In silico prediction of alternative splicing-derived neoantigens in leukemia

Sarah Chen

MIT PRIMES Computational Biology
Under the direction of Nicoletta Cieri and Kari Stromhaug
Abnormal alternative splicing (AS) in cancer cells can yield tumor-specific isoforms, which are a potential source of neoantigens.

Alternative splicing event types

- Retained intron
- Alternate 5’ site
- Alternate 3’ site
- Cassette exon
Alternative splicing in cancer is a potential source of neoantigens

Intron retention:

Alternative splicing:

SNV- and AS-derived putative neoepitopes

Fractions of samples w/ CPTAC-confirmed neoepitope

Smart et al. Nature Biotechnology, 2018
Kahles et al. Cancer Cell, 2018
Upregulation of intron retention is widespread in cancer and in AML in particular.

Dvinge and Bradley. Genome Medicine 2015
Past work failed to consider the full scope of potential derived neoantigens
Past work failed to consider the full scope of potential derived neoantigens
We developed a computational pipeline to predict AS-derived neoantigens from RNA-seq data and validate them using ribosome profiling and immunoproteomics.
Transcript assembly via StringTie

Genome

RNA-seq alignments

StringTie (RNA-seq transcript assembler)

Assembled transcripts

Pertea et al, Nat Biotech 2015
Identifying alternatively spliced isoforms

Example of alt 5' site and retained intron:

RNA-seq alignments
StringTie transcripts
Canonical transcripts

StringTie isoforms vs.
Canonical isoform(s)
AS isoforms

AS isoform identification
Translating alternatively spliced isoforms

AS isoforms are translated from canonical start codons to the first downstream in-frame stop codon.

Canonical isoform

AS isoform

Novel peptides: IVEGKDSLS, PQCVLQTLDV, YPHFPKV, IESGFATRGDS

AS peptide identification
Validating predictions with Ribo-seq

Ribo-seq provides evidence that a sequence is translated
Validating predictions as HLA I binders

HLAthena predicts the likelihood that peptides bind to HLA I

We considered peptides with a binding score the top 0.1% and 0.5% of HLAthena’s background decoys

Figure adapted from Abelin et al, Proteomics 2019
Results in the B721.221 model system

We identified 192 AS-derived peptides supported by Ribo-seq and predicted as HLA binders. Preliminary immunoproteomic analysis has validated 38 peptides (91% w/ Ribo-Seq support).
We analyzed AML cell lines (n=8) and primary samples (n=7) to generate a patient-specific AS database to mine for potential neoantigens.

Results in AML cell lines and patients

AS events in B721.221, AML cell lines, and AML patients

AS type distribution

- **B721.221**
 - RI: 53%
 - Alt 5’ site: 19%
 - Alt 3’ site: 19%
 - Cassette exon: 10%

- **AML patients**
 - RI: 52%
 - Alt 5’ site: 24%
 - Alt 3’ site: 24%
 - Cassette exon: 12%

31 AS events are shared across all patients

AS events shared across AML samples, omitting bins with less than 25 AS events.
AS features may improve pipeline accuracy when Ribo-seq/MS data are unavailable

Features include:
- Read support of introns vs. adjacent exons
- Number of reads spanning intron-exon boundary
- Proportion of multi-mapping and/or indel reads in introns vs. adjacent exons

Filtering predictions based on RNA-seq features may enrich for true positives
Conclusion

- Alternative splicing is a promising source of neoantigens, especially for cancers with low mutation burden
- Current work focuses on increasing pipeline accuracy with RNA-seq features
- Future work will validate the cancer-specificity and immunogenicity of predicted AS-derived neoepitopes
Acknowledgements

Cathy Wu Aviv Regev Slava Gerovitch Brian Haas Karl Clauser

Nicoletta Cieri Tamara Ouspenskaia Kari Stromhaug Travis Law