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Abstract. There is a rich algebraic structure in the mod p homology of the iterated loop
space H∗(ΩnX;Fp). It admits Lie bracket called the Browder bracket that is compatible with
the Dyer-Lashof operations Q0, Q1, . . . , Qn−1. Furthermore, the top Dyer-Lashof operation
Qn−1 is a restriction for the Browder bracket. Ni proved that the Browder bracket on the
homology H∗(ΩnX) converges to the bracket on H∗(Ωn−1X) in the bar spectral sequence,
making it a spectral sequence of Poission-Hopf algebras. Our goal is to use the bar spectral
sequence to relate the restricted Lie algebra structure given by the top Dyer-Lashof operation
on H∗(ΩnX;F2) to that of H∗(Ωn−1X;F2).

1. Introduction

Algebraic topology emerged in the early 20th century as a method of constructing in-
variants for spaces up to homotopy. One such invariant was homology and in the mid-20th
century the homology loop spaces were heavily studied by prominent figures such as William
S. Browder, Frederick R. Cohen, and Eldon Dyer. We summarize their work below.

Given a space X with a chosen basepoint ∗, one can consider the associative H-space ΩX
of loops in X that start and end at ∗. Iterating the loop space construction, we obtain the
n-fold loop space ΩnX. The mod p homology of the n-fold loop space has a rich algebraic
structure, as was studied extensively by Cohen in [5]. For instance, the graded F2-algebra
H∗(Ω

nX;F2) is a Poisson Hopf algebra with a shifted Lie bracket called the Browder bracket
that increases degree by n − 1. It also supports Dyer-Lashof operations Q0, . . . , Qn−1 that
are compatible with the bracket. Furthermore, the top Dyer-Lashof operation Qn−1 equips
H∗(Ω

nX;F2) with the structure of a restricted Poisson Hopf algebra, i.e. it satisfies the
adjoint identity and the Cartan formula with respect to the Browder bracket.

A natural question to ask is how the structure on H∗(Ω
nX;F2) is related to that on the

homology of the delooping BΩnX ' Ωn−1X of ΩnX for n ≥ 2. In the limiting case n =∞,
Ligaard and Madsen [4] utilized the bar spectral sequence

E2
s,t = Tor

H∗(G)
s,t (F2,F2)⇒ H∗(BG)

to show how the Hopf algebra structure and the Dyer-Lashof operations on the delooping
BX of an infinite loop space X is determined by those on X up to extension.

In the unstable case where n is finite, Ni [7] showed that the bar spectral sequence

E2
s,t = Tor

H∗(ΩnX)
s,t (F2,F2)⇒ H∗(Ω

n−1X)
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is a spectral sequence of Poisson Hopf algebras. He constructed an extension of the Browder
bracket to the bar construction of H∗(Ω

nX), and showed that the extended Browder bracket
passes to the Browder bracket on H∗(Ω

n−1X) via the bar spectral sequence.

The goal of this project is to strengthen Ni’s result by taking into account the restriction
on the Possion algebra H∗(Ω

nX;F2) given by the top Dyer-Lashof operation Qn−1. In Section
2, we review the constructions of the Browder bracket, the Dyer-Lashof operations, the bar
spectral sequence, as well as Ni’s extension of the Browder bracket to the normalized bar
construction B∗,∗(H∗(Ω

nX)).
In Section 3, we establish the following extension of the restriction ξ on the Browder

bracket, which coincides with the top Dyer-Lashof operation Qn−1, to the bar construction.
This defines an operation ξ : E1

s,t → E1
2s−1,2t+1 on the E1-page E1

s,t = Bs,t(H∗(Ω
nX)) of the

bar spectral sequence. Let x = [x1| · · · |xs] ∈ B∗,∗(H∗(Ω
nX)). If s = 1, we set ξ([x1]) =

[Qn−1(x1)]. For s > 1, we take

ξ(x) =
∑

(s,s)−shuffles ϕ
with ϕ−1(1) = 1

∑
ϕ−1(i)≤s
ϕ−1(i+1)>s

[zϕ−1(1)| · · · |[zϕ−1(i), zϕ−1(i+1)]| · · · |zϕ−1(2s)],

where

zi =

{
xi if i ≤ s

xi−s if i > s
,

and the (s, s)-shuffles are those elements of ϕ ∈ Σ2s satisfying ϕ(a) < ϕ(b) for 1 ≤ a < b ≤ s
or s + 1 ≤ a < b ≤ 2s. The main result of the section is Theorem 3.4, in which we show
that ξ is a restriction for the Browder bracket. That is, the bar construction is a graded
restricted Lie algebra.

