
Signature Scheme with Access Control

Yavor Litchev, Mentor: Yu Xia

September 2021

Abstract

A wide variety of digital signature schemes currently exist, from RSA to El-Gamal to Schnorr.
More recently, multi-party signature schemes have been developed, including distributed signa-
ture schemes and threshold signature schemes. In particular, threshold signature schemes provide
useful functionality, in that they require the number of participating parties to pass a threshold
in order to generate a valid signature. However, they are limited in their complexity, as they can
only model a threshold function. The proposed signature scheme (monotonic signature scheme)
allows for the modeling of complex functions, so long as they are monotonic. This would allow
for a much greater degree of access control, all while security and correctness are preserved.

1 Introduction

Digital signatures are integral to cybersecurity. They are an important area in cryptography, and can
be used for the verification of messages, financial transactions, data, etc. They provide a practical
way for a party to sign messages in an efficient manner using a private key. Afterwards, the message,
signature, and public key may be published for public viewing, and any third party may verify the
signature using the public key and be highly confident that the message was only signed by the
party with the private key. This allows for a robust scheme for authentication and verification.

Many signature algorithms currently exist, including RSA, El-Gamal, etc. Additionally, random-
ized signature algorithms such as Schnorr provide an added layer of security through the randomiza-
tion of the signature, irrespective of the message. These algorithms are very practical, however the
generation of signatures is limited to only one party. What if one wished to craft a group signature
that used multiple participants? There are a number of existing algorithms that seek to solve this
problem. One such algorithm is a distributed signature algorithm. Such an algorithm has a set of
parties and an access structure. Only for some specific combinations of parties that are validated
by the access structure can the parties create a combined signature through their own private keys.
Another such algorithm is the threshold signature algorithm, which has an access structure that
requires a certain number of parties to pass a threshold. Once the threshold is reached, a valid
combined signature may be produced, which can then be verified by a grandmaster public key.

Although these algorithms are highly functional, they are not easily generalizable to more com-
plex functions. One such function is a weighted threshold scheme, where each individual participant
has a weight. This could theoretically be solved by assigning multiple private keys to each partic-
ipant and running a threshold signature scheme, but if complicated weights are used (i.e. rational
numbers with large numerators/denominators), such a scheme falls apart as huge numbers of private
keys must be generated. If irrational weights are used, then it is impossible to perfectly simulate
the correct threshold by assigning multiple keys. Thus, we seek to form a more generalizable access
structure. More specifically, we wish to form a signature scheme for multiple parties with potentially
any access structure such that making a party participate in the scheme that was previously not

1

PRIMES Final Research Paper

participating would never decrease the chances of a valid group signature. We wish to call such a
scheme a monotonic signature scheme, and we explore how to craft such a scheme in this paper.

2 Background

We seek to craft a monotonic signature scheme, and in order to do so we need a baseline signature
scheme that has key homomorphic properties. This property is significant, since later on we wish
to craft a multisignature scheme by splitting up the private key of the baseline signature scheme.
Each party will then obtain a piece of the private key. Afterwards, each party will craft their own
individual signatures by signing the same message, and using the homomorphic properties, a valid
signature may be reconstructed with the shares such that it is equivalent to the signature formed by
the original private key. In particular, the algorithm will use AND and OR gates, as well as FANOUT.
One such scheme that may be used is the BLS (Boneh–Lynn–Shacham) signature scheme [BLS01].
Other signature schemes with key homomorphism properties may be used, but let us first describe
BLS.

Firstly, let us state concepts that will be necessary to describe the Boneh–Lynn–Shacham (BLS)
signature scheme. BLS is a deterministic signature scheme with key homomorphism properties. It
uses bilinear groups to trivialize the Decisional Diffie Hellman problem, but the Computational
Diffie Hellman Problem remains infeasible. The secuirty of the Diffie Hellman protocol is based on
how hard it is to compute the discrete logarithm function [BS20]. Let us now define the discrete
logarithm problem:

Definition 1 (Discrete Logarithm Problem). Given a group G = Zp for some prime p, the discrete
log problem is to find a number x such that gx = a mod p, where a, g ∈ Zp.

The above problem is assumed to be computationally infeasible. This provides a very useful
one way function, where it is simple to exponentiate but difficult to perform the inverse operation.
Let us now introduce the Decisional Diffie Hellman problem and the Computational Diffie Hellman
Problem:

Definition 2 (Computational Diffie-Hellman (CDH)). Given a group G = Zp for some prime p,
and given ga, gb for some g, a, b ∈ Zp, compute gab.

Note that CDH is computationally infeasible, as in order to compute gab, one would require
either a or b (as gab = (ga)b = (gb)a) to solve the discreet log problem. This is a very important
property that will be useful in the BLS scheme.

Definition 3 (Decisional Diffie-Hellman (DDH)). Given a group G = Zp for some prime p, and
given ga, gb, gc for some g, a, b, c ∈ Zp, decide whether c ≡ ab mod (p − 1). A bit b ∈ {0, 1} is
outputted, such that b = 1 if and only if c ≡ ab mod (p− 1).

