A Topological Centrality Measure for Directed Networks

Linda Fenghuan He
Mentor: Lucy Yang
Commonwealth School

October 16, 2021
MIT PRIMES Conference
Motivation & Background

Networks model complex systems as (directed) graphs.

Node Centrality

Betweenness centrality in social networks (J.Lee, 2021)

Eigenvector centrality in temporal networks (D.Taylor, 2016)

Goal

Define a centrality measure that captures non-local propagating effects and directedness.
Motivation & Background

Networks model complex systems as (directed) graphs.
Motivation & Background

Networks model complex systems as (directed) graphs

Node Centrality
Motivation & Background

Networks model complex systems as (directed) graphs

Node Centrality

- Betweenness centrality in social networks (J.Lee, 2021)
- Eigenvector centrality in temporal networks (D.Taylor, 2016)
Motivation & Background

Networks model complex systems as (directed) graphs

Node Centrality

- Betweenness centrality in social networks (J. Lee, 2021)
- Eigenvector centrality in temporal networks (D. Taylor, 2016)
Motivation & Background

Networks model complex systems as (directed) graphs

Node Centrality

- Betweenness centrality in social networks (J.Lee, 2021)
- Eigenvector centrality in temporal networks (D.Taylor, 2016)

Goal

Define a centrality measure that captures non-local propagating effects and directedness.
Networks

Definition

A network \(G \) is a pair \((X, w_X)\) where \(X \) is a finite set and \(w_X : X \times X \to \mathbb{R} \) is called the weight function.

Definition (F. Iannelli, 2017)

Let \(G = (X, w_X) \) be a network, define \(\gamma(G) \) to be \((X, m_X)\) where \(m_X : X \times X \to \mathbb{R} \) is given by:

\[
m(x, y) = \begin{cases}
1 - \log w(x, y) & \text{if } y \neq x \\
0 & \text{if } y = x
\end{cases}
\]

where \(\sum_{z \neq y} w(x, z) \geq 1 \).

Two nodes that interact a lot (\(w(x, y) \gg 0 \)) will be closer (\(m(x, y) \sim 1 \)).
A network G is a pair (X, w_X) where X is a finite set and $w_X : X \times X \to \mathbb{R}$ is called the weight function.
Networks

Definition

A network G is a pair (X, w_X) where X is a finite set and $w_X : X \times X \to \mathbb{R}$ is called the weight function.

We will be restricted to networks G where $w_X(x, x) = 0$ for all $x \in X$.
Networks

Definition

A **network** G is a pair (X, w_X) where X is a finite set and $w_X : X \times X \to \mathbb{R}$ is called the weight function.

We will be restricted to networks G where $w_X(x, x) = 0$ for all $x \in X$.

Definition (F.Iannelli, 2017)

Let $G = (X, w_X)$ be a network, define $\gamma(G)$ to be (X, m_X) where $m_X : X \times X \to \mathbb{R}$ is given by:

$$m(x, y) = \begin{cases}
1 - \log \frac{w(x, y)}{\sum_{z \neq y} w(x, z)} \geq 1 & \text{if } y \neq x \\
0 & \text{if } y = x
\end{cases}$$

Two nodes that interact a lot ($w(x, y) \gg 0$) will be closer ($m(x, y) \sim 1$).
Goal

Given a network \(G \) and \(x \) a node in \(G \), define \(f(G, x) = X \setminus \{x\}, w_{X \setminus \{x\}} \), i.e. the sub-network induced by deleting \(x \) and all edges incident to \(x \) in \(G \).

Idea

Given \(x \) a node in \(G \), we compare the difference in the "[dis]connectivity" of \(\gamma(G) \) and \(\gamma(f(G, x)) \).
Goal

Definition

Given a network G and x a node in G, define $f(G, x) = (X \setminus \{x\}, w_{X \setminus \{x\}})$, i.e. the sub-network induced by deleting x and all edges incident to x in G.
Goal

Definition
Given a network G and x a node in G, define $f(G, x) = (X \setminus \{x\}, w_{X \mid X \setminus \{x\}})$, i.e. the sub-network induced by deleting x and all edges incident to x in G.

Idea
Given x a node in G, we compare the difference in the “[dis]connectivity” of $\gamma(G)$ and $\gamma(f(G, x))$.
Question

How to quantify [dis]connectivity of a graph G?

Algebraic topology measures the "holes" in a "shape" using "homology".

Idea

We use the "size" of the homology of a "shape" built from G as a proxy for disconnectivity.

Recall a simplicial complex is a set of tetrahedrons of any dimension "glued together in a nice way".

