
Decentralized gradient descent:
how network structure affects convergence

Jason Yang, Jun Wan, Hanshen Xiao

Motivation

Suppose several agents want to train a machine learning
model:

- each agent has their own training data
- the agents want to train their model on the collective data

of all the agents
- no agent wants to release their data to anyone else

- Ex. these agents could be hospitals, each holding confidential medical
data

General Model

- Let agent i’s cost function be fi(x)
- fi(x) is private to everyone except agent i

- All the agents want to minimize
tf(x)=mean(fi(x))=1/N*sum(fi(x))

- All agents are connected in a graph
- Every agent has a self-loop to themself

General Model (cont.)

- Each agent i has a random initial value xi(0) in round 0
- In round k:

- Every agent i sends their xi(k-1) to all their neighbors j
- Every agent i sets xi(k) ← F(Si(k)) - T*▽fi(xi(k-1))

- Si(k): set of values agent i received in round k
- F: some aggregate function over a set, ex. Mean, median, trimmed

mean
- T: step size
- Compare to standard gradient descent: xi(k) ← xi(k-1) - T*▽fi(xi(k-1))

Initial Model

- fi(x) is of the form (aix-vi)
2 for x∊R

- ai∊[0,1), vi∊[-100,100], xi(0)∊[-200,200] uniformly random
- We consider random graphs

- every edge has probability P∊{0.05, 0.10,... 0.95, 1} of being made
- We repeatedly generate random graphs until we have one that is connected

- F is the mean
- N fixed to 50
- T∊{0.01,0.005,0.002,0.001}
- We focus on two quantities of the DGD:

- sd(k) = mean(xi(k)) - argminR(tf)
- od(k) = mean(tf(xi(k))) - minR(tf)

- We arbitrarily end DGD at 10000 rounds

Sample test set of fi and DGD: line, 10000 rounds

Sample DGDs for various P

DGD converges for various P and T in 10000 rounds

Mean |sd(10000)|, od(10000)

For each (T,P), test DGD on 100 test sets

Adversary

- There are A corrupt agents added to graph
- Can send anything they want to worsen the DGD

- We assume each corrupt agent:
- Is connected to all honest agents
- Has exact knowledge of the DGD algorithm

N=6, A=1

1 corrupt agent

- Naturally the adversary wants to send very high or very
low values to the honest nodes in order to throw them off

- → Change F to trimmed mean [1:-1] (i.e. remove lowest
and highest values)

Corrupt agent always sends super high value (1000000)

Mean |sd(10000)|, od(10000): 1 corrupt agent

2 corrupt agents

- F now trimmed mean [2:-2] (remove lowest 2 values and
highest 2 values)

- During xi(k) ← F(Si(k)) - T*▽fi(xi(k-1)):
- If |Si(k)|≤4, replace F(Si(k)) with xi(k-1)

Mean |sd(10000)|, od(10000): 2 corrupt agents
Both corrupt agents always send super high value (1000000)

Intuition for DGD behavior under adversary

- Ex. A=1, adversary always sends super high value
- Each honest agent trims highest and lowest value
- → trims adversary’s value, but also lowest value of neighboring honest

node
- → honest agents’ xi(k) get skewed to higher values

Ex.

1000000

50
-10

20

34

Mean sd(10000): 0, 1, 2 corrupt nodes

- A=0: mean sd(10000) close to 0
- A=1, 2: sd(10000) always +

Equivocating Adversary: 1 corrupt node

Adversary sends 1000000 to N/2 arbitrarily chosen agents
and -1000000 to all other agents

Equivocating Adversary: separation of xi

Equivocating Adversary: gap between xi

- For round k:
- Let S=sorted([xi(k) for all i])
- Define gap(k)=maxj(Sj+1-Sj)

Equivocating Adversary: gap between xi

Equivocation increases mean gap(10000), but only for low P

Conclusion

- Higher P → better convergence
- Normal adversary makes all agents’ xi skew high

- Higher A → higher xi
- Equivocating adversary separates agents’ xi only for low P

- Advanced adversary
- Ex. splitting honest nodes into better groups to equivocate between

- More robust DGD
- Ex. weighted/adaptively trimmed mean, decaying step size

- Asymptotics of solution error |sd(k)| w.r.t. N, P, A, k
- Multidimensional (nonconvex) functions

Future Steps

Acknowledgments

I would like to thank:

● Jun Wan and Hanshen Xiao for their mentorship
● MIT PRIMES Computer Science for making this project possible
● My parents for supporting me
● You for listening