At first, one might assume that DDH is computationally infeasible, as in order to evaluate if
c = ab, one would have to solve the discrete log problem to find a, b, and c. However, consider the
following construct:

Definition 4 (Bilinear Map). We call a function e : G1 × G2 → G3 a bilinear map if for a ∈ G1,
b ∈ G2, x, y ∈ Z:

e(ax, by) = e(a, b)xy

2

Since a bilinear map is computationally efficient, it can be used to solve the DDH problem very
easily by checking if the following statement is true:

e(ga, gb) = e(g, gc)

as it is essentially checking if e(g, g)ab = e(g, g)c. It should be noted that the CDH problem remains
hard even with bilinear maps, as bilinear maps cannot be used to generate the actual exponent.

Definitions 1-4 are based on [ZSS04].

We now define the BLS signature scheme as follows:

Definition 5 (BLS Signature Scheme). The BLS signature scheme contains 3 protocols: key gen-
eration (K), signing (S), and verification (V) [BLS01]. More specifically:

• K: A prime p, a generator g ∈ Zp, and a secret key sk ∈ Zp are chosen. There is also a public
key pk = gsk (where exponentiation is done from within the residue Zp). pk, g, and p are
publicized

• S: A message m ∈M is chosen from message space M . A signature σ = msk is produced and
publicized

• V : Given a bilinear map e, it is verified that e(σ, g) = e(m, gsk). A bit b ∈ {0, 1} is outputted,
such that b = 1 if and only if e(σ, g) = e(m, gsk)

Due to DDH, verification is trivialized and easy to perform. By contrast, it is very difficult to
forge a signature, as it is difficult to compute the private key sk due to CDH and the discrete
logarithm problem. This provides a very robust signature scheme. Optionally, one could use a hash
function on the message for additional security, and thus perform the same algorithm but use H(m)
as opposed to m, for some hash function H(x).

Due to the use of exponents, key homomorphism is present in the scheme. For example, suppose
one wished to split the private key pk between two participants and form pka and pkb. It is possible to
reconstruct the overall signature σ = gpk without either participant knowing their opposite private
key. If we have a dealer give out pka and pkb such that pk = pka + pkb and they are randomly
distributed in the residue, then each participant can create their own signatures (σa = gpka and
σb = gpkb respectively). The participants can then compute σa ∗ σb = gpka ∗ gpkb = g(pka+pkb) =
gpk = σ. Thus, we can see that there is a direct and easily computable relationship between the
private key and the signature, as by manipulating simply the signatures, one can also manipulate
the private key and therefore the overall signature. This property will be very useful later on in the
paper.

3 Related Works

Firstly, we will establish preliminary notions that will be used to expand upon and better understand
our monotonic signature scheme. We start with defining a signature scheme for a single party.

Definition 6 (Signature Scheme). A signature Scheme S consists of 3 polynomial time algorithms
(K,S, V):

• K(k) This algorithm outputs sk (secret key) and pk (private key) with message spaceM using
the security input k. sk is used for signing, and therefore should remain private for the party.
pk is used for verification, and is thus publicized.

3

• S(sk,m) : Using the secret key sk and a message m ∈ M , a signature σ is generated and
outputted

• V (pk,m, σ) : Using the public key pk, message m and the signature σ, a bit b ∈ {0, 1} is
outputted, where b = 1 denotes a valid signature

Digital signatures (both singular and multisignature algorithms) contain several important prop-
erties. One of these properties is authentication, as private ownership of the private key requires that
any produced signature and verification of such signature could only have come from the specific
party that has the private key. No other party could reconstruct or generate the private key, nor
could they forge a signature under such a private key.

Another important property of digital signatures is integrity, in that the message that is signed
may not be altered without invalidating the signature.

A final important property of digital signatures is non-repudiation, which is that once the signa-
ture has been signed, it is permanent and non-redactable. This is achieved through the publication
of the public key, the signature, and the message. The combination of the three can allow any public
participant to check the signature forever, where the message could only have been signed by the
party having the private key.

We seek to more formally define notions of correctness and security for digital signature algo-
rithms:

Definition 7 (Correctness). A digital signature scheme S is correct, if for all security parameters
k ∈ N , K(k), sk, pk, and m ∈M , we have that Pr[V (pk,m, S(sk,m)) = 1] = 1.

Definition 8 (Security). A signature scheme S is secure if for all adversaries A, for any message
m ∈M , and for any K(k)→ (sk, pk), there exists a negligible function ε such that

Pr[A(pk,m′)→ σ′, V (pk,m′, σ′) = 1] ≤ ε(k)

Definitions 6-8 are from [DS19].

