Thermocapillary Modulation of Fluidic Lenses in Microgravity

Rishabh Das
Mentor: Dr. Valeri Frumkin
Stuyvesant High School

October 16-17, 2021
MIT PRIMES Conference
The James Webb telescope is launched into space, and then is supposed to unfold.
Motivation

The James Webb telescope is launched into space, and then is supposed to unfold.

This is very difficult to implement.
Motivation

The James Webb telescope is launched into space, and then is supposed to unfold.

This is very difficult to implement.

What if we can form the lens in space?
Using Liquids

Liquids provide exceptional surface quality. They are also more cost-efficient.
Using Liquids

Liquids provide exceptional surface quality.
Liquids provide exceptional surface quality. They are also more cost-efficient.
Capillary Length

We can only make spherical surfaces of radius up to the capillary length.

Definition (Capillary Length)

The capillary length of a liquid is

$$\ell = \sqrt{\frac{\gamma \Delta \rho \cdot g}{}}$$

where γ is the surface tension, $\Delta \rho$ is the difference in density between the liquid and the ambient environment, and g is the acceleration due to gravity.
Capillary Length

We can only make spherical surfaces of radius up to the capillary length.
We can only make spherical surfaces of radius up to the capillary length.

Definition (Capillary Length)

The capillary length of a liquid is

\[\ell = \sqrt{\frac{\gamma}{\Delta \rho \cdot g}}, \]

where \(\gamma \) is the surface tension, \(\Delta \rho \) is the difference in density between the liquid and the ambient environment, and \(g \) is the acceleration due to gravity.
Capillary Length

Definition (Capillary Length)

The capillary length of a liquid is

\[\ell = \sqrt{\frac{\gamma}{\Delta \rho \cdot g}} , \]

where \(\gamma \) is the surface tension, \(\Delta \rho \) is the difference in density between the liquid and the ambient environment, and \(g \) is the acceleration due to gravity.

The capillary length of water is about 2.5mm.
Capillary Length

Definition (Capillary Length)

The capillary length of a liquid is

\[\ell = \sqrt{\frac{\gamma}{\Delta \rho \cdot g}}, \]

where \(\gamma \) is the surface tension, \(\Delta \rho \) is the difference in density between the liquid and the ambient environment, and \(g \) is the acceleration due to gravity.

The capillary length of water is about 2.5mm. This means we can only make very small spherical surfaces.
Capillary Length

Definition (Capillary Length)

The capillary length of a liquid is

\[\ell = \sqrt{\frac{\gamma}{\Delta \rho \cdot g}}, \]

where \(\gamma \) is the surface tension, \(\Delta \rho \) is the difference in density between the liquid and the ambient environment, and \(g \) is the acceleration due to gravity.

The capillary length of water is about 2.5mm. This means we can only make very small spherical surfaces.

To make \(\ell \) large, we can either make \(\Delta \rho \approx 0 \) or \(g \approx 0 \).
The Setup

A liquid is injected into a cylindrical bounding frame, with radius R_0 and height d. We want to find the function $h(r, \theta)$ that represents the interface of the liquid with the outside.

With constant surface tension, the shape of the lens is spherical. We want to slightly deform this shape to correct for spherical aberrations.
The Setup

A liquid is injected into a cylindrical bounding frame, with radius R_0 and height d.

A liquid is injected into a cylindrical bounding frame, with radius R_0 and height d.
A liquid is injected into a cylindrical bounding frame, with radius R_0 and height d. We want to find the function $h(r, \theta)$ that represents the interface of the liquid with the outside.
A liquid is injected into a cylindrical bounding frame, with radius R_0 and height d. We want to find the function $h(r, \theta)$ that represents the interface of the liquid with the outside.

With constant surface tension, the shape of the lens is spherical.
A liquid is injected into a cylindrical bounding frame, with radius R_0 and height d. We want to find the function $h(r, \theta)$ that represents the interface of the liquid with the outside.

