In silico prediction of alternative splicing-derived neoantigens in leukemia

Sarah Chen

MIT PRIMES Computational Biology Under the direction of Nicoletta Cieri and Kari Stromhaug

Introduction

Abnormal alternative splicing (AS) in cancer cells can yield tumor-specific isoforms, which are a potential source of neoantigens.

Alternative splicing in cancer is a potential source of neoantigens

Intron retention:

Smart et al. Nature Biotechnology. 2018

Alternative splicing:

Kahles et al. Cancer Cell. 2018

Upregulation of intron retention is widespread in cancer and in AML in particular

Past work failed to consider the full scope of potential derived neoantigens

Past work failed to consider the full scope of potential derived neoantigens

Pipeline Overview

We developed a computational pipeline to predict AS-derived neoantigens from RNA-seq data and validate them using ribosome profiling and immunoproteomics.

Transcript assembly via StringTie

Transcript assembly

Identifying alternatively spliced isoforms

Example of alt 5' site and retained intron:

Translating alternatively spliced isoforms

AS isoforms are translated from canonical start codons to the first downstream in-frame stop codon

Validating predictions with Ribo-seq

Ribo-seq provides evidence that a sequence is **translated**

Peptide Validation

Validating predictions as HLA I binders

HLAthena predicts the likelihood that peptides bind to **HLA I**

Peptide Validation

We considered peptides with a binding score the top 0.1% and 0.5% of HLAthena's background decoys

Figure adapted from Abelin et al, Proteomics 2019

Results in the B721.221 model system

We identified 192 AS-derived peptides supported by Ribo-seq and predicted as HLA binders. Preliminary immunoproteomic analysis has validated 38 peptides (91% w/ Ribo-Seq support).

Ribo-seq and HLAthena validation

Immunopeptidome MS validation

Ribo-seq support of MS-detected peptides

 Supported (derived from Ribo-seq supported AS event)

Not supported

Across 40 HLA alleles, 38 peptides were detected, mapping to 65 AS events

Results in AML cell lines and patients

We analyzed AML cell lines (n=8) and primary samples (n=7) to generate a patient-specific AS database to mine for potential neoantigens

bins with less than 25 AS events.

AS features may improve pipeline accuracy when Ribo-seq/MS data are unavailable

Features include:

- Read support of introns vs. adjacent exons
- Number of reads spanning intron-exon boundary
- Proportion of multi-mapping and/or indel reads in introns vs. adjacent exons

Canonical AS

Filtering predictions based on RNA-seq features may enrich for true positives

Conclusion

- Alternative splicing is a promising source of neoantigens, especially for cancers with low mutation burden
- Current work focuses on increasing pipeline accuracy with RNA-seq features
- Future work will validate the cancer-specificity and immunogenicity of predicted AS-derived neoepitopes

Acknowledgements

Cathy Wu

Aviv Regev

Slava Gerovitch

Brian Haas

Karl Clauser

Nicoletta Cieri

Tamara Ouspenskaia

Kari Stromhaug

Travis Law