In Section 4, we prove that the squaring operation on the total complex of a double
loop space induces an operation on the spectral sequence, making it a spectral sequence
of restricted Lie algebras. We expect the induced operation to agree with the ξ operation
defined above.

Understanding the restricted Lie algebra structure on the bar spectral sequence is impor-
tant in many physical settings. Lie algebras are used extensively in quantum mechanics and
particle physics to study the symmetries of physical systems. The structure on the homology
of an iterated loop space is stronger than that of a Lie algebra, so it can provide further
insight into the behavior of particles at a subatomic level.

In addition to the impact on physics, the study of Dyer-Lashof operations increases our
own knowledge and understanding of algebraic topology, and in particular loop spaces. The
classification of topological spaces up to homotopy equivalence was one of the main pur-
poses of inventing the homotopy and homology groups. Computing homotopy groups is
significantly harder than calculating homology and is of particular interest in the field. The
loop spaces satisfy the relation πi+1(X) = πi(ΩX), so the study of loop spaces can lead to
computations of homotopy groups for harder spaces.

2. Background

For a space X with basepoint ∗, we define the loop space ΩX as the set of functions
γ : I → X such that γ(0) = γ(1) = ∗ equipped with the compact open topology 1. Given

1It is common practice to abbreviate the unit interval [0, 1] as I.
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two loops γ1 and γ2, we can define the product to be a concatenation of the loops,

γ1 · γ2 =

{
γ1(2t), if 0 ≤ t ≤ 1/2

γ2(2t− 1), if 1/2 ≤ t ≤ 1
.

This defines a multiplication map ΩX×ΩX → ΩX that is associative up to homotopy, giving
the space ΩX an associative H-space structure. This map induces a product in homology,
called the Pontryagin product, via the maps

H∗(ΩX)×H∗(ΩX)
⊗→ H∗(ΩX)⊗H∗(ΩX)→ H∗(ΩX × ΩX)→ H∗(ΩX),

where the second map is provided by the Künneth theorem.
The n-fold loop space is constructed inductively via ΩnX = Ω(Ωn−1X) and consists of the

maps γ : In → X such that γ(∂In) = ∗. It also has a multiplication

H∗(Ω
nX;F2)⊗H∗(ΩnX;F2)→ H∗(Ω

nX;F2).

For the remainder of the paper, we suppress the coefficient F2.

2.1. The structure of H∗(Ω
nX). We construct operations on the n-fold loop space as

discussed in sections 1.4.2 and 1.5.1 of [3]. Recall that Cn(k), the little cubes operad in In, is
defined as the set of all rectilinear (i.e. compositions of scaling and translating) embeddings∐k

j=1 I
n → In. There is a natural operad action on the n-fold loop space

θ̃ : Cn(2)× ΩnX × ΩnX → ΩnX,

given by “attaching” the first loop to the first cube and the second loop to the second cube.
The symmetry group Σ2 acts on the product by swapping the order of the two cubes in
Cn(2) and swapping the factors in X ×X accordingly. Hence, θ̃ factors over a map

C2(n)× ΩnX × ΩnX C2(n)×Σ2 (ΩnX × ΩnX)

ΩnX

θ

θ̃

We have the following induced map in homology via the Künneth isomorphism

θ̃∗ : H∗(C2(n))⊗H∗(ΩnX)⊗H∗(ΩnX)
K.I.→ H∗(C2(n)× ΩnX × ΩnX)→ H∗(Ω

nX).