With constant surface tension, the shape of the lens is spherical. We want to slightly deform this shape to correct for spherical aberrations.
First Method

The liquid will be in the state that minimizes its free energy.
First Method

The liquid will be in the state that minimizes its free energy. We just have to minimize the interfacial energy, i.e. the product of the surface tension and surface area.
Let the surface tension at \((r, \theta)\) be \(\gamma_0 \cdot f(r, \theta)\) for some function \(f\).
Free Energy

Let the surface tension at \((r, \theta)\) be \(\gamma_0 \cdot f(r, \theta)\) for some function \(f\). Let

\[
G(r, \theta) = \left(\gamma_0 \cdot f(r, \theta) \sqrt{1 + h_r^2 + \frac{1}{r^2} h_\theta^2 + \lambda h}\right) r,
\]

\(h_r = \partial_r h\), and \(h_\theta = \partial_\theta h\).
Free Energy

Let the surface tension at \((r, \theta)\) be \(\gamma_0 \cdot f(r, \theta)\) for some function \(f\). Let

\[
G(r, \theta) = \left(\gamma_0 \cdot f(r, \theta) \sqrt{1 + h_r^2 + \frac{1}{r^2} h_\theta^2 + \lambda h}\right) r,
\]

\[h_r = \partial_r h,\] and \(h_\theta = \partial_\theta h\). The free energy is given by a function of \(h\):

\[
\Pi = \int_0^{2\pi} \int_0^{R_0} G(r, \theta) \, dr \, d\theta.
\]
Let the surface tension at \((r, \theta)\) be \(\gamma_0 \cdot f(r, \theta)\) for some function \(f\). Let

\[
G(r, \theta) = \left(\gamma_0 \cdot f(r, \theta) \sqrt{1 + h_r^2 + \frac{1}{r^2} h_\theta^2 + \lambda h} \right) r,
\]

\[h_r = \partial_r h, \text{ and } h_\theta = \partial_\theta h.\] The free energy is given by a function of \(h\):

\[
\Pi = \int_0^{2\pi} \int_0^{R_0} G(r, \theta) \, dr \, d\theta.
\]

In order to minimize this, we can use the Euler-Lagrange Equation:

\[
\frac{\partial G}{\partial h} - \frac{d}{dr} \frac{\partial G}{\partial h_r} - \frac{d}{d\theta} \frac{\partial G}{\partial h_\theta} = 0.
\]
Introducing ε

The system we get is too complicated. How can we simplify the system?
Introducing ε

The system we get is too complicated. How can we simplify the system?

We introduce $\varepsilon = \left(\frac{h_0}{R_0}\right)^2$. Here, h_0 is the thickness of the lens.
Introducing ε

The system we get is too complicated. How can we simplify the system?

We introduce $\varepsilon = \left(\frac{h_0}{R_0} \right)^2$. Here, h_0 is the thickness of the lens.

In our situation, ε is very small. This means any term with ε in it is negligible. If we ignore such terms, our system is greatly simplified!
Our Results

The final equation we get is the following.

\[
PR^2 - (R^2F + RH + F\Theta H) - F \cdot (H_\text{RR}R^2 + RH + H_\Theta \Theta) = 0,
\]

where \(P\) is a constant of our choice.

If we let \(x = R\sqrt{|P|}\), we get

\[
\pm x^2 - (x^2F + \Theta H - F \cdot (x^2H + \Theta)) = 0,
\]

where the sign of the first term is determined by the sign of \(P\).

We choose \(F(x) = 1 - \beta x^2\).
Our Results

The final equation we get is the following.

Surface Equation (Das & Frumkin)

We have

\[PR^2 - (R^2 F_R H_R + F_\Theta H_\Theta) - F \cdot (H_{RR} R^2 + RH_R + H_{\Theta\Theta}) = 0, \]

where \(P \) is a constant of our choice.
Our Results

The final equation we get is the following.

Surface Equation (Das & Frumkin)

We have

\[PR^2 - (R^2 F_R H_R + F_\Theta H_\Theta) - F \cdot (H_{RR} R^2 + R H_R + H_{\Theta\Theta}) = 0, \]

where \(P \) is a constant of our choice.

