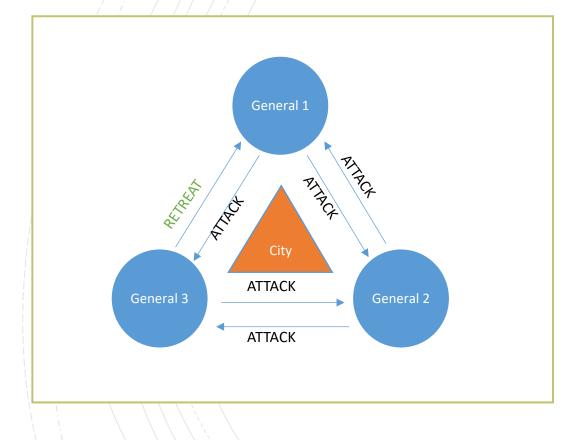
A Signed-Message Relay Version of Iterative Approximate Byzantine Consensus for Directed Graphs

Matthew Ding PRIMES CS/Bio Spring Conference 23 May 2021

The Byzantine Generals Problem

- Paper published by Lamport, Shostak, and Pease in 1982
- Coined the term "byzantine fault": a machine that can arbitrarily deviate from an agreed upon protocol in opposition to other users
- Very strict assumption, but sometimes necessary in real life

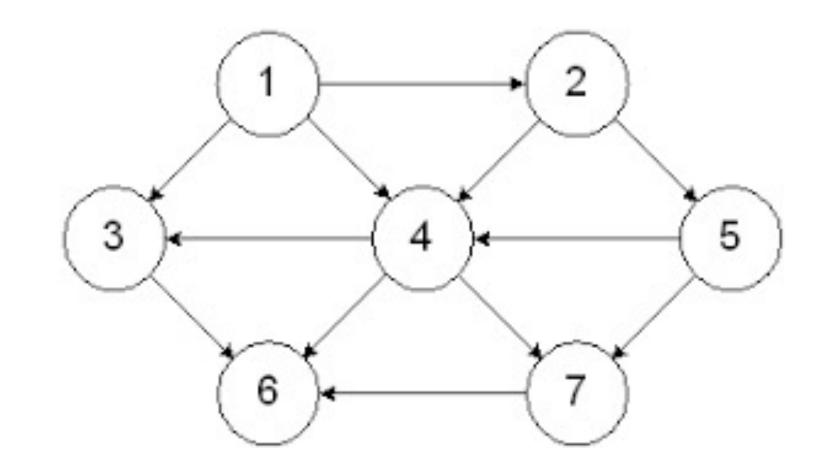
Problem Formulation



- Group of generals camped outside of a city
- Each general may communicate with each other individually, but no centralized communication exists
- The goal is for each general to decide on the same course of action: either "attack" or "retreat"
- There exist secret "byzantine generals", who may act arbitrarily and whose goal is to prevent "honest generals" from achieving their goals

A More Mathematical Representation

- Byzantine consensus problems are usually represented as graphs
- Nodes represent generals, edges represent communication links



Iterative Approximate Byzantine Consensus (IABC)

- Each honest node holds a real number value as their current state
- Honest nodes achieve approximate consensus on their states with one another rather than exact consensus
- Aim to satisfy two conditions:

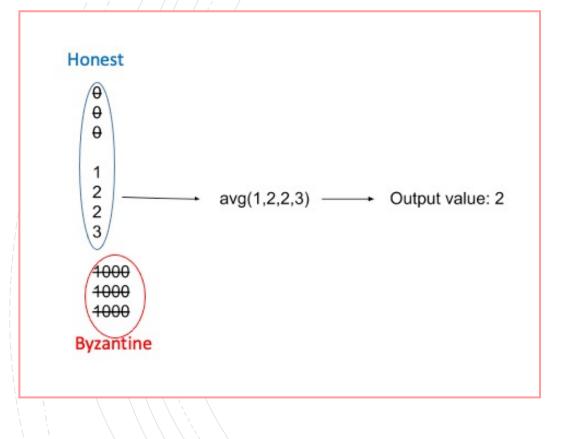
1. Convergence: Every honest node's state approaches the same value as the number of iterations approaches infinity

2. Validity: Each honest node's state in each iteration remains within the convex hull of states of the previous iteration

Existing IABC Algorithm

- Developed by Vaidya in 2012
- During each iteration, each honest node transmits their current state to all neighbors
- Each honest node performs a trimmedmean step to determine its new state for the next iteration
- Proven that each honest node achieves consensus on the same value over time

Trimmed-Mean Step



- Given a list of at least 3f+1 values:
 - 1. Sort the list
 - 2. Eliminate the greatest and least f values
 - 3. Output the arithmetic mean of the remaining values
- This is a robust aggregation step for up to f byzantine nodes

Our Contributions

- Signatures
 - Incredibly important in Byzantine consensus, but new to IABC
 - Reliable proof of who created a message
- Relays
 - Using signatures, we can now reliably relay messages across a graph
 - Even if a message has been relayed across multiple nodes, we can reliably detect the node of origin

Our Contributions (continued)

- With relays and signatures, nodes don't need to be adjacent to communicate with each other
- All honest nodes in a graph may send and receive messages to every other honest node
- Our algorithm creates a "pseudo-complete" graph in order to increase the efficiency of communication across the graph

Our Algorithm

3.4 Relay-IABC Algorithm

Algorithm 1: Relay-IABC

Remark. This algorithm is implemented by a specific machine i. Each machine $i \in H$ will implement this algorithm concurrently.