Note that C2(n) ' Sn−1, so we can pick a generator γ ∈ Hn−1(Sn−1) ∼= Hn−1(C2(n)). The

Browder bracket is then defined as [x, y] = θ̃∗(γ ⊗ x ⊗ y). Cohen establishes the following
properties of the bracket in [5].

Theorem 2.1. The homology H∗(Ω
nX) has a Poisson-Hopf algebra structure with a shifted

Lie bracket

[−,−] : Hp(Ω
2X)⊗Hq(Ω

2X)→ Hp+q+n−1(Ω2X),

known as the Browder bracket, satisfying the following relations:

• Antisymmetry: [x, y] = [y, x];
• Poisson Identity: [x, yz] = [x, y]z + y[x, z];
• Jacobi Law: [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0.
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For each n-fold loop space, there is also a Top Dyer-Lashof operation defined as Qn−1(x) =
θ∗(γ ⊗ x⊗ x), where the induced map θ∗ is

θ∗ : H∗(C2(n))⊗Σ2 H∗(Ω
nX)⊗H∗(ΩnX)

K.I.→ H∗(C2(n)×Σ2 ΩnX × ΩnX)→ H∗(Ω
nX).

Recall that for a Lie algebra A, a restriction map ξ is a map satisfying the adjoint and top
additivity identities. That is,

ξ(x+ y) = ξ(x) + ξ(y) + [x, y], and [ξ(x), y] = [x, [x, y]],

which gives A a restricted Lie algebra structure. Cohen verifies these identities for the Top
Dyer-Lashof operation in Section 3 of [5].

Theorem 2.2. The Top Dyer-Lashof operation Qn−1 : Hp(Ω
nX)→ H2p+n−1(ΩnX) satisfies

• Qn−1(x+ y) = Qn−1(x) +Qn−1(y) + [x, y];
• [Qn−1(x), y] = [x, [x, y]].

Hence, the Qn−1 operation is a restriction for the Browder bracket, and makes H∗(Ω
nX) a

restricted Lie aglebra.

The first goal of this project is to extend the Qn−1 operation and the Lie algebra structure
on H∗(Ω

nX) to the normalized bar construction B∗,∗(H∗(Ω
nX)).

2.2. The normalized bar construction. For a differential graded algebra A with differ-
ential dA over a field k, we define the normalized bar construction B∗,∗(A) as follows. Let
ε : A → k be an augmentation map, and denote by A the kernel of ε. Set

Bs,∗ = A⊗ · · · ⊗ A,

where we repeat A s times in the tensor product. In particular, B0,∗ = k. The elements of
Bs,t are defined to be those elements of Bs,∗ with internal degree t, where the internal degree
of x1⊗· · ·⊗xs ∈ Bs,∗(A) is given by |x1|+· · ·+|xs|. Typically, an element x1⊗· · ·⊗xs ∈ Bs,∗
is written as [x1| · · · |xs]. Our work revolves mostly around the algebra H∗(Ω

nX), so we will
further assume that A is a commutative F2−algebra.

The bar construction has an internal differential d of bidegree (0,−1) and an external
differential δ of bidegree (−1, 0) given by

d[x1| · · · |xs] =
s∑
i=1

[x1| · · · |dAxi| · · · |xs], and δ[x1| · · · |xs] =
s−1∑
i=1

[x1| · · · |xixi+1| · · · |xs],

respectively. Finally, define the total differential D = d+ δ to be the sum of the both.
We define the comultiplication ∆ : B∗,∗(A)→ B∗,∗(A)⊗B∗,∗(A) via

∆([x1| · · · |xs]) =
s∑
i=0

[x1| · · · |xi]⊗ [xi+1| · · · |xs],

which provides a coalgebra structure (here we set [] = 1 ∈ B0,∗).

