A (simple) graph has a vertex set V and an edge set E, where an edge is an unordered pair of distinct vertices of V.

![Graph diagram]

Anuj Sakarda, Jerry Tan, Armaan Tipirneni Mentor: Feng Gui

On the Distance Spectra of Extended Double Stars
Definition (Adjacency Matrix)

The adjacency matrix of a graph with vertices $x_1, x_2, \ldots x_n$ is the n by n matrix A where A_{ij} is equal to 0 if x_i and x_j don’t have an edge connecting them, and equal to 1 if they do.

$$
\begin{bmatrix}
0 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 \\
0 & 1 & 1 & 0
\end{bmatrix}
$$
Definition (Distance Matrix)

The distance matrix of a graph with vertices \(x_1, x_2, \ldots, x_n \) is the \(n \) by \(n \) matrix \(D \) where \(D_{ij} \) is equal to the smallest number of edges that need to be traversed to get from \(x_i \) to \(x_j \).

\[
\begin{bmatrix}
0 & 1 & 2 & 2 \\
1 & 0 & 1 & 1 \\
2 & 1 & 0 & 1 \\
2 & 1 & 1 & 0
\end{bmatrix}
\]
Matrix Multiplication

General Formula for Multiplying a Matrix by a Vector

\[
\begin{pmatrix}
 a_{11} & a_{12} & \ldots & a_{1n} \\
 a_{21} & a_{22} & \ldots & a_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 a_{m1} & a_{m2} & \ldots & a_{mn}
\end{pmatrix}
\begin{pmatrix}
 y_1 \\
 y_2 \\
 \vdots \\
 y_n
\end{pmatrix}
=
\begin{pmatrix}
 a_{11}y_1 + a_{12}y_2 + \ldots + a_{1n}y_n \\
 a_{21}y_1 + a_{22}y_2 + \ldots + a_{2n}y_n \\
 \vdots \\
 a_{m1}y_1 + a_{m2}y_2 + \ldots + a_{mn}y_n
\end{pmatrix}
\]

Example

\[
\begin{pmatrix}
 1 & 2 & 3 \\
 4 & 5 & 6 \\
 7 & 8 & 9
\end{pmatrix}
\begin{pmatrix}
 10 \\
 11 \\
 12
\end{pmatrix}
=
\begin{pmatrix}
 1 \cdot 10 + 2 \cdot 11 + 3 \cdot 12 \\
 4 \cdot 10 + 5 \cdot 11 + 6 \cdot 12 \\
 7 \cdot 10 + 8 \cdot 11 + 9 \cdot 12
\end{pmatrix}
=
\begin{pmatrix}
 68 \\
 167 \\
 276
\end{pmatrix}
\]
Definition (Eigenvalues)
An eigenvalue of an $n \times n$ matrix A is a scalar λ in which there exists some non-zero n by 1 vector v such that $Av = \lambda v$.

Definition (Spectrum)
The spectrum of a matrix is the “set” of its eigenvalues.

Example
\[
\begin{bmatrix} 1 & 0 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix} = 1 \begin{bmatrix} 1 \\ -1 \end{bmatrix} \quad \text{and} \quad \begin{bmatrix} 1 & 0 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = 2 \begin{bmatrix} 0 \\ 1 \end{bmatrix}.
\]
Thus, we see that both 1 and 2 are eigenvalues of $\begin{bmatrix} 1 & 0 \\ 1 & 2 \end{bmatrix}$.
Definition (Cospectral)

Two graphs are (distance) cospectral if they have the same (distance) spectrum. We refer to a graph as determined by its (distance) spectrum if it is not (distance) cospectral to any non-isomorphic graph.
Definition (Diameter of a Graph)

The diameter of a graph is the maximum distance between any pair of vertices of the graph.

Existing Results

Existing results have focused on the adjacency spectrum. Diameter 2 graphs follow the pattern $D = 2J - 2I - A$, and most results on the distance spectra focus on low diameter.

\[x_4 \quad x_3 \]
\[x_1 \qquad x_2 \]
Definition (Stars)

A *star* is a complete bipartite graph denoted by $K_{1,a}$, the graph formed by a single central vertex with a leaves connected to it.