Using these baseline signature definitions, we seek to move on to multisignature schemes. We
first must formally define a method in which certain parties may join together in order to form a
signature. We call such an object an access structure, where all combinations of valid participant
subsets are contained within it. Let us now define an access structure, as it is a necessary construct
in order to formally define a valid set of participants for a multisignature scheme:

Definition 9 (Access Structure). We say that an access structure A of set U is a subset A ⊆ 2U .
Provided we have a set I such that I ⊆ U , if I ∈ A, we can define I as a qualified subset. [Bai+16]

Access structures are beneficial in order to formalize which combinations of parties may be used
in order to successfully perform a multisignature scheme. Let us now define a Distributed Signature
Scheme:

Definition 10 (Distributed Signature Scheme). We define a signature scheme S = (K,S, V). We
denote a corresponding (A,n) distributed signature scheme (where n is the number of participants
and A is an access structure) as a triple of polynomial time algorithms (DK,DS,DV). They are
defined as follows:

• DK(k): This algorithm takes in a security parameter k and outputs a grandmaster public and
secret key, pk and sk respectively. Secret key shares sk1, sk2, . . . skn are distributed to parties
P1, P2, . . . Pn

4

• DS({ski}[i∈U],m): Given a subset of parties U ∈ A and a message m ∈ M , they seek to
reconstruct a signature σ = mpk using their secret key shares. The output is (σ,m). If U 6∈ A,
the reconstruction process necessarily fails, and no valid signature is produced

• DV (pk,m, σ): The protocol verifies the validity of the signature using the public key, and
outputs a bit b ∈ {0, 1}, where b = 1 if and only if the signature is valid

The reconstruction process may be accomplished with a variety of methods, which only allows
valid subsets as dictated by the access structure to successfully complete the protocol. Since the
shares are randomized, it is impossible for an adversarial set of parties to reconstruct the signature
without passing through the access structure.

Let us now formally define threshold signature scheme:

Definition 11 (Threshold Signature Scheme). We define a signature scheme S = (K,S, V). We
denote a corresponding (t, n) threshold signature scheme (n is the number of parties, t is the
threshold such that 1 ≤ t ≤ n) as a triple of polynomial time algorithms (TK, TS, TV). They are
defined as follows:

• TK(k): This algorithm takes in a security parameter k and outputs a grandmaster public and
secret key, pk and sk respectively. Secret key shares sk1, sk2, . . . skn are distributed to parties
P1, P2, . . . Pn.

• TS({ski}[i∈U],m): Given a subset of parties |U | ≥ t and a message m ∈ M , they seek to
reconstruct a signature σ = mpk using their secret key shares. The output is (σ,m). If |U | < t,
the reconstruction process necessarily fails, and no valid signature is produced

• TV (pk,m, σ): The protocol verifies the validity of the signature using the public key, and
outputs a bit b ∈ {0, 1}, where b = 1 if and only if the signature is valid [Bol03]

Some important properties for the threshold signature scheme are that the shares sk1, sk2, . . . skn
are randomly distributed, and should have the same distribution as the baseline signature scheme
key generation K. Additionally, typically it is the case that TV = V , as one simply uses the
reconstruction protocol to create the signature that would otherwise have been generated by the
baseline signature scheme S, and from there the baseline scheme can be used to verify the signature
using V .

The threshold signature scheme may be trivially accomplished by using a secret sharing protocol
with a threshold mechanism embedded. In such a way, each party gets a share si, and only if
the number of parties exceeds t will they be able to reconstruct the grandmaster private key pk.
Many such secret sharing schemes exist. Perhaps most famous one is Shamir Secret Sharing, which
allows for threshold secret sharing by utilizing Lagrange interpolation. The shares are points on a
polynomial, and the polynomial itself can be reconstructed if enough parties join together.

Let us also define the unate function:

Definition 12 (Unate function). We say that a boolean function f(x1, x2, . . . xn)
(where x1, x2, . . . xn ∈ {0, 1} and the function output is a bit b ∈ {0, 1}), is unate if for any xi:

f(x1, x2 . . . xi−1, 1, xi+1, . . . xn) ≥ f(x1, x2 . . . xi−1, 0, xi+1, . . . xn)

It is significant to note that all monotonic functions f(x) can be described using a boolean circuit
containing AND and OR gates, where AND and OR gates receive two binary inputs and output their
corresponding functional values. However, it is assumed that one is able to replicate the outputs of

5

the AND and OR gates into multiple future inputs, and we denote such replication as FANOUT (it
receives 1 input and has multiple outputs that copy the input).

Let us now define a monotonic access structure:

Definition 13 (Monotonic Access Structure). We say that an access structure A of set U is a
monotone subset A ⊆ 2U . Thus, for ∀B,C, if B ∈ A and B ⊆ C, then C ∈ A. Provided we have a
set I such that I ⊆ U , if I ∈ A, we can say that I is a qualified subset. We may form a bijective
correspondence between sets of I that are in A in the following manner:

I ∈ A ⇐⇒ f(I) = 1

where f(x1, x2 . . . xn) is a unate function as described earlier [Bai+16] [OSW07].