Definition 2.3. For two nonnegative integers p and q, a (p, q)-shuffle is a permutation
ϕ ∈ Σ[p+q] satisfying ϕ(a) < ϕ(b) if 1 ≤ a < b ≤ p or if p + 1 ≤ a < b ≤ p + q. Note that

there are
(
p+q
p

)
such permutations.
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Given two elements [x1| · · · |xp] and [y1| · · · |αq] in the bar construction, we define the shuffle
product B∗,∗(A)⊗B∗,∗(A)→ B∗,∗(A⊗A), which was first introduced in [2], to be

[x1| · · · |xp]⊗ [y1| · · · |αq] 7→
∑

(p,q)−shuffles

[zϕ−1(1)| · · · |zϕ−1(p+q)],

where we set

zi =

{
xi ⊗ 1 if i ≤ p,

1⊗ yi−p if i > p,
.

Each term in the shuffle product can be realized as one of the
(
p+q
p

)
paths from (0, 0) to (p, q)

by labelling the sides of the grid and reading the variable corresponding to each segment.
For instance, the path defined below from (0, 0) to (2, 3)

y1

x1

y2

x2 x3

corresponds to the term [1 ⊗ y1|x1 ⊗ 1|x2 ⊗ 1|1 ⊗ y2|x3 ⊗ 1] appearing in the product of
[x1|x2|x3] and [y1|y2].

When A is commutative multiplication map A⊗A → A induces a map B∗,∗(A⊗A) →
B∗,∗(A), which assembles into a multiplication on the bar construction B∗,∗(A)⊗B∗,∗(A)→
B∗,∗(A) by composing with the shuffle product.

2.3. The bar spectral sequence. We follow the exposition provided in Section 2.2 of [7].
We define the total complex on the bar construction to be the chain complex

(totB∗,∗(A))n =
⊕
p+q=n

Bp,q(A)

with differential D (which reduces total degree by 1). The homology of this chain complex
with coefficients in a field k is

H∗(totB∗,∗(A); k) = TorA∗ (k, k).

We define a filtration on each (totB∗,∗(A))n by taking

Fs(totB∗,∗(A))n =
⊕
p+q=n
p≤s

Bp,q(A).

The associated graded pieces of the filtration are

E0
s,t = Fs(totB∗,∗(A))s+t/Fs−1(totB∗,∗(A))s+t = Bs,t(A).

The differentials on the E0 and E1-page are given by d0 = d and d1 = δ. Since A is a
k-algebra, by the Künneth isomorphism

H∗(Bs,∗(A)) = H∗(A⊗ · · · ⊗ A︸ ︷︷ ︸
s times

) ∼= H∗(A)⊗ · · · ⊗H∗(A)︸ ︷︷ ︸
s times

∼= B∗,∗(H∗(A)),

and so the E1-page is the bar construction of the homology of A with a trivial internal
differential. This gives rise to a strongly convergent homological spectral sequence

(2.1) E2
∗,∗
∼= TorH∗(A)

∗ (k, k)⇒ TorA∗ (k, k).
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Here we are interested in the case A = C∗(Ω
n−1X). It is well known that there is a quasi-

isomorphism

totB∗,∗(C∗(Ω
nX))

'→ C∗(Ω
n−1X).

Passing to homology yields an isomorphism of Hopf algebras

TorC∗(ΩnX)
∗ (k, k) ∼= H∗(Ω

n−1X).

Clark [1] proves that 2.1 is a spectral sequence of Hopf algebras. To sum up, the spectral
sequence relates the bar construction of H∗(Ω

nX) to the homology of Ωn−1X.

2.4. The Browder bracket in the bar construction. The bar construction B∗,∗(A)
inherits a Hopf algebra structure as mentioned in Section 1. In [7], Ni proves that if A
is a commutative Poisson DGA, then B∗,∗(A) inherits a commutative differential bigraded
Poission-Hopf algebra structure. We reformulate his main results for our purposes here.

Definition 2.4. [7, Theorem 3.1] If A is a commutative Poisson F2 differential graded
algebra with bracket of degree n− 1, then the bracket on B∗,∗(A) has bidegree (−1, n− 1),
and is constructed by defining [[x1| · · · |xp], [y1| · · · |yq]] to be∑

(p,q)−shuffles ϕ

∑
ϕ−1(i)≤p
ϕ−1(i+1)>p

[zϕ−1(1)| · · · |[zϕ−1(i), zϕ−1(i+1)]| · · · |zϕ−1(p+q)],

where

zi =

{
xi if i ≤ p

yi−p if i > p
.