Definition (F. Memoli and S. Chowdhury, 2016)

Given a network $G = (X, w)$ and $\delta \in \mathbb{R}$, the Dowker Complex $D\delta, G$ is the simplicial complex given by:

$$D\delta, G := \{\sigma \subseteq X : \exists p \in X \text{ s.t. } w(x, p) \leq \delta \forall x \in \sigma\}.$$
TDA in Networks

Question

How to quantify [dis]connectivity of a graph G?

Algebraic topology measures the "holes" in a "shape" using "homology".

Idea

We use the "size" of the homology of a "shape" built from G as a proxy for disconnectivity.
TDA in Networks

Question
How to quantify [dis]connectivity of a graph G?

Algebraic topology measures the "holes" in a "shape" using "homology".

Idea
We use the "size" of the homology of a "shape" built from G as a proxy for disconnectivity.

Recall a *simplicial complex* is a set of tetrahedrons of any dimension "glued together in a nice way".
TDA in Networks

Question

How to quantify [dis]connectivity of a graph G?

Algebraic topology measures the "holes" in a "shape" using "homology".

Idea

We use the "size" of the homology of a "shape" built from G as a proxy for disconnectivity.

Recall a *simplicial complex* is a set of tetrahedrons of any dimension "glued together in a nice way".

Definition (F. Memoli and S. Chowdhury, 2016)

Given a network $G = (X, w_X)$ and $\delta \in \mathbb{R}$, the Dowker Complex $D_{\delta, G}$ is the simplicial complex given by:

$$D_{\delta, G} := \{ \sigma \subseteq X : \exists p \in X \text{ s.t. } w(x, p) \leq \delta \ \forall \ x \in \sigma \}.$$
Example

\[D_{\delta, G} := \{ \sigma \subseteq X : \exists p \in X \text{ s.t. } w(x, p) \leq \delta \forall x \in \sigma \}. \]
Example

\[\mathcal{D}_{\delta,G} := \{ \sigma \subseteq X : \exists p \in X \text{ s.t. } w(x,p) \leq \delta \ \forall \ x \in \sigma \}. \]

1. As \(\delta \uparrow \), number of path components \(\searrow \).
2. This data is recorded on a persistence diagram.
3. We denote \(P_0(G) \) as the set of 0-dimensional barcodes for the Dowker complex \(\mathcal{D}_{\cdot,G} \).
Quasi-centrality

For a node \(x \in X \), let \(\mu(x) := d \) to be the value of \(\delta \) for which \(x \) merges into another connected component.
Quasi-centrality

For a node $x \in X$, let $\mu(x) := d$ to be the value of δ for which x merges into another connected component.

Definition

Let G be a network. The *quasi-centrality* $C(x)$ for node $x \in X$ is:

$$C(x) = \sum_{c \in P_0(f(\gamma(G),x))} \text{length}(c) - \sum_{c \in P_0(\gamma(G))} \text{length}(c) + d$$
Quasi-centrality

For a node $x \in X$, let $\mu(x) := d$ to be the value of δ for which x merges into another connected component.

Definition

Let G be a network. The **quasi-centrality** $C(x)$ for node $x \in X$ is:

$$C(x) = \sum_{c \in P_0(f(\gamma(G), x))} \text{length}(c) - \sum_{c \in P_0(\gamma(G))} \text{length}(c) + d$$

Theorem

For a network $G = (X, w_X)$, $C(x)$ is nonnegative for all $x \in X$.
Applications

Goals

- Demonstrate that C is a valid measure of centrality
- Use quasi-centrality to assess the influence of a node in a real-world network.
Applications

Goals

- Demonstrate that C is a valid measure of centrality
- Use quasi-centrality to assess the influence of a node in a real-world network.

Trade networks

- Interdependency between far-flung communities
- Trade networks are fragile (Y. Korniyenko, 2017)
- Economic perturbations originated in a single country can propagate elsewhere
Applications

Goals

- Demonstrate that C is a valid measure of centrality
- Use quasi-centrality to assess the influence of a node in a real-world network.

Trade networks

- Interdependency between far-flung communities
- Trade networks are fragile (Y. Korniyenko, 2017)
- Economic perturbations originated in a single country can propagate elsewhere

Data

- OECD Inter-Country Input-Output (ICIO) Tables
- Machinery production network in Asia
- Industries: machinery equipment, computer and electronics, electrical machinery, auto machinery
Future directions

- Compute the quasi-centrality measure for other asymmetric networks
 - biological networks
 - airflight networks

- Relate higher dimensional homological features in directed networks to real-world phenomena
 - trade flows
 - embargo

- Define other measures in network analysis using TDA
 - connectivity
 - robustness
 - efficiency
Acknowledgements

- My mentor, Lucy Yang
- Prof. Memoli of the Ohio State University
- Dr. Slava Gerovitch
- Prof. Pavel Etingof
- Dr. Tanya Khovanova
- MIT PRIMES
- My family