Monotone access structures are useful in that they allow for substantial variance and flexibility,
as they simply require that the addition of more parties to a set attempting to pass the access
structure will not decrease the chance of passing. This logic is also natural and useful for real world
applications, as one could expect that the addition of participants/keys should naturally lead to an
increased chance of success. The removing of participants/keys in order to have a higher chance, by
contrast, is unnatural and not intuitive. Furthermore, such structures may be modeled with AND,
OR, and FANOUT gates, due to their bijective correspondence with arbitrary unate functions. This
grants much utility and practicality in modeling these access structures. Thus, we seek to form a
multiparty signature scheme that has a monotonic access structure.

4 Protocol

Using the BLS signature scheme, we seek to craft a monotonic signature scheme that will produce
a valid signature for any valid combination of valid input signatures. The general idea behind the
scheme is to form a mechanism that is analogous to a garbled circuit: There will be input wires
where valid signatures would be submitted, and there will be an output wire where a valid combined
signature is produced.

As discussed earlier, a boolean monotonic function can be crafted through 2 gates (AND and
OR). AND gates will require two valid signatures in order to propagate a valid signature, and OR
gates will require only one valid signature in order to propagate a valid signature. We also use
FANOUT, which accepts a valid signature, and will propagate multiple valid signatures.

The idea behind the mechanism is for there to exist a grandmaster public and private key.
In order to generate the private keys for the individuals, the network propagates from the end
node upwards. Once each party has their private key, they generate their signatures, and propagate
through the circuit from the top to the bottom. We will denote the first phase as the key generation
phase (as the private keys for each party will be created), the second phase as the combined signature
phase, and the final phase as the combined verification phase (which simply verifies the combined
signature with the grandmaster public key).

The above mechanism will use 3 gates: the AND, OR, and FANOUT gates that have already been
stipulated. We will first describe the key generation phase through the bottom-up traversal of the
wires, and then the combined signature phase will be described through the top-bottom traversal
of the wires.

Let us now more formally define the notion of a circuit and introduce notation in order to more
accurately describe the proposed signature scheme.

Definition 14 (Circuit). A circuit C : {x1, . . . xn} → y is described by wires {w1, ..., w`}, where
` > n, and gates {g1, g2, . . . gλ}, where the number of gates is λ. Given a wire wi, we call it an input

6

wire if i ∈ [1, n], an internal wire if i ∈ [n+1, `−1], and an output wire if i = `. Every internal wire
connects two gates. However, the input wires are only connected to one gate, and so is the output
wire. Furthermore, each gate is connected to 3 wires. As such, we have λ = (2`+ n+ 1)/3 gates.

Each wire wi, i ∈ [1, `] carries a value, whereas each gate gi, i ∈ [1, λ] is described by a tuple
(wa, wb, wc) of 3 wires and a type ti ∈ AND, OR, FANOUT. The type determines the characteristics
of the tuple of 3 wires: if gi has type ti ∈ AND, OR, then gi has two input wires wiLI and wiRI to
the left and right respectively, and one output wire wiO . Finally, if ti = FANOUT, then gi has two
output wires wiLO and wiRO , and one input wire wiI . WLOG the output wire wiO is not connected
to a gate of type tλ = FANOUT.

There are two possible evaluations of a circuit: bottom-up and top-down. For a bottom-up
evaluation of a circuit, a gate gi is ready to be evaluated if and only if its output wires have been
assigned. Thus, if ti = AND, OR, the gate is ready to be evaluated if wiO 6= ⊥. If ti = FANOUT, the
gate is ready to be evaluated if wiLO 6= ⊥ and wiRO 6= ⊥. Evaluation of the circuit commences as
follows:

• Given input y, assign w` = y

• While wi = ⊥ for ∀i ∈ [1, n], evaluate the first gate gi that is ready to be evaluated :

– If ti = AND, assign wiLI = j and wiRI = k such that wiO = j ∧ k.
– If ti = OR, assign wiLI = j and wiRI = k such that wiO = j ∨ k.
– If ti = FANOUT, assign wiI = j, such that j = wiLO = wiRO (Note that this does not

necessarily mean the three numbers are numerically equal, for example in our signature
scheme this means that all 3 private keys are valid, and therefore during the top-down part
of the circuit evaluation, a valid input signature will lead to two valid output signatures)

• Output (w1, w2, . . . wn)

For a top-down evaluation of a circuit, a gate gi is ready to be evaluated if and only if its input
wires have been assigned. Thus, if ti = AND, the gate is ready to be evaluated if wiLI 6= ⊥ and
wiRI 6= ⊥. If ti = OR, the gate is ready to be evaluated if wiLI 6= ⊥ or wiRI 6= ⊥. If ti = FANOUT,
the gate is ready to be evaluated if wiI 6= ⊥. Evaluation of the circuit commences as follows:

