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Free probability

Free probability is a non-commutative analogue to traditional
probability theory.

A non-commutative probability space is a pair (A, ϕ), where A is a
set of “random variables,” and ϕ : A → C is a linear functional which
can be thought of as “taking expectation.”

Two random variables in A are said to be free if they satisfy a
particular infinite set of relations involving ϕ. We should think of
freeness as the non-commutative analogue to independence in
classical probability theory.
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Noncrossing partitions

A noncrossing partition of {1, . . . , n} is a partition in which no two blocks
of the partition “cross” when drawn as shown.

Figure: A noncrossing partition of {1, . . . , 12}
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Moment-cumulant relation

Theorem (Free cumulants)

For all n ≥ 1, we inductively define the cumulants κn : An → C to be
multilinear functionals obeying the moment-cumulant relation

ϕ(a1 · · · an) =
∑

π∈NC(n)

κπ(a1, . . . , an)

for all a1, . . . , an ∈ A. The set NC(n) consists of the noncrossing
partitions on {1, . . . , n}, and κπ represents the product of the cumulants
κ|πi |, where each πi is a block in π with size |πi |.
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Example of moment-cumulant relation

Example

When n = 3, the noncrossing partitions are {{1}, {2}, {3}}, {{1, 2}, {3}},
{{2, 3}, {1}}, {{1, 3}, {2}}, {{1, 2, 3}}. The moment-cumulant relation
tells us

ϕ(a1a2a3) =
∑

π∈NC(3)

κπ(a1, a2, a3)

= κ1(a1)κ1(a2)κ1(a3) + κ2(a1, a2)κ1(a3) + κ2(a2, a3)κ1(a1)

+ κ2(a1, a3)κ1(a2) + κ3(a1, a2, a3)
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Free cumulants

Cumulants possess the following very useful property.

Theorem (Mixed cumulants vanish)

The elements x , y ∈ A are free if and only if κn(a1, . . . , an) = 0 whenever
n ≥ 2, all ai are either x or y , and ai 6= aj for some i , j . This result can be
naturally extended for more than two elements.

Example

Suppose that x , y ∈ A are free and we wish to calculate ϕ(xyx). By the
moment-cumulant relation,

ϕ(xyx) = κ1(x)κ1(y)κ1(x) + κ2(x , y)κ1(x) + · · ·+ κ3(x , y , x).

Since x , y are free, all mixed cumulants vanish. So, we are just left with

ϕ(xyx) = κ1(x)κ1(y)κ1(x) + κ2(x , x)κ1(y).
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Free Brownian motions

Theorem (Biane, 1997)

The free multiplicative Brownian motion is a collection (ut)t≥0 of unitary
random variables (u∗t = u−1

t ) in a non-commutative probability space
(A, ϕ). Its distribution is characterized as follows.

For all 0 ≤ s < t, the element utu
∗
s has the same distribution as ut−s .

For all 0 ≤ t1 < · · · < tn, the elements ut1 , ut2u
∗
t1
, . . . , utnu

∗
tn−1

form a
free family.

The moments are given by

ϕ(unt ) = e−
nt
2

n−1∑
k=0

(−t)k

k!
nk−1

(
n

k + 1

)
.
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Loops on graphs

Let Lo(R2) be the set of loops in R2 based at some origin o.

Any loop in Lo(R2) induces a graph G such that the loop can be
written as a concatenation of edges of G.

For any planar graph G, let Lo(G) be the set of loops on G, i.e.,
loops formed by concatenating edges of G.

Define an equivalence relation on Lo(G) in which two loops are
equivalent if one can be obtained from the other through a finite
sequence of insertions and deletions of expressions of the form ee−1,
where e is an edge.
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Loops on graphs

Example

Applying this natural “backtrack cancellation”, the loops l1 = e2e1e
−1
1 e3

and l2 = e2e3e1e
−1
4 e4e

−1
1 are both equivalent to the loop l3 = e2e3.

Let RLo(G) be the quotient of Lo(G) by this equivalence relation.
This is the space of reduced loops on G based at o.

Theorem (Lévy, 2011)

The space RLo(G) is a free group with rank equal to the number of
bounded faces in G. Furthermore, this free group has many bases indexed
by the set of bounded faces.

One such basis is the lasso basis, which is a collection of loops in
RLo(G) determined by picking a spanning tree on G.
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The master field

Theorem (Lévy, 2011)

The master field is a collection (hl)l∈Lo(R2) of random variables in a
non-commutative probability space (A, τ), indexed by the loops in the
plane. Its distribution is fully characterized by the following properties.

