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Motivation

● Online authentication is ubiquitous
○ Typically makes no considerations for user privacy

● Metadata is powerful
○ Contextualizes surface-level data

○ Can be used to draw powerful inferences when cross-referenced with more concrete 

information

● Metadata is often leaked in typical authentication mechanisms
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Metadata [secret conversation]
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Example

Username: calvin
Password: ball

User: calvin
Password: ball
Time: 14:05:19 UTC 
IPv6: e280:5da9:7fe:a1c9:bb1:7c90:a626:5de1

⋮

Requested Content

Authorized user!
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Anonymous Authentication

● Ability to anonymize this exchange
○ Prevent server from learning which user is authenticating

■ Only that someone is authenticating

○ Can other information about the user be hidden?

● Limit metadata leakage
○ Collected metadata can allow complex relationships to be drawn about users

● What about Multi-Factor Authentication?
○ Using another medium to verify your identity after the initial authentication step

○ Leaks data to third parties 6
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Example

Username: *******
Password: ************
Time: 14:05:19 UTC 
IPv6: e280:5da9:7fe:a1c9:bb1:7c90:a626:5de1

⋮

Requested Content

Authorized user!

Example

?
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Example

Username: *******
Password: ************
Time: 14:05:19 UTC 
IPv6: e280:5da9:7fe:a1c9:bb1:7c90:a626:5de1

⋮

Requested Content

Authorized user!

Example

Masked with VPN or Tor

?
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Existing Solutions

● Anonymous Credentials

● Multi-Party Computation

● Cryptographic Accumulators
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Anonymous Credentials

● Anonymous Credentials
○ Requires storing and managing keys on the client

■ Credentials are like “tokens” that can be issued and spent, but must be stored

○ Do not have efficient revocation of credentials

○ Do not integrate well with current username-password systems

○ Unclear how to extend to more complex applications such as authenticated retrieval
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Our Goal

Allow Calvin to authenticate to MIT without revealing who is logging in.
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Design, Threat Model, Assumptions

● We consider a setting with two non-colluding authentication servers
○  For example: MIT & Duo:

■ MIT handles password authentication

■ Duo is normally responsible for Two-Factor Authentication

■ Independent parties, so non-collusion is a reasonable assumption

● In Cloak, both servers are responsible for password authentication and second-factor 

authentication, but remain independent and non-colluding
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Design, Threat Model, Assumptions

● Assume both servers, individually, are fully malicious
○ MIT and Duo try and identify Calvin when he is authenticating. 

○ Remain non-colluding, so they don’t maliciously interact with each other

● Users are assumed to be malicious by default
○ Malicious users want to authenticate, regardless of whether they have an account
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Overview: Design, Threat Model, Assumptions
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Overview: Design, Threat Model, Assumptions

Authenticated?1

2

2

3?
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Technical overview

1. Use secret-sharing to obliviously “select” the account (username + password)
○ Neither server learns which account was selected

○ Achieved using Distributed Point Functions which are evaluated by the servers 

2. Prove knowledge of the password without revealing any information
○ Performed using a new technique for proving knowledge over secret-shares 
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Background: Secret Sharing

● Distribute shares of a secret value among multiple parties

● Secret can only be revealed by combining shares
○ Nothing is learned without all parties coming together

● Toy example: 
○ Masking a secret in a finite field: (x - r) and (r) form secret shares of x

● Notation: we use [x] to denote a secret-share of x 
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Step 1: privately selecting the account

Query
A

Query
B

B

A Username Password

spaceman ******

hobbs ******

calvin ******

⋮ ⋮

Derkins ******

[******]
A

[calvin]
A

[******]
B

[calvin]
B

?
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Step 1: privately selecting the account

Query
A

Query
B

B

A

Secret Shares

Username Password

spaceman ******

hobbs ******

calvin ******

⋮ ⋮

Derkins ******

[******]
A

[calvin]
A

[******]
B

[calvin]
B

?
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Tool: Distributed Point Functions [NI’14]

0 0 1 … 0

One-hot vector:

1 0 0 ⋯ 1 1 0 1 ⋯ 1
A B

A B
0 0 1 … 0

21



Account selection with the DPF

Username Password

spaceman ****

hobbs ****

calvin ****

⋮ ⋮

Derkins ****

0 0 1 ⋯ 0 = ****calvin

22



Account selection with the DPF

Username Password

spaceman

hobbs

calvin

⋮ ⋮

Derkins

0 0 1 ⋯ 0 = calvin
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I k
now 

Schnorr Proof [S’98]

Fix values,      ,      ,       where       is a group and    is a generator of     .
Goal: efficiently prove to a verifier that you know     .  

Must satisfy zero-knowledge: the verifier learns nothing beyond that the prover knows      . 

I’ll show you I know
without you learning what         is! 
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There are some issues!

A Schnorr Proof is not quite enough:

● We do not want servers to know who is verifying
○ A server that learns            also learns that Calvin is the one authenticating. 

● Servers in our design hold shares of          ; hiding the user
○ Can we modify Schnorr’s proof to work over [       ] instead of        ?
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New tool: Schnorr Proof over Secret Shares (SPoSS)

Our contribution: SPoSS

Fix values,      ,      ,       where       is a prime order group and    is a generator of     .
Goal: efficiently prove to a verifier that you know     .  

Must satisfy zero-knowledge: the verifier learns nothing beyond that the prover knows      . 

We design a Schnorr proof for a secret-shared element      with multiple verifiers: 
○ No verifier learns anything about      , but proof still passes if and only if the prover knows      . 
○ Each verifier has [    ] and must be convinced that the prover knows      . 
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We design a Schnorr proof for a secret-shared element       with multiple verifiers: 
○ No verifier learns anything about      , but proof still passes if and only if the prover knows     . 
○ Each verifier has [    ] and must be convinced that the prover knows       . 

New tool: Schnorr Proof over Secret Shares (SPoSS)

B

?
AI’ll show you I know

without you learning what         is
or what          is

I k
now 
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I’ll show you I know
without you learning what         is
or what          is ≈ I’ll show you I know my “password” 

without you learning what  my 
“password” is or what my “username”  is
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1   Prove: use a DPF to obliviously select 

the account and a make a SPoSS 

proof-of-knowledge for the 

corresponding password. 

The Cloak Protocol

2   Audit: servers individually check the 

SPoSS proof over the secret-shares of the 

selected account to verify the password. 

3   Verify: servers confirm with each 

other whether or not the user is 

authenticated. 29



● Implemented in Go v1.14 

● Massively parallelizable: Auth with 1 billion accounts takes 5 seconds with 600 cores

● Evaluated on one core:

Evaluation (work in progress)

217 ≈ 100,000 users ⇒ 300 milliseconds 

220 ≈ 1,000,000 users ⇒ 3 seconds 

30
Evaluated w/ 1 server @ 1-core



Evaluation (work in progress)
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Facebook
2021 breach of 509,458,528 accounts

MySpace
2008 breach of 359,420,698 accounts

Adobe
2013 breach of 152,445,165 accounts

DropBox
2021 breach of    68,648,009 accounts

● A standard 32-core server can support ~1 sec for 10 million users 
and ~100 sec authentication with 1 billion users 

● Parallelization allows support for large-scale services

https://haveibeenpwned.com/

https://haveibeenpwned.com/
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