Visually, the bracket term [aϕ−1(i), aϕ−1(i+1)] can be visualized as a joint along a path from
(0, 0) to (p, q). Here, we define a joint along a path to be two adjacent steps with the first
oriented horizontally and the second oriented vertically. The joints along one possible path
from (0, 0) to (6, 4) are emboldened below.

x1

y1

x2 x3 x4

y2

y3

y4

x5

In the expansion of [[x1| · · · |x6], [y1| · · · |y4]], one can place a bracket along any of the em-
boldened joints in the path. This path, in particular, yields

[[x1, y1]|x2|x3|y2|y3|x4|y4|x5] + [x1|y1|x2|[x3, y2]|y3|x4|y4|x5] + [x1|y1|x2|x3|y2|y3|[x4, y4]|x5].

Ni also proves that the bracket satisfies the following expected compatibility relations with
the differential and product.

Proposition 2.5. The bracket defined in Definition 2.2 satisfies the following identities:

• [x, y] = [y, x];
• [x, yz] = [x, y]z + y[x, z];
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• [x, [y, z]] = [[x, y], z] + [y, [x, z]];
• δ[x, y] = [δx, y] + [x, δy] and d[x, y] = [dx, y] + [x, dy],

which make B∗,∗(A) a commutative differential bigraded Poisson Hopf algebra satisfying the
Liebniz rule with respect to both derivatives.

3. The ξ Operation in the Bar Construction

Ni proves in [7] that the bar construction B∗,∗(A) is a commutative Hopf algebra with a
Lie bracket extending the bracket on A for a commutative Hopf DGA over F2. Our goal is
to extend the restriction on A to a restriction on the bar construction for the Lie bracket Ni
constructs, and apply our results to the E1-term of the spectral sequence.

Let A be a commutative augmented DGA over F2 with a restricted Lie algebra struc-
ture. Suppose the restriction ψ : A → A induces a restricted Lie algebra structure on
the augmentation ideal A. We introduce here an operation ξ on the bar construction of A,
which equips the normalized bar construction B∗,∗(A) with a restricted Lie algebra structure.

Construction. Let x = [x1| · · · |xs]. If s = 1, we set ξ(x) = [ψ(x1)]. For s > 1, we take

ξ(x) =
∑

(s,s)−shuffles ϕ
with ϕ−1(1) = 1

∑
ϕ−1(i)≤s
ϕ−1(i+1)>s

[zϕ−1(1)| · · · |[zϕ−1(i), zϕ−1(i+1)]| · · · |zϕ−1(2s)],

where

zi =

{
xi if i ≤ s

xi−s if i > s
.

We extend ξ to the entire bar construction via top additivity,

ξ(x+ y) = ξ(x) + ξ(y) + [x, y],

for any x and y.

The construction takes only the paths from (0, 0) to (s, s) in the expansion of the self-
bracket [x, x] that begin with a horizontal step. In this sense, ξ can be thought of as “half the
bracket of [x, x]” since exactly half the paths from (0, 0) to (s, s) begin with a horizontal step.

First, we must verify that ξ is a well-defined operation.

Proposition 3.1. The operation ξ is a well-defined on B∗,∗(A).

Proof. To check ξ is well defined, we must check ξ is well defined on Bs,∗. It is straightforward
to check that ξ(cx) = cξ(x) for any c ∈ F2. Next, we must check that if x = [x1| · · · |xi| · · · |xs]
and y = [y1| · · · |yi| · · · |ys], then ξ(x+ y) = ξ(x) + ξ(y) + [x, y], provided that xj = yj for all
j 6= i. That is, we must verify top additivity in the case where the two tensors may differ
only at the ith entry.

If s = 1, the result follows from

ξ([x1] + [y1]) = [ψ(x1)] + [ψ(y1)] + [[x1, y1]] = [ψ(x1 + y1)] = ξ([x1 + y1]).