For all l , l1, l2 ∈ Lo(R2), the equalities hl−1 = h−1
l = h∗l and

hl1l2 = hl2hl1 hold.

It is continuous in the space of loops, i.e., if the loops (ln)n≥0

converge to l , then (hln)n≥0 converges in distribution to hl .

For any planar graph G in R2 and lasso basis {λF : F ∈ Fb} on G,
the finite collection (hλF

)F∈Fb is a collection of mutually free random
variables such that for every F ∈ Fb, the distribution of hλF

is a free
Brownian motion stopped at time |F |.
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The master field

From the previous definition, we can think of the master field as a function
Φ : Lo(R2)→ C defined by

Φ(l) = τ(hl).

This is because we can write l as a product of lassos and then apply the
“anti-multiplicativity” property.
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Example of a master field calculation

Consider the loop l below, which has two bounded faces with area s and t.

Figure: A loop with two bounded face

We can compute the master field of this loop to be

Φ(l) = e−
s
2
−t(1− t).
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The Makeenko–Migdal equations

The Makeenko–Migdal equations give an efficient way to compute Φ(l) for
any loop l through a system of differential equations. The main idea is to
treat Φ(l) as a function of the areas of the bounded faces delimited by l .

Theorem (Makeenko–Migdal)

Let l be a loop, and fix a point of self-intersection with exactly two ingoing
strands and two outgoing strands. Let l1 and l2 be the two loops formed
by swapping which outgoing strand connects to each ingoing strand. Label
the four faces cyclically around the intersection F1, . . . ,F4 with F1

adjacent to the two outgoing strands. Then, Φ(l) satisfies the equation(
d

d |F1|
− d

d |F2|
+

d

d |F3|
− d

d |F4|

)
Φ(l) = Φ(l1)Φ(l2).
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Example of the Makeenko–Migdal equations

Figure: Setup for the Makeenko–Migdal equations
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Results

In literature, the master field is defined as the large N limit of the
Yang–Mills holonomy process from two-dimensional Yang–Mills
theory, which gives us many non-obvious properties for free when we
pass to this limit.

In our project, we redefined the master field as an object in its own
right, independent from the finite N case.

Theorem

Under our definition, for any loop l ∈ Lo(R2), the value of Φ(l) does not
depend on the spanning tree chosen for the lasso basis.

We also discovered a different, more elementary proof of the
Makeenko–Migdal equations.



16/21

Two-dimensional Yang–Mills theory

To specify a two-dimensional Yang–Mills theory, we need

A compact surface Σ, which plays the role of space-time,

A Lie group G , which describes the physical symmetries of the field
and characterizes the particular kind of particle interaction,

A principal G -bundle π : P → Σ.

We want to construct and study a measure YM on the space of
connections on P.

Motivation

This gives us a mathematically rigorous formulation for the standard
model in two-dimensional Euclidean space-time.
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Yang–Mills measure

Instead of defining the Yang–Mills measure on the space of
connections, we actually consider its image under the holonomy
mapping.

Given a connection on P, the holonomy is a multiplicative G -valued
function on the space Lo(Σ) of loops on Σ based at some origin o.

This holonomy mapping is injective and preserves symmetry, so we
lose no information by defining the Yang–Mills measure on the image.

Then, the Yang–Mills measure can be thought of as a collection
(Hl)l∈Lo(Σ) of G -valued random variables indexed by the set of loops.
We call this the Yang–Mills holonomy process.
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Yang–Mills holonomy process

The Yang–Mills holonomy process is a collection of G -valued random
variables indexed by the set of loops in the plane based at some origin o.

Theorem (Yang–Mills holonomy process)

The distribution of the (Hl)l∈Lo(R2) is fully characterized by the following.

For all l , l1, l2 ∈ Lo(R2), the equalities Hl−1 = H−1
l and Hl1l2 = Hl2Hl1

hold almost surely.

It is stochastically continuous in the space of loops, i.e., if the loops
(ln)n≥0 converge to l , then (Hln)n≥0 converges in probability to Hl .

For any planar graph G in R2 and lasso basis {λF : F ∈ Fb} on G,
the distribution of (Hl)l∈Lo(G) is fully characterized by the distribution
of the finite collection (HλF

)F∈Fb . This is a collection of independent
random variables such that for every F ∈ Fb, the distribution of HλF

is a Brownian motion on G stopped at time |F |.
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T. Lévy.
The master field on the plane.
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