• 1. Parse the input x1, x2, . . . xn, and assign wi = xi for all i ∈ [1, n]

• 2. While w` = ⊥, find the first gate gi which is ready to be evaluated :

– If ti = AND, then assign wiO = wiLI ∧ wiRI

– If ti = OR, then assign wiO = wiLI ∨ wiRI

– If ti = FANOUT, then assign wiLO = wI and wiRO = wI

• Output w`. [Bai+16]

The above definition can easily be classified as a binary circuit should all the inputs, outputs,
wires, and gates accept binary inputs. As was discussed earlier, all unate functions can be represented
through AND and OR gates. Therefore, unate functions may be represented through a circuit. In
our monotonic signature scheme, we seek to utilize a similar concept, but instead of evaluating
the circuit with bits, it would be evaluated with valid/invalid signatures (a valid signature can be
thought of as a 1, and an invalid signature as a 0). In this model, the gates perform operations on

7

these signatures and output a valid or invalid signature based on the validity of the input signatures
(as described earlier).

Thus, for our monotone signature scheme, we will have a key generation phase, a combined
signature phase, and a combined verification phase. In the key generation phase, the grandmaster
private key has to be distributed to the participants so that they can later reconstruct the valid
signature. Thus, the algorithm will traverse up the circuit starting from the bottom, and assign
wires based on lower wires and the logic gates. When all of the input wires have been assigned a
private key, they will be distributed to each party. For the combined signature phase, a valid set
of parties as dictated by the access structure will first individually craft their own signatures, and
then traverse down the circuit, while following the logic of each gate accordingly. A final signature
will be outputted at the very end through the output wire. Finally, the signature may be verified
with the grandmaster public key in the combined verification phase. Let us describe in detail each
of the 3 phases:

Key Generation Phase: Using the BLS scheme, we create a grandmaster public key pk and a
grandmaster secret key sk. Given a unate function f(x), we create a circuit C such that it models
the function. Using C, we assign w` = sk. From there, we perform a bottom-up traversal of the
circuit, and we evaluate a gate (and therefore assign private keys to the input wires of the gate) if
the output wire has been assigned a private key. Thus, for each gate gi that is ready to be evaluated:

• If ti = AND: Given an output wire wiO = skiO and its corresponding private key, we assign
wiLI = skiLI and wiRI = skiRI such that skiLI + skiRI = skiO .

• If ti = OR: Given an output wire wiO = skiO and its corresponding private key, we assign
wiLI = skiO and wiRI = skiO .

• If ti = FANOUT: given two output wires wiLO = skiLO and wiRO = skiRO , we sample a random
integer skiI ∈ Zp and assign wiI = skiI . Two variables PiL = skiLO ∗sk

−1
iI

, PiR = skiRO ∗sk
−1
iI

,
which are stored and publicized

After each gate has been evaluated, the n input wires w1, . . . wn are assigned to each party
P1, . . . Pn through private means of communication (e.g. a private, secure channel) such that each
party respectively has sk1, . . . skn. Thus, each party has their own private keys.

Combined Signature Phase: Each party P1, . . . Pn computes their own signature σ1, . . . σn, where
σi = mski . The wires in the circuit are reset and for each input wire we assign wi = σi, where
i ∈ [1, `]. Afterwards, a top-down traversal of the circuit is performed, each gate is evaluated (and
therefore signatures are assigned to the output wires of the gate) if the input wires have been
assigned a signature. Thus, for each gate gi that is ready to be evaluated:

• If ti = AND: Given input wires wiLI = σiLI and wiRI = σiRI , we assign wiO = σiLI ∗ σiRI =
mskiLI ∗mskiRI = m(skiLI

+skiRI
) = mskiO = σiO

• If ti = OR: Given input wires wiLI = σiLI and wiRI = σiRI , choose either signature and assign
to wiO , as σiLI = σiRI = σiO due to skiLI = skiRI = skiO

• If ti = FANOUT: Given an input wire wiI = σiI , assign wiLO = σ
PiL
iI

= (mskiI)
(skiLO

∗sk−1
iI

)
=

m
(skiI ∗skiLO

∗sk−1
iI

)
= mskiLO = σiLO and wiRO = σ

PiR
iI

= (mskiI)
(skiRO

∗sk−1
iI

)
= m

(skiI ∗skiRO
∗sk−1

iI
)
=

mskiRO = σiRO

8

After all the gates are evaluated, the final wire w` is publicized, as w` = σ is the final combined
signature.

Combined Verification Phase: The final signature σ is verified with the grandmaster public key
using a bilinear map, as is per usual with the BLS scheme.

Now that we have precisely described each of the 3 phases of the algorithm, let us verify the
correctness of the algorithm by verifying that each gate performs its task correctly. For an AND
gate, it will only output a valid signature if and only if it received two valid signatures from the
input wires. This is in fact true: WLOG if wiLI = σ′iLI

for a gate gi, then wiO = σ′iLI
∗ σiRI =

m
sk′iLI ∗ mskiRI = m

(sk′iLI
+skiRI

) 6= σiO . The OR gates require only one valid signature, due to
duplication of the private key during the key generation phase. By using variables that are publicly
available, FANOUT gates are able to compute two valid signatures from one, as is described in the
scheme.

