The master field and free Brownian motions

Nathan Xiong Mentor: Pu Yu

Phillips Academy Andover

October 17, 2021 MIT PRIMES Conference

◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ♥ ♥

• Free probability is a non-commutative analogue to traditional probability theory.

- Free probability is a non-commutative analogue to traditional probability theory.
- A non-commutative probability space is a pair (A, φ), where A is a set of "random variables," and φ : A → C is a linear functional which can be thought of as "taking expectation."

- Free probability is a non-commutative analogue to traditional probability theory.
- A non-commutative probability space is a pair (A, φ), where A is a set of "random variables," and φ : A → C is a linear functional which can be thought of as "taking expectation."
- Two random variables in A are said to be *free* if they satisfy a particular infinite set of relations involving φ. We should think of freeness as the non-commutative analogue to independence in classical probability theory.

Noncrossing partitions

A noncrossing partition of $\{1, \ldots, n\}$ is a partition in which no two blocks of the partition "cross" when drawn as shown.

Figure: A noncrossing partition of $\{1, \ldots, 12\}$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ○ □ ● ○ ○ ○ ○

Theorem (Free cumulants)

For all $n \ge 1$, we inductively define the cumulants $\kappa_n : \mathcal{A}^n \to \mathbb{C}$ to be multilinear functionals obeying the moment-cumulant relation

$$\varphi(a_1\cdots a_n) = \sum_{\pi\in \mathit{NC}(n)} \kappa_{\pi}(a_1,\ldots,a_n)$$

for all $a_1, \ldots, a_n \in A$. The set NC(n) consists of the noncrossing partitions on $\{1, \ldots, n\}$, and κ_{π} represents the product of the cumulants $\kappa_{|\pi_i|}$, where each π_i is a block in π with size $|\pi_i|$.

Example of moment-cumulant relation

Example

When n = 3, the noncrossing partitions are $\{\{1\}, \{2\}, \{3\}\}, \{\{1,2\}, \{3\}\}, \{\{2,3\}, \{1\}\}, \{\{1,3\}, \{2\}\}, \{\{1,2,3\}\}$. The moment-cumulant relation tells us

$$\begin{split} \varphi(a_1a_2a_3) &= \sum_{\pi \in \mathsf{NC}(3)} \kappa_{\pi}(a_1, a_2, a_3) \\ &= \kappa_1(a_1)\kappa_1(a_2)\kappa_1(a_3) + \kappa_2(a_1, a_2)\kappa_1(a_3) + \kappa_2(a_2, a_3)\kappa_1(a_1) \\ &+ \kappa_2(a_1, a_3)\kappa_1(a_2) + \kappa_3(a_1, a_2, a_3) \end{split}$$

◆□▶ ◆□▶ ◆ ≧▶ ◆ ≧▶ ○ 差 ∽ ♀ ⊙ ♀ ⊙ 5/21

Free cumulants

Cumulants possess the following very useful property.

Theorem (Mixed cumulants vanish)

The elements $x, y \in A$ are free if and only if $\kappa_n(a_1, \ldots, a_n) = 0$ whenever $n \ge 2$, all a_i are either x or y, and $a_i \ne a_j$ for some i, j. This result can be naturally extended for more than two elements.

(ロ)、

Free cumulants

Cumulants possess the following very useful property.

Theorem (Mixed cumulants vanish)

The elements $x, y \in A$ are free if and only if $\kappa_n(a_1, \ldots, a_n) = 0$ whenever $n \ge 2$, all a_i are either x or y, and $a_i \ne a_j$ for some i, j. This result can be naturally extended for more than two elements.

Example

Suppose that $x, y \in A$ are free and we wish to calculate $\varphi(xyx)$. By the moment-cumulant relation,

$$\varphi(xyx) = \kappa_1(x)\kappa_1(y)\kappa_1(x) + \kappa_2(x,y)\kappa_1(x) + \cdots + \kappa_3(x,y,x).$$

Since x, y are free, all mixed cumulants vanish. So, we are just left with

$$\varphi(xyx) = \kappa_1(x)\kappa_1(y)\kappa_1(x) + \kappa_2(x,x)\kappa_1(y).$$

Theorem (Biane, 1997)

The free multiplicative Brownian motion is a collection $(u_t)_{t\geq 0}$ of unitary random variables $(u_t^* = u_t^{-1})$ in a non-commutative probability space (\mathcal{A}, φ) . Its distribution is characterized as follows.

- For all $0 \le s < t$, the element $u_t u_s^*$ has the same distribution as u_{t-s} .
- For all $0 \le t_1 < \cdots < t_n$, the elements $u_{t_1}, u_{t_2}u_{t_1}^*, \ldots, u_{t_n}u_{t_{n-1}}^*$ form a free family.
- The moments are given by

$$\varphi(u_t^n) = e^{-\frac{nt}{2}} \sum_{k=0}^{n-1} \frac{(-t)^k}{k!} n^{k-1} \binom{n}{k+1}.$$

• Let $L_o(\mathbb{R}^2)$ be the set of loops in \mathbb{R}^2 based at some origin o.