If we let \(x = R \sqrt{|P|} \), we get

\[\pm x^2 - (x^2 F_x H_x + F_\Theta H_\Theta) - F \cdot (x^2 H_{xx} + x H_x + H_{\Theta\Theta}) = 0, \]

where the sign of the first term is determined by the sign of \(P \).
Our Results

The final equation we get is the following.

Surface Equation (Das & Frumkin)

We have

\[
PR^2 - (R^2 F_R H_R + F_\Theta H_\Theta) - F \cdot (H_{RR} R^2 + RH_R + H_{\Theta\Theta}) = 0,
\]

where \(P \) is a constant of our choice.

If we let \(x = R \sqrt{|P|} \), we get

\[
\pm x^2 - (x^2 F_x H_x + F_\Theta H_\Theta) - F \cdot (x^2 H_{xx} + xH_x + H_{\Theta\Theta}) = 0,
\]

where the sign of the first term is determined by the sign of \(P \).

We choose \(F(x) = 1 - \beta x^2 \).
The solution to the system is

\[H(x) = C_2 + C_1 \log x \mp \frac{(1 + 2\beta C_1) \log(1 - \beta x^2)}{4\beta}. \]
Our Results

The solution to the system is

\[H(x) = C_2 + C_1 \log x \mp \frac{(1 + 2\beta C_1) \log(1 - \beta x^2)}{4\beta}. \]

\[C_1 = 0 \text{ and } C_2 = \frac{d}{h_0} \pm \frac{\log(1 - \beta R_0^2 |P|)}{4\beta}. \]
The solution to the system is

\[H(x) = C_2 + C_1 \log x \mp \frac{(1 + 2\beta C_1) \log(1 - \beta x^2)}{4\beta} \]

\[C_1 = 0 \quad \text{and} \quad C_2 = \frac{d}{h_0} \pm \frac{\log(1 - \beta R_0^2 |P|)}{4\beta} \]

For different functions \(F \), we would get different solutions for \(H \). We chose this \(F \) because it allows us to solve for \(H \) analytically. For more complex functions \(F \), such as functions that are \(\Theta \) dependent, we could construct more complex lenses, but we may not be able to solve for them analytically.
Let the volume of the bounding frame be V_0. We track what happens when we inject a volume of $(1 \pm \delta)V_0$ into the bounding frame, for some δ.
Let the volume of the bounding frame be V_0. We track what happens when we inject a volume of $(1 \pm \delta)V_0$ into the bounding frame, for some δ. When $\beta = 0.03$ and $\delta = 0.15$:
Let the volume of the bounding frame be V_0. We track what happens when we inject a volume of $(1 \pm \delta)V_0$ into the bounding frame, for some δ. When $\beta = 0.03$ and $\delta = 0.15$:
Liquids tend to flow from high temperature to low temperature. This is called the **Marangoni Effect**.
Liquids tend to flow from high temperature to low temperature. This is called the **Marangoni Effect**.

These flows can affect the shape of the lens in thin films. Since the temperature gradient remains the same, the flows will be constant.
Another Method

We can use thin films as a corrective element for normal, spherical thick lenses.
Another Method

We can use thin films as a corrective element for normal, spherical thick lenses.

If we use a liquid with less viscosity, Marangoni flows will change the shape of the interface.

If we use a liquid with less viscosity, Marangoni flows will change the shape of the interface.
Another Method

We can use thin films as a corrective element for normal, spherical thick lenses.

If we use a liquid with less viscosity, Marangoni flows will change the shape of the interface.

This is still a work in progress.
Acknowledgements

I am extremely grateful to:

- my mentor, Dr. Valeri Frumkin
Acknowledgements

I am extremely grateful to:

- my mentor, Dr. Valeri Frumkin
- the PRIMES program
Acknowledgements

I am extremely grateful to:

- my mentor, Dr. Valeri Frumkin
- the PRIMES program
- my parents and my brother
References