Since the correctness has been verified, let us also verify the privacy of the scheme. The AND
gates are secure, as WLOG an adversary A could not use their private key skiLI to compute the
other private key skiRI , as the adversary may compute mskiO /mskiLI = mskiRI , but they may not
compute skiLI due to the difficulty of the discrete logarithm problem. The security of an OR gate
is not necessary, however, since if the adversary already has a valid key, they do not need the
other wire’s key (which is already identical) in order to pass the OR gate. However, if they do not
have the private key for the OR gate, the adversary cannot forge a signature. Finally, the FANOUT
gate is secure, as WLOG an adversary cannot use PiL = skiLO ∗ sk

−1
iI

to compute skiLO without
possessing skiI . Thus, none of the gates could be forced to artificially create a valid signature given
an adversary.

It should be noted, however, that the parties must be semi-honest, and not malicious. This is
especially obvious in the OR gate, as the assumption is that there is no adversary A such that
they deliberately corrupt a signature, use it in one of the input wires for an OR gate, and therefore
deliberately cause the OR gate to report false.

We now seek to prove correctness and privacy of the scheme. Correctness can be proven by
inspection, and the soundness of the scheme (the inability of a set of parties not in the access
structure to generate a valid signature) is also self evident from BLS. We seek to prove privacy by
generating a simulator that can first be used to show the privacy of the scheme if the circuit has no
FANOUT gates. We will then use the same simulator in order to show the privacy with the existence
of FANOUT gates by showing that if the circuit is private with one less FANOUT gate, then it is
private with its current number of FANOUT gates.

Definition 15 (Privacy). By observing the recombined signature, any computationally efficient
adversary learns nothing about message m.

Note that this is a weak notion of privacy, as realistically all signatures used during the recom-
bination phase might be public. However, the proof shown can be similarly adapted to intermediary
signatures, as such signatures can be thought of as sub-computations on a smaller part of the overall
circuit.

Proof of Privacy: The monotonic signature scheme is private under the assumption that the
BLS signature scheme is private. [BLS01]

9

We prove the privacy with a simulator. In the high level, we wish to create a simulator that
does not know message m but generates a signature σ′ that has the exact same distribution as
when generated with the actual signature scheme. In this way, we show that the adversary cannot
distinguish between the two values, and therefore the recombined signature leaks no information
regarding message m.

Given a monotonic signature scheme S with circuit C, a monotone access structure A, a message
m, and an adversary, we can always construct a simulator Sim:

1. Sim does the setup with a randomized grand master public and secret key (pk′ and sk′)
respectively.

2. Sim executes the key generation phase, and generates n secret keys sk′1, . . . sk′n for hypothetical
parties P ′1, . . . P ′n (we do not have real parties, but Sim runs them virtually).

3. Sim randomly samples partial signatures for all the parties from the signature space (without a
message), if the secret keys for Party i and j are the same, Sim only samples a single signature
and assigns it for i and j.

4. Sim executes the combined signature phase using the partial signatures, which generates a
signature w` = σ′.

We now prove that the distribution of σ′ (the randomized recombined signature value gener-
ated from Sim) is computationally indistinguishable from the distribution of w` = σ (the actual
recombined signature from the signature scheme S).

First, we note that σ = w` is the real view, as seen by final computation performed through the
signature scheme S, whereas σ′ is a random value seen in the simulated view. We also note the privacy
of BLS, namely that given a BLS scheme, the signature σ = msk gives no information pertaining
to message m should the message not be released, as the signature has the same distribution as
the key used. [BLS01]. We now first consider circuits without FANOUT gates, and afterwards we
consider circuits with FANOUT gates.

Without FANOUT Gates One may observe that if a circuit C contains no FANOUT gates, the
output signature is simply w` =

∏
i∈Set σi, where σi = mski for each party Pi and Set is a subset

of the input parties. This is necessarily the case since an OR gate simply outputs one of two input
wires (which are identical) and an AND gate simply outputs the product of two input wires. Thus,
w` =

∏
i∈Set σi = m

∑
i∈Set ski , and since the sum of random values is a random value, what is

essentially computed is mr for some random r.
If we now consider Sim, using the same logic the output signature is simply w` =

∏
i∈Set ri where

ri is a random value. The product of random values is a random value, and thus Sim generates a
random value. Finally, we note that under the BLS assumption, the signatures generated from S
have the same random distribution as the keys used. Therefore, the distribution of the reconstructed
signatures from S and Sim have the same distribution.