- Let $L_o(\mathbb{R}^2)$ be the set of loops in \mathbb{R}^2 based at some origin o.
- Any loop in L_o(ℝ²) induces a graph G such that the loop can be written as a concatenation of edges of G.

- Let $L_o(\mathbb{R}^2)$ be the set of loops in \mathbb{R}^2 based at some origin o.
- Any loop in L_o(ℝ²) induces a graph G such that the loop can be written as a concatenation of edges of G.
- For any planar graph \mathbb{G} , let $L_o(\mathbb{G})$ be the set of loops on \mathbb{G} , i.e., loops formed by concatenating edges of \mathbb{G} .

- Let $L_o(\mathbb{R}^2)$ be the set of loops in \mathbb{R}^2 based at some origin o.
- Any loop in L_o(ℝ²) induces a graph G such that the loop can be written as a concatenation of edges of G.
- For any planar graph \mathbb{G} , let $L_o(\mathbb{G})$ be the set of loops on \mathbb{G} , i.e., loops formed by concatenating edges of \mathbb{G} .
- Define an equivalence relation on L_o(G) in which two loops are equivalent if one can be obtained from the other through a finite sequence of insertions and deletions of expressions of the form ee⁻¹, where e is an edge.

Example

Applying this natural "backtrack cancellation", the loops $l_1 = e_2 e_1 e_1^{-1} e_3$ and $l_2 = e_2 e_3 e_1 e_4^{-1} e_4 e_1^{-1}$ are both equivalent to the loop $l_3 = e_2 e_3$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

9/21

Example

Applying this natural "backtrack cancellation", the loops $l_1 = e_2 e_1 e_1^{-1} e_3$ and $l_2 = e_2 e_3 e_1 e_4^{-1} e_4 e_1^{-1}$ are both equivalent to the loop $l_3 = e_2 e_3$.

• Let $\operatorname{RL}_o(\mathbb{G})$ be the quotient of $\operatorname{L}_o(\mathbb{G})$ by this equivalence relation. This is the space of *reduced loops* on \mathbb{G} based at *o*.

< □ > < □ > < □ > < Ξ > < Ξ > Ξ の Q · 9/21

Example

Applying this natural "backtrack cancellation", the loops $l_1 = e_2 e_1 e_1^{-1} e_3$ and $l_2 = e_2 e_3 e_1 e_4^{-1} e_4 e_1^{-1}$ are both equivalent to the loop $l_3 = e_2 e_3$.

Let RL_o(G) be the quotient of L_o(G) by this equivalence relation.
This is the space of *reduced loops* on G based at *o*.

Theorem (Lévy, 2011)

The space $RL_o(\mathbb{G})$ is a free group with rank equal to the number of bounded faces in \mathbb{G} . Furthermore, this free group has many bases indexed by the set of bounded faces.

Example

Applying this natural "backtrack cancellation", the loops $l_1 = e_2 e_1 e_1^{-1} e_3$ and $l_2 = e_2 e_3 e_1 e_4^{-1} e_4 e_1^{-1}$ are both equivalent to the loop $l_3 = e_2 e_3$.

 Let RL_o(𝔅) be the quotient of L_o(𝔅) by this equivalence relation. This is the space of *reduced loops* on 𝔅 based at *o*.

Theorem (Lévy, 2011)

The space $RL_o(\mathbb{G})$ is a free group with rank equal to the number of bounded faces in \mathbb{G} . Furthermore, this free group has many bases indexed by the set of bounded faces.

• One such basis is the *lasso basis*, which is a collection of loops in $RL_o(\mathbb{G})$ determined by picking a spanning tree on \mathbb{G} .

Theorem (Lévy, 2011)

The master field is a collection $(h_l)_{l \in L_o(\mathbb{R}^2)}$ of random variables in a non-commutative probability space (\mathcal{A}, τ) , indexed by the loops in the plane. Its distribution is fully characterized by the following properties.

- For all $l, l_1, l_2 \in L_o(\mathbb{R}^2)$, the equalities $h_{l-1} = h_l^{-1} = h_l^*$ and $h_{l_1 l_2} = h_{l_2} h_{l_1}$ hold.
- It is continuous in the space of loops, i.e., if the loops (I_n)_{n≥0} converge to I, then (h_{In})_{n≥0} converges in distribution to h_I.
- For any planar graph G in R² and lasso basis {λ_F : F ∈ F^b} on G, the finite collection (h_{λ_F})_{F∈F^b} is a collection of mutually free random variables such that for every F ∈ F^b, the distribution of h_{λ_F} is a free Brownian motion stopped at time |F|.

From the previous definition, we can think of the master field as a function $\Phi: L_o(\mathbb{R}^2) \to \mathbb{C}$ defined by

$$\Phi(I)=\tau(h_I).$$

This is because we can write *I* as a product of lassos and then apply the "anti-multiplicativity" property.

Example of a master field calculation

Consider the loop I below, which has two bounded faces with area s and t.