For s > 1, refer to the terms in ξ(x + y) as paths from (0, 0) to (s, s). Since the bracket is
bilinear, each path can be broken into four components as shown below:
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xi + yi

xi + yi

xi

yi

yi

xi

xi

xi

yi

yi

The top two paths contribute to ξ(x) and ξ(y), respectively, while the bottom two paths
contribute to [x, y] (this can be seen after reflecting one of the diagrams across the diagonal).

�

Our next step is to provide a simplified formula for ξ that allows for simpler computation.

Definition 3.2. Call an (s, s)-shuffle disposable if there is an i such that ϕ−1(2i) ∈ {i+s, i}.
Otherwise, call it indisposable.

Visually, the disposable terms are those that cross the diagonal connecting (0, 0) to (s, s).
The claim is that we can effectively ignore the disposable terms appearing in the definition
of ξ.

Proposition 3.3. For x = [x1| · · · |xs] and s > 1, we have

ξ(x) =
∑

indisposable (s,s)−shuffles ϕ
with ϕ−1(1)=1

∑
ϕ−1(i)≤s
ϕ−1(i+1)>s

[zϕ−1(1)| · · · |[zϕ−1(i), zϕ−1(i+1)]| · · · |zϕ−1(2s)],

where the zi’s are defined in the same way as before.

In other words, the restriction map ξ only traverses the paths from (0, 0) to (s, s) that lie
strictly below the diagonal. In other words, it traverses the Catalan paths.

Proof. We must show that the sum of all the disposable terms evaluates to 0. Let P be a
disposable path, and suppose it first crosses the diagonal at (i, i). It suffices to prove that
the sum S of all disposable paths that agree with P for the first 2i steps is 0 (since if they
agree for the first 2i steps then the path must have hit the diagonal at (i, i) first).

Let R2i denote the first 2i steps of P . Note that the bracket appearing along the path can
appear after (i, i) or before (i, i). This yields

S = R2i ⊗ [[xi+1| · · · |xs], [xi+1| · · · |xs]] +R2i ⊗ ([xi+1| · · · |xs] · [xi+1| · · · |xs]) = 0,

and we are done.
�

Proposition 3.3 allows for simpler computations of the ξ operation.

Example. The value of ξ on two terms is given by

ξ([x|y]) = [x|[x, y]|y],

which follows from noting there is only one path that falls under the diagonal from (0, 0) to
(2, 2).
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The main result of this section is Theorem 3.4, which verifies that ξ is a restriction for the
bracket on B∗,∗(A).

Theorem 3.4. If A is a commutative restricted Poisson F2-DGA with a restriction ψ that
can be restricted to the augmentation ideal A, the operation ξ : Bs,t(A)→ B2s−1.2t+1(A) is a
restriction for the bracket:

• ξ(x+ y) = ξ(x) + ξ(y) + [x, y];
• [x, ξy] = [y, [x, y]];
• δξx = [x, δx].
• Furthermore, if dAψx = [x, dAx] holds in A, then dx = [x, dx].

In particular, the bar construction B∗,∗(A) is a restricted Lie algebra.

Proof. Many of the proofs have similar combinatorial taste, so we do not include full proofs
for all. It’s easy to check that degree-wise all the identities are correct.

• The result readily follows from Proposition 3.3.
• It suffices to check the identity only on the elementary tensors. Indeed, if x and z

are pure tensors, then

[ξ(x+ z), y] = [ξ(x) + ξ(z) + [x, z], y]

= [ξ(x), y] + [ξ(z), y] + [[x, z], y]

= [x, [x, y]] + [z, [z, y]] + [[x, z], y]

= [x, [x, y]] + [z, [z, y]] + [z, [x, y]] + [x, [z, y]]

= [x+ z, [x+ z, y]],

by the Jacobi Law. By induction, we find that [ξ(x), y] = [x, [x, y]] for all x. The
same argument holds for y, since

[ξ(x), y + z] = [ξ(x), y] + [ξ(x), z]

= [x, [x, y]] + [x, [x, z]]

= [x, [x, y] + [x, z]]

= [x, [x, y + z]],

and induction once again extends the identity to all y. We now proceed to establish
the result when x and y are pure tensors.

