Distributed Signature Scheme with Monotonic Access Pattern

Yavor Litchev
Mentor: Yu Xia
MIT PRIMES Conference
October 16 - 17, 2021
Introduction

- Digital signatures provide a practical way for a party to sign messages in an efficient manner using a private key.
- A wide variety of digital signature schemes currently exist, from RSA to El-Gamal to Schnorr.
- More recently, multi-party signature schemes have been developed.
- The proposed distributed signature scheme with monotonic access pattern allows for the modeling of complex functions.
- This results in a greater degree of access control.
What is a Digital Signature?
Digital Signature

❖ A digital signature scheme consists of 3 algorithms:
 ➢ K, a key generation algorithm
 ➢ S, a signature generation algorithm
 ➢ V, a verification algorithm
❖ Alice generates pk and sk (public and secret keys respectively) using K.
❖ Given a message m, Alice encrypts it σ = S(m, sk).
❖ Alice sends Bob σ, m, and pk, where pk is a public key.
Boneh–Lynn–Shacham (BLS) Signature Scheme

- Bilinear map: \((G_1 \times G_2 \rightarrow G_3)\quad e(a^x, b^y) = e(a,b)^{xy}\)
- The BLS signature scheme is comprised of three algorithms (K, S, V):
 - \(K\): Prime \(p\) and generator \(g\) are chosen. \(sk\) is sampled and \(pk = g^{sk}\)
 - \(S\): \(\sigma = m^{sk}\) is publicized
 - \(V\): \(e(\sigma, g) = e(m, g^{sk})\). (Evaluates to \(e(m, g)^{sk}\))
- Key Homomorphism: \(\sigma_1 \ast \sigma_2 = m^{sk_1} \ast m^{sk_2} = m^{sk_1+sk_2}\)
What is a Distributed Signature Scheme?
Distributed Signature Scheme

- Generalized construct for a signature scheme with multiple participants
- Access structure: A defines qualified subsets
- K: pk and sk are generated, then distribute sk_1, sk_2, \ldots, sk_n for parties P_1, P_2, \ldots, P_n.
- S: A qualifying subset for access structure A collaborate with their respective secret keys, and reconstruct $\sigma = m^{sk}$.
- V: The verification process is commenced with the public key pk on m and σ.

\[\sigma = m^{sk} \]
Monotonic Signature Scheme
Monotonic Function Access Structure

- Unate function: A boolean function $f(x_1, x_2, \ldots, x_n)$ is unate if for any x_i:

$$f(x_1, x_2, \ldots, x_{i-1}, 1, x_{i+1}, \ldots, x_n) \geq f(x_1, x_2, \ldots, x_{i-1}, 0, x_{i+1}, \ldots, x_n)$$

Crucially, it can be generated with only AND, OR, and FANOUT (replication) gates.

- Monotone access structure: An access structure A such that if set B is qualified, then sets containing B with additional elements are also qualified. We form a bijective correspondence:

$$I \in A \iff f(I) = 1$$
A BLS instance is created.

A circuit (analogous to a garbled circuit) is used to generate secret keys for each party.

Using the same circuit, a joint signature may be generated.

K: pk and sk are created from a BLS instance. sk is then assigned to the “bottom” of the circuit, party keys are generated by traveling “up” the circuit.

S: Given a qualifying subset, each party generates their partial signature, and they are recombined by traversing down the same circuit.

V: The signature is compared with the grandmaster public key using a bilinear map.
AND Gate

K: We choose private keys p_l and p_r such that $p_l + p_r = p_o$, and they are passed up the circuit.

S: The gate outputs the product of the two input signatures.
OR Gate

K: we simply set $p_l = p_r = p_o$ and pass the keys up the circuit.

S: We choose either signature, and set the output signature equal to it.

\[
\begin{align*}
\text{Key Generation Phase} & : \quad m^{p_l} = m^{p_r} = m^{p_o} \\
\text{Combined Signature Phase} & :
\end{align*}
\]
FANOUT Gate

K: We produce a random value sk_I as the secret key for the input wire, and publicize two variables $P_L = p_l \cdot sk_I^{-1}$ and $P_R = p_r \cdot sk_I^{-1}$.

S: We exponentiate the input signature by each of the respective public variables.

\[
\begin{align*}
P_L &= p_l \cdot sk_I^{-1} \\
P_R &= p_r \cdot sk_I^{-1}
\end{align*}
\]
Limitations and Problems
Leakage from FANOUT Gates

- For every FANOUT gate we publish two public values $P_L = p_l \cdot sk_i^{-1}$ and $P_R = p_r \cdot sk_i^{-1}$.
- However, $P_L \cdot P_R^{-1} = p_l \cdot p_r^{-1}$ may be computed.
- Can potentially be mitigated with key-length doubling, or the use of additional secret encryption keys.
Conclusion
Applications

- Threshold signature schemes are limited in their capacity to model complex access structures.
- The proposed scheme allows to model more sophisticated access structures.
- In addition to signing documents, the signature scheme can be used for hierarchical access control (ex. entering an office building, file access in a server, etc).
Future Research

- Utilization of randomized signature schemes for additional security (e.g. Schorr).
- Solving of existing problems such as Dolev-Strong.
- Reduce number of published values in FANOUT gates.
I would like to thank:

- My mentor Yu Xia
- The PRIMES program
- My family