Square Tilings of Translation Surfaces

Kevin Cong
Under the Direction of Professor Sergiy Merenkov, CCNY-CUNY
MIT PRIMES Conference

October 16, 2021
An Introduction: Square Tilings

Definition

A *square tiling* of \mathcal{P} is a set of non-overlapping squares which cover \mathcal{P} and which are all contained by \mathcal{P}.

An example of a square tiling
How to Analyze Tilings? The Contacts Graph

Definition (Contacts Graph)

- Graph G
- Vertices S correspond to squares Z_S
- Edge between U and V if and only if squares Z_U and Z_V share a side

A square tiling (right) with its contacts graph (left)
Definition

A *triangulation* of \mathcal{P} is a covering of \mathcal{P} by non-overlapping triangles.
Definition

A triangulation of \mathcal{P} is a covering of \mathcal{P} by non-overlapping triangles.

Lemma

The contacts graph is always a triangulation.
Main Questions

- Given a triangulation, is there always a tiling with it as contacts graph?
- Is it unique?
- Can we construct such a tiling?
Main Questions

- Given a triangulation, is there always a tiling with it as contacts graph?
- Is it unique?
- Can we construct such a tiling?

Answer [Schramm 1993]
Yes!

Main Proof Idea:
- Extremal Metric!
Definition

The *torus*:
- donut
- square with opposite sides identified as the same
Example Tiling of a Torus

Doubly Periodic / Torus Tiling
Theorem (Schramm 1996, C. 2020)

- For any triangulation, a square tiling with it as contacts graph always exists! [Schramm]
- It is unique up to horizontally translating each square, or vertically translating each square. We can construct it if we know the square sizes. [Our result!]
Theorem (Schramm 1996, C. 2020)

- For any triangulation, a square tiling with it as contacts graph always exists! [Schramm]
- It is unique up to horizontally translating each square, or vertically translating each square. We can construct it if we know the square sizes. [Our result!]

Proof Sketch

- Existence: proved by Oded Schramm via conformal geometry methods
- Uniqueness and Construction Method: obtained by adapting the extremal metric
Translation Surfaces (Finally!)

Definition (Translation Surface)
- Take polygon with pairs of parallel sides
- Identify the opposite sides

Example
The torus!

A square on a torus.
Questions

- When can we tile a translation surface with squares?
- Does every triangulation correspond to a tiling?
- Is the tiling unique?
- How can we construct the tiling?
Questions

- When can we tile a translation surface with squares?
- Does every triangulation correspond to a tiling?
- Is the tiling unique?
- How can we construct the tiling?

Our general problem is very difficult, so let’s look at a particular case!
An octagonal translation surface is formed by identifying opposite edges of an octagon with four pairs of parallel sides.

The surface encloses a region of genus 2.
Theorem (C. 2020)

- We cannot square tile the translation surface generated by the regular octagon.
- There exists a vertical stretch of the regular octagon, R, such that the translation surface generated by R is square tileable.
Theorem (C. 2020)

- *We cannot square tile the translation surface generated by the regular octagon.*
- *There exists a vertical stretch of the regular octagon, \(R \), such that the translation surface generated by \(R \) is square tileable.*
Proof Ideas:

- Define a notion of special side length and area
- Length is an additive function
- Area is product of width and height
- Choose function so the total area is negative
Proof Ideas:

- Define a notion of special side length and area
- Length is an additive function
- Area is product of width and height
- Choose function so the total area is negative
- Tile the octagonal surface with rectangles and then apply a vertical stretch

Three rectangles tiling the regular octagonal translation surface. Applying a vertical stretch with a factor of $1 + \sqrt{2}$ makes them squares.
Summary and Future Work

Our work:

- Proof that the square tiling corresponding to any triangulation
- Algorithm to construct such tilings
- Octagonal translation surface can be tiled in certain cases
Summary and Future Work

Our work:
- Proof that the square tiling corresponding to any triangulation
- Algorithm to construct such tilings
- Octagonal translation surface can be tiled in certain cases

Natural continuations:
- Triangulations/contacts graphs
- Other translation surfaces
- Adapt metric idea
Acknowledgements

- Prof. Sergiy Merenkov, my mentor
- PRIMES-USA Program, Prof. Etingof, Prof. Gerovitch
- Dr. Tanya Khovanova
- My parents