Result: Each state $v_i(i)$ remains within the convex hull of the initial states at each Iteration, and each state converges to the same value as Iteration $t \to \infty$. Initialization:

```
v_i(i) \leftarrow Intial State of node i (with signature i).
```

```
for Iteration t \leftarrow 0 to T do
```

```
Broadcast v_i to all machines j \in N_i^O
Receive v_j from all machines j \in N_i^I
```

Remark. When receiving v_j , ignore all parameters received that are not properly signed. If no proper message is received from a certain node, set their incoming value to be an arbitrary predefined real value (e.g. 0).

```
G_i \leftarrow N_i^O \cup \{i\}
```

```
for j \leftarrow 0 to m - 1 do
```

Remark. In the next two lines, we do the following: Out of all parameters v(j) received from the broadcast step, set $v_i(j)$ to a single arbitrary one v'(j)

if $j \neq i$ then $| v_i(j) \leftarrow v'(j)$ end

end

```
\mathbf{if} \ t \mod D = 0 \ \mathbf{then}
```

Trimmed-mean update step:

In a new vector, sort the values of v_i in increasing order:

 $v_i^* \leftarrow sort(v_i)$

Ignore the least and greatest b values, and set the value of $v_i(i)$ to be the average of all remaining values in v_i^* , as defined below:

$$v_i(i) \leftarrow \frac{1}{m-2b} \sum_{k=b}^{m-b-1} v_i^*(k)$$
 (2)

(1)

Add signature i to $v_i(i)$ end

```
end
```

- Every honest node stores most recent state values of every other node
- In each iteration, every honest node relays state values of every node to all neighbors
- Each state value is tagged with signature
- Trimmed-mean is used with the state values of all nodes instead of just neighbors
- Perform trimmed-mean step only every d iterations, where d is the diameter of the honest subgraph

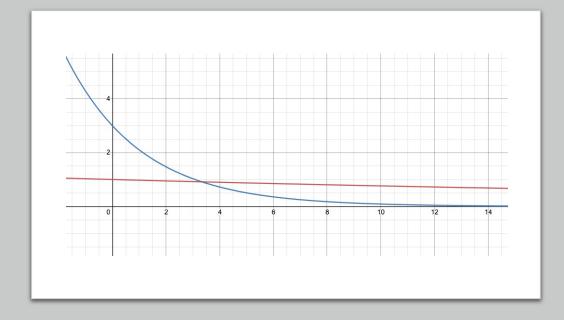
Theoretical Convergence Rate

- Original IABC algorithm
 - Non-zero column in M^{rh}
- Relay-IABC algorithm
 - Non-zero column in M^3
 - d times more iterations per *M*, but net convergence is faster

•
$$(1-\varepsilon^d)^T \gg d(1-\varepsilon)^T$$

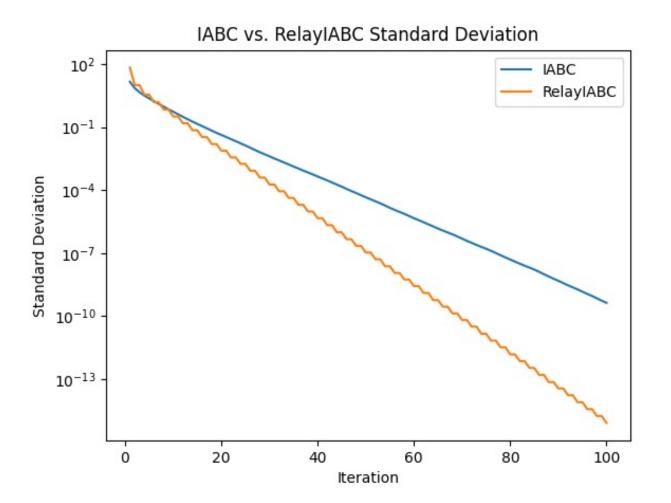
$$y = (1 - 0.3^3)^x$$

$$y = 3(1 - 0.3)^x$$



Simulation Results

- Compares IABC and Relay-IABC convergence rates
- Relay-IABC achieves faster convergence



Simulation Graph: Network of 30 honest nodes, 14 byzantine nodes

Net Benefits and Tradeoffs

- Relay-IABC achieves convergence on sparse graphs – better represent "real-world" networks
- Even on dense networks, we show empirically that Relay-IABC achieves faster convergence in large variety of cases
- Tradeoff: higher
 communication cost

Future Work

• Relationship between update frequency and convergence rate

• Tolerating a higher proportion of Byzantine nodes (signatures)

Acknowledgements

- MIT PRIMES
- Hanshen Xiao
- My parents

Thank you!