With FANOUT Gates We now seek to use an induction-like method to remove FANOUT gates,
and ultimately decompose the circuit C into other circuits without FANOUT gates. We will first
create a series of circuits (C∗0 , C

∗
1 , . . . C

∗
f). We first define C∗f as a circuit with an input length of

n∗f = n + 2f wires (it receives the original input wires from C and two wires for each FANOUT
gate, denoted with f) and contains the wires and gates that can reach w` without encountering a
FANOUT gate. We then find the first input wire that is connected to a FANOUT gate during the
previous search, and define C∗f−1 as a circuit with input length n∗f−1 = n+ 2(f − 1) that contains
all the wires and gates to reach the aforementioned input wire without encountering a FANOUT
gate. We define C∗f−2, . . . C

∗
0 similarly, with C∗0 being the final definition of such circuits and having

10

a maximum of n∗0 = n input wires. We note that none of the inputs of C∗0 come from a FANOUT
gate. A key observation is that the above circuits do not contain FANOUT gates.

Given that the original circuit C accepts n inputs x1, x2, . . . xn (where xi ∈ {0, 1}), we now
generate more inputs as follows: xn+1 = xn+2 = C∗0 (x1, x2, . . . xn), xn+3 = xn+4 = C∗1 (x1, x2, . . . xn),
and we end with xn∗f−1 = xn∗f = C∗f (x1, x2, . . . xn). Due to the fact that the new added inputs
represent FANOUT replication (as each circuit leads to a FANOUT gate, which is then duplicated
into two variables), we may write:

C(x1, x2, . . . xn) = C∗f (x1, x2, . . . xn∗f)

The above statement is true for any x1, x2, . . . xn∗f ∈ {0, 1}. We also construct circuits (C ′0, C
′
1, . . . C

′
f)

which do contain FANOUT gates, albeit less than the original circuit C. A circuit C ′i has n
′
i = n+2i

input wires and f − i FANOUT gates. We set C ′f = C∗f and

C
′
i−1 = C

′
i(x1, . . . xn′i−1

, C∗i (x1, . . . xn′i−1
), C∗i (x1, . . . xn′i−1

))

We can clearly see that C = C
′
0. We now construct a series of adversaries such that each adversary

Di receives respectively: σ0, σ1, . . . σn′f , where the inputs are generated from a monotonic signature

scheme with circuit C ′i with randomized signatures. We have already shown that a monotonic
signature scheme is private given that it does not contain FANOUT gates. Hence, since Df receives
circuit C ′f = C∗f which does not contain FANOUT gates, the output wire is private. We will now
argue inductively that if adversary Di−1 successfully breaks privacy by outputting the true value,
then so can Di. This will form a contradiction, as by finite descent the implication is that the
privacy of Df will be compromised. Thus, we can conclude that adversary D0 can only compromise
the security of the scheme should the adversary compromise the BLS and discrete logarithm problem
assumptions.

For the induction part of the proof, we need to show that adversary Di may construct a signature
scheme for adversary Di−1 (as adversary Di−1 has an additional FANOUT gate). By creating this
connection, if adversary Di−1 compromises the privacy of the signature scheme with circuit C ′i−1,
then so may Di with circuit C ′i . A simple consideration is to add a FANOUT gate, and re-run
the key generation phase for circuit C∗i with the added gate. However, a difficulty arises when
we consider that the signatures σ∗0, σ∗1, . . . σ∗n+2i−2 (the valid/invalid signature corresponding with
inputs x∗0, x∗1, . . . x∗n+2i−2) for circuit Ci should correspond with all other existing signatures between
circuits. In particular, σ∗j = σ

′
j for 0 ≤ j ≤ n+ 2j. We thus consider 3 cases:

1. C∗i outputs 1: In this case, no values from the FANOUT gate need to remain hidden from
adversary Di−1, thus Di runs the signature generation protocol using circuit C∗i , computes
some product of signatures σt. Using the public variables PiL and PiR , wiLO = σ

PiL
t and

wiRO = σ
PiR
t are computed, then σ∗0 = σ

′
0||(wiLO , wiRO) and σ∗j = σ

′
j is true for remaining j.

This is given as input for Dj−1.

2. Ci outputs 0, however both σ
′
n+2i−1 and σ

′
n+2i are known: One case where this may

occur is if the outputs of the FANOUT gate lead to the inputs of two OR gates. In this case, the
signatures are already known through the computation of the other two legs of the OR gate,
as we have defined OR gates to have identical inputs (both equal to the output). In this case,
Dj can simply encrypt the two signatures σ′n+2i−1 and σ

′
n+2i randomly. Since C∗i = 0 (i.e.

the circuit fails) and it does not contain FANOUT gates, the adversary Di−1 cannot tell the
difference between different random encryptions without compromising the BLS and discrete
logarithm assumptions.

