: Trust Cast

- TrustCast - protocol used to send messages throughout the trust graph
 - New sender S every epoch
 - Epoch = d rounds
 - Verification Function
- Two required results
 - Take action on S
 - No edges removed between honest users
Knowledge Gaps

- Don’t know n
- Utility of TrustCast
 - Use c to estimate d
- Case 1: Some node k sends to all
- Case 2: Some node k sends to none
- Case 3: Some node k selectively sends
Consensus Protocol Proper

- Use Trust Graph and Trust Cast → Consensus
- Three phases
 - Happen multiple times until Termination
- Propose Phase
 - Leader selected
 - TrustCasts message
- Vote Phase
 - Vote on a bit
 - heavily impacted
- Commit Phase
 - Commit on a bit
Vote Phase

- Previous verification function: receive $f + 1$ votes
- Impossible to receive $f + 1$ votes
 - Don’t know h
- $(1-c)n + 1$ could work but sleepy nodes
- Use the “potentially sleepy” feature of the TrustCast protocol
 - Use $(1-c)k + 1$ where k is total online nodes
- Creates a valid condition
Conclusion

● Successfully adapt to the Dynamic Synchronous Model
● Creating post processing algorithm
● Modified TrustCast and Vote Phase
● Other models to examine
 ○ Users join in the middle of the protocol
 ○ Weaker guarantee on starting condition
Acknowledgements

I would like to acknowledge

- Jun Wan, my mentor, who met with me weekly and answered questions about my research as well as suggested the project
- MIT PRIMES program for giving me the opportunity to research
- Prof. Srini Devadas and all other members of the CS division who organized the conference and the general research of the students
Thanks for Listening