Figure: $K_{1,3}$
Definition (Double Stars)

An *double star*, denoted by $S(a, b)$, is the graph formed by joining the centers of the stars $K_{1,a}$ and $K_{1,b}$.

Figure: $S(3, 4)$
An extended double star, denoted by $T(a, b)$, is the graph formed by joining the centers of the stars $K_{1,a}$ and $K_{1,b}$ to a common vertex.
Motivation

Triple Stars

We started with some diameter 4 trees, such as triple stars.
Definition (Induced subgraph)
For $S \subseteq V(G)$, an induced subgraph of G, denoted by $G[S]$, is the subgraph of G whose vertex set is S and whose edge set consists of all edges of G which have both ends in S.

Definition (Principal submatrix)
A principal submatrix is obtained by removing certain row indices and the same column indices.
Theorem (Interlacing)

Let G be a graph with n vertices and distance matrix $D(G)$. Denote its eigenvalues as

$$
\lambda_1(D(G)) \geq \lambda_2(D(G)) \geq \ldots \geq \lambda_n(D(G)).
$$

Let H be an induced subgraph of G with m vertices and distance spectrum

$$
\mu_1(D(H)) \geq \mu_2(D(H)) \ldots \geq \mu_m(D(H)).
$$

If $D(H)$ is a principal submatrix of $D(G)$, then

$$
\lambda_{n-m+i}(D(G)) \leq \mu_i(D(H)) \leq \lambda_i(D(G))
$$

for $i = 1, 2, \ldots, m$.

Definition (Forbidden Subgraph)

A graph H is a forbidden subgraph of a graph G if the set of induced subgraphs of G does not include a graph isomorphic to H.
Our Results

Theorem

Extended double stars are determined by their distance spectrum.

Notation

The graph G is cospectral to an extended double star.
Theorem (2013)

The complete graph K_n is determined by its distance spectrum.

Corollary (2016)

If G is a graph with order n and diameter 2, then $|E(G)| < |E(T)|$.

Theorem

If the diameter of G is greater than 4, then G and T are not cospectral.
Identifying a Path

There exist two vertices $x_1, x_5 \in V(G)$ such that $d_{x_1x_5} = 4$. Denote $X = \{x_1, x_2, x_3, x_4, x_5\}$ the vertex set of a path of length 4.

Definition (Vertex sets V_i)

Denote by $V_i (i = 0, 1, 2, 3, 4, 5)$ the vertex subset of $V\setminus X$ consisting of vertices adjacent to i vertices of X.
Identifying a Path

There exist two vertices $x_1, x_5 \in V(G)$ such that $d_{x_1x_5} = 4$. Denote $X = \{x_1, x_2, x_3, x_4, x_5\}$ the vertex set of a path of length 4.

Definition (Vertex sets V_i)

Denote by $V_i (i = 0, 1, 2, 3, 4, 5)$ the vertex subset of $V \setminus X$ consisting of vertices adjacent to i vertices of X.

Example

Here $x_6 \in V_5$ and $x_7 \in V_2$.
Forbidden Graphs

To prove V_5 empty, just show this subgraph is forbidden!
Proof Outline

- Prove V_4, V_3, V_1, V_0 are empty
- Prove V_2 is empty
Definition

In V_2, interlacing eliminates all subgraphs except the one shown below. We call such a vertex in V_2 adjacent to x_2 and x_3 a \textit{hat}.
Theorem

There can not be more than 5 hats in G.

Theorem

There can not be 0 hats in G.
Theorem

There can not be more than 5 hats in G.

Theorem

There can not be 0 hats in G.

Theorem

V_2 is empty.
We would like to thank our mentor Feng Gui for his guidance and support throughout this project. We would also like to thank Prof. Etingof, Dr. Gerovitch, Dr. Khovanova, and the MIT PRIMES program for the opportunity to work on this project. Additionally, we would like to thank Kent Vashaw for reviewing our paper and offering feedback. Finally, we want to thank our parents for their support.