Figure: A loop with two bounded face

Example of a master field calculation

Consider the loop I below, which has two bounded faces with area s and t.

Figure: A loop with two bounded face

We can compute the master field of this loop to be

$$\Phi(I)=e^{-\frac{s}{2}-t}(1-t).$$

The Makeenko–Migdal equations

The Makeenko–Migdal equations give an efficient way to compute $\Phi(I)$ for any loop I through a system of differential equations. The main idea is to treat $\Phi(I)$ as a function of the areas of the bounded faces delimited by I.

The Makeenko–Migdal equations give an efficient way to compute $\Phi(I)$ for any loop I through a system of differential equations. The main idea is to treat $\Phi(I)$ as a function of the areas of the bounded faces delimited by I.

Theorem (Makeenko–Migdal)

Let I be a loop, and fix a point of self-intersection with exactly two ingoing strands and two outgoing strands. Let l_1 and l_2 be the two loops formed by swapping which outgoing strand connects to each ingoing strand. Label the four faces cyclically around the intersection F_1, \ldots, F_4 with F_1 adjacent to the two outgoing strands. Then, $\Phi(I)$ satisfies the equation

$$\left(\frac{d}{d|F_1|}-\frac{d}{d|F_2|}+\frac{d}{d|F_3|}-\frac{d}{d|F_4|}\right)\Phi(I)=\Phi(I_1)\Phi(I_2).$$

Example of the Makeenko-Migdal equations

Figure: Setup for the Makeenko-Migdal equations

Results

- In literature, the master field is defined as the large *N* limit of the Yang–Mills holonomy process from two-dimensional Yang–Mills theory, which gives us many non-obvious properties for free when we pass to this limit.
- In our project, we redefined the master field as an object in its own right, independent from the finite *N* case.

Theorem

Under our definition, for any loop $l \in L_o(\mathbb{R}^2)$, the value of $\Phi(l)$ does not depend on the spanning tree chosen for the lasso basis.

• We also discovered a different, more elementary proof of the Makeenko–Migdal equations.

Two-dimensional Yang–Mills theory

To specify a two-dimensional Yang-Mills theory, we need

- A compact surface Σ, which plays the role of space-time,
- A Lie group *G*, which describes the physical symmetries of the field and characterizes the particular kind of particle interaction,
- A principal *G*-bundle $\pi: P \to \Sigma$.

We want to construct and study a measure YM on the space of connections on P.

Motivation

This gives us a mathematically rigorous formulation for the *standard model* in two-dimensional Euclidean space-time.

- Instead of defining the Yang–Mills measure on the space of connections, we actually consider its image under the holonomy mapping.
- Given a connection on P, the holonomy is a multiplicative G-valued function on the space L_o(Σ) of loops on Σ based at some origin o.
- This holonomy mapping is injective and preserves symmetry, so we lose no information by defining the Yang-Mills measure on the image.
- Then, the Yang-Mills measure can be thought of as a collection
 (*H_l*)_{*l*∈L_o(Σ)} of *G*-valued random variables indexed by the set of loops.
 We call this the Yang-Mills holonomy process.

Yang-Mills holonomy process

The Yang–Mills holonomy process is a collection of G-valued random variables indexed by the set of loops in the plane based at some origin o.

Theorem (Yang–Mills holonomy process)

The distribution of the $(H_l)_{l \in L_o(\mathbb{R}^2)}$ is fully characterized by the following.

- For all *I*, *I*₁, *I*₂ ∈ L_o(ℝ²), the equalities H_{I-1} = H_I⁻¹ and H_{I12} = H_{I2}H_{I1} hold almost surely.
- It is stochastically continuous in the space of loops, i.e., if the loops $(I_n)_{n\geq 0}$ converge to I, then $(H_{I_n})_{n\geq 0}$ converges in probability to H_I .
- For any planar graph G in R² and lasso basis {λ_F : F ∈ F^b} on G, the distribution of (H_I)_{I∈L_o(G)} is fully characterized by the distribution of the finite collection (H_{λ_F})_{F∈F^b}. This is a collection of independent random variables such that for every F ∈ F^b, the distribution of H_{λ_F} is a Brownian motion on G stopped at time |F|.

I would like to thank:

- My mentor Pu Yu
- Prof. Scott Sheffield for proposing the project

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

MIT PRIMES

 Prof. Richard Stanley (http://www-math.mit.edu/ rstan/transparencies/parking3.pdf).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

• Prof. Thierry Lévy (https://arxiv.org/pdf/1112.2452.pdf).

References

P. Biane.

Free Brownian motion, free stochastic calculus and random matrices. In *Free Probability Theory*, volume 12 of *Fields Inst. Commun.*, pages 1–19. Amer. Math. Soc., Providence, RI, 1997.

▲□▶ ▲御▶ ▲臣▶ ★臣▶ ―臣 – のへで

T. Lévy.

The master field on the plane. *Astérisque*, 388:x+201, 2017.

R. Speicher.

Free probability and random matrices, 2014.