11

3. Ci outputs 0, however either σ
′
n+2i−1 or σ

′
n+2i (or both) are not known: WLOG

let Di−1 know σ
′
n+2i−1 and not σ′n+2i. With σt as defined earlier, Di−1 then receives inputs

wiLO = σ
σ
′
n+2i−1

t and wiRO = σrt for a random r. IfDi outputs the value of the output wire, then
Di−1 can compute r and compromise the privacy of the BLS security scheme, thus forming a
contradiction. Similar reasoning may be used when both σ′n+2i−1 and σ′n+2i are not known.

[Bai+16]

5 Limitation

Note that during the setup phase, for every FANOUT gate we publish two public values PiL =
skiLO ∗ sk

−1
iI

and PiR = skiRO ∗ sk
−1
iI

. However, an adversary could easily compute PiL ∗ P
−1
iR

=

skiLO ∗ sk
−1
iRO

, and therefore leak information through the product of two secret keys. Such an issue
poses limitations to the extent of the security of the scheme, although there are methods to limit
this issue, including key-length doubling (and therefore one must also limit the maximum depth of
FANOUT gates to prevent exponential growth), or the use of additional secret encryption keys.

6 Applications

The signature scheme may be used for any application requiring a joint signature scheme that
utilizes a monotonic function. One such application is for a joint verification of a message, such as a
letter, email, document, etc. Previously, such signing of messages was done individually, and a joint
signature scheme would be simple in that it either just requires the parties to pass an unweighted
threshold or for the parties to pass a threshold where each party has relatively simple weights
(no irrational or complex rational numbers). This could be useful in more basic applications, but
consider the following example: suppose you have 1 president and 5 subordinates, and one wishes
to craft a scheme such that if the president signs the document or at least 3 of the 5 subordinates
sign the document. Although this could still be solved with a weighted threshold signature scheme,
it could be very easy to imagine how additional constrains and more complex functions could make
weighted threshold schemes infeasible. By contrast, with the monotonic signature scheme, complex
functions can be modeled very easily, as a binary circuit can model any monotonic function, and
therefore this signature scheme is useful for complex functions such as the above example.

Another potential use of the signature scheme is for hierarchical access control, where the mono-
tonic signature scheme is used to authenticate users. For example, consider an office building, where
you have 1 president and 5 subordinates, and in order to enter the building you need at least the
president or 3 of the 5 subordinates. This could be solved by requiring the users to sign a message,
and authenticate them into the building only if the signature is valid. Thus, the monotonic signature
scheme may be used again, in this situation to authenticate users and allow for hierarchical access
control.

7 Conclusion

To conclude, a new signature scheme for multiple parties was created that utilized a circuit and the
BLS signature scheme, and it has monotonic properties. This could have real, practical applications,
as are described in the previous section. There are several areas for additional research.

12

One area for additional research is to look into different signature schemes with key homo-
morphism, particularly schemes that are randomized. Such schemes provide an additional layer of
security, and thus allow for a more robust scheme.

Another area for future research is for the use of the protocol to solve existing problems. In
particular, Dolev-Strong, a famous result to solve the broadcast problem, currently uses a signature
protocol. Its efficiency could be further improved with the monotonic signature scheme, as opposed
to using a signature scheme for each individual.

Finally, another area for development is a way to reduce the memory required for FANOUT
gates. Currently, two variables need to be created and stored for FANOUT gates, which is inefficient
due to the potential for a large number of FANOUT gates. A reduction in the number of variables
necessary for FANOUT could lead to a dramatic decrease in memory usage.

References

[BLS01] Dan Boneh, Ben Lynn, and Hovav Shacham. “Short signatures from the Weil pairing”.
In: International conference on the theory and application of cryptology and information
security. Springer. 2001, pp. 514–532.

[Bol03] Alexandra Boldyreva. “Threshold signatures, multisignatures and blind signatures based
on the gap-Diffie-Hellman-group signature scheme”. In: International Workshop on Public
Key Cryptography. Springer. 2003, pp. 31–46.

[ZSS04] Fangguo Zhang, Reihaneh Safavi-Naini, and Willy Susilo. “An efficient signature scheme
from bilinear pairings and its applications”. In: International Workshop on Public Key
Cryptography. Springer. 2004, pp. 277–290.

[OSW07] Rafail Ostrovsky, Amit Sahai, and Brent Waters. “Attribute-based encryption with non-
monotonic access structures”. In: Proceedings of the 14th ACM conference on Computer
and communications security. 2007, pp. 195–203.

[Bai+16] Ge Bai et al. “Non-interactive verifiable secret sharing for monotone circuits”. In: Inter-
national Conference on Cryptology in Africa. Springer. 2016, pp. 225–244.

[DS19] David Derler and Daniel Slamanig. “Key-homomorphic signatures: definitions and appli-
cations to multiparty signatures and non-interactive zero-knowledge”. In: Designs, Codes
and Cryptography 87.6 (2019), pp. 1373–1413.

[BS20] Dan Boneh and Victor Shoup. A graduate course in applied cryptography. 2020.

13

	Introduction
	Background
	Related Works
	Protocol
	Limitation
	Applications
	Conclusion