Let x = [x1| · · · |xp] and y = [y1| · · · |yq]. The case p = 1 must be handled separately.
It suffices to show

[ξ(x), y] = [[ψ(x1)], [y1| · · · |yq]] = [[x1], [[x1], [y1| · · · |yq]]] = [x, [x, y]].
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By bilinearity and the adjoint identity,

[[x1], [[x1], [y1| · · · |yq]]] =

[
[x1],

q∑
i=1

[y1| · · · |[x1, yi]| · · · |yq]

]

=

q∑
i=1

[[x1], [y1| · · · |[x1, yi]| · · · |yq]]

= 2
∑

1≤i<j≤q

[y1| · · · |[x1, yi]| · · · |[x1, yj]| · · · |yq]

+

q∑
i=1

[y1| · · · |[x1, [x1, yi]]| · · · |yq]

=

q∑
i=1

[y1| · · · |[x1, [x1, yi]]| · · · |yq]

=

q∑
i=1

[y1| · · · |[ψ(x1), yi]| · · · |yq]

= [[ψ(x1)], [y1| · · · |yq]].
The case where p > 1 succumbs to an elementary combinatorial argument, which we
omit here.
• If x and y are pure tensors,

δξ(x+ y) = δ(ξ(x) + ξ(y) + [x, y])

= δξ(x) + δξ(y) + δ[x, y]

= [x, δx] + [y, δy] + [y, δx] + [x, δy]

= [x+ y, δ(x+ y)].

By induction it follows that we need only establish the result for a pure tensor. Let
x = [x1| · · · |xs]. If s = 1, we have

δξ(x) = δ[ψ(x1)] = 0 = [x, 0] = [x, δx].

Now we must establish the result for s > 1.
For simplicity, we introduce the operator

δi([x1| · · · |xs]) = [x1| · · · |xixi+1| · · · |xs],
for 1 ≤ i < s and extend linearly. For i ≥ s, we simply set δi(x) = 0. Note that
δ(x) =

∑s−1
i=1 Di(x). Thus, it suffices to prove

2s−2∑
k=1

δkξ(x) =
s−1∑
j=1

[x, δjx].

First, we need to start by unpacking ξ(x) visually. We shall refer to the terms in
ξ(x) as paths. Suppose there is a path in ξ(x) with a bracket at [xi, xj] (we assume
that this bracket is not [x1, x1] = 0, since those terms vanish). We can represent that
term visually as a path P from (0, 0) to (s, s) with a hinge at [xi, xj] starting off with
a horizontal step.
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xi

xj

Figure 3.1

Define a switch to be a place where direction changes, and embolden them. We
investigate what occurs upon taking the differential across all paths P in ξ(x).

Select a 1 ≤ k ≤ 2s− 2 and consider the operator δk. Each δk multiplies adjacent
steps along P . We consider where these adjacent multiplications take place.

– The operator δk could multiply two terms adjacent to a switch (indicated by
red). Suppose the path is of the form [x1| · · · |xa|xb| · · · |[xi, xj]| · · · ] where there
is a switch occurring between xa and xb. By swapping terms at the switch, we
find that
[x1| · · · |xb|xa| · · · |[xi, xj]| · · · ] is also a path in ξ(x). Taking k = a+ b− 1, we see

δk([x1| · · · |xa|xb| · · · |[xi, xj]| · · · ]) + δk([x1| · · · |xb|xa| · · · |[xi, xj]| · · · ])
= 2[x1| · · · |xaxb| · · · |[xi, xj]| · · · ]
= 0.

Hence, for each path P and a given k, we can find a conjugate path P ′ such that
δk(P ) + δk(P

′) = 0. Therefore, we can effectively ignore all the switches along
the paths in ξ(x).

– Alternatively, δk could multiply two terms in the same direction. In this case,
the differential multiplies x` with x`+1 for some `. From the observation above,
these steps must be both oriented vertically or oriented horizontally. The key
idea is to consider all terms in the expansion of δξ(x) that contain the step x`x`+1

and show each term has a corresponding term in the expansion of [x, δ`x] (this
is of course, excluding the terms where the hinge is at x`x`+1).

Fortunately this turns out to be a rather simple combinatorial argument. Let
P be a path such that x` and x`+1 appear as consecutive steps (with the same
orientation). Figure 3.2 shows all the possible segments (x` followed by x`+1)
that P could pass through with the possible horizontal and vertical segments
dashed. Note that δ simply collapses the two steps x` and x`+1 into the single
step x`x`+1.

We consider first, paths P which go through the horizontal segments. In this
case, we can collapse the steps x` and x`+1 into the single horizontal step x`x`+1

as shown in the diagram to the right in Figure 3.2. But once we do this, P can
simply be viewed as a term in [x, δ`x]. In fact, P corresponds to one of the terms
in [x, δ`x] in which the steps x1 and x`x`+1 have the same orientation.
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x`|x`+1

x
`|x

`+
1

x`x`+1

x

δ`x

Figure 3.2

If P passes through the vertical segments, essentially the same argument
applies. This time, the differential δ collapses the vertical steps x` and x`+1 into
the single vertical step x`x`+1. However, the resulting path instead corresponds
to the terms in [x, δ`x] in which the steps x1 and x`x`+1 have opposite orientation.

– The last possibility is that δk multiplies terms adjacent to the hinge. As in
Figure 3.1, suppose there is a bracket at [xi, xj]. Then, the step before the hinge
must either be xi−1 or xj−1 and the step after the hinge must be either xi+1 or
xj+1. The differential either multiplies the first step (that is xi−1 or xj−1) with
the hinge, or it multiplies the second step (xi+1 or xj+1) with the hinge.

Without loss of generality, assume that the differential multiplies xi−1 with
the hinge. The other cases are similar. Then, the path P in the expansion of
δξ(x) is of the form [x1| · · · |xj−1|[xi, xj]| · · · ].

xi

xj

xj−1

P

xi

xj

xj−1

P ′

We can find a path P ′ with exactly the same steps, only differing at the
(i + j − 2) and (i + j − 1)th step given by P ′ = [x1| · · · |[xj−1, xi]|xj]| · · · ], as
shown above. But this gives

δi+j−2P + δi+j−2P
′ = [x1| · · · |xj−1[xi, xj]| · · · ] + [x1| · · · |[xj−1, xi]xj]| · · · ]
= [x1| · · · |xj−1[xi, xj] + [xj−1, xi]xj]| · · · ]
= [x1| · · · |[xi, xj−1xj]| · · · ],
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by the Poisson identity. But this final term corresponds to a path in [x, δj−1x],
with the same opening and ending steps as P and P ′. If instead, the differential
multiplied the hinge with the step following it, P + P ′ would correspond to a
path in [x, δjx].

xi

xj−1xj

P + P ′

x

δj−1x

Hence, the terms where the differential multiplies the hing with a neighboring
step are also accounted for in [x, δx].

• By a similar argument, we must prove the second identity for pure tensors only. If
s = 1, then the identity holds under the assumption that dAψx = [x, dAx]. For the
remainder of the proof, let s > 1.

We begin by analyzing the left-hand-side dξx. As before, we introduce the operator

di[x1| · · · |xs] = [x1| · · · |dAxi| · · · |xs],

for 1 ≤ i ≤ s, and 0 otherwise. Under this notation, we must prove

2s∑
k=1

dkξ(x) =
s∑
j=1

[x, djx].

Suppose ξ(x) contains a term of the form [x1| · · · |[xi, xj]| · · · ]. The differential can
apply dA to one of three emboldened locations as shown in Figure 3.3.

xi

xj

x1

Figure 3.3
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– The differential could apply dA to the bracket (i.e. the (i+ j − 1)th term in the
tensor). By Leibniz,

di+j−1[x1| · · · |[xi, xj]| · · · ] = [x1| · · · |dA[xi, xj]| · · · ]
= [x1| · · · |[dxi, xj]| · · · ] + [x1| · · · |[xi, dxj]| · · · ].

The former term appears once in [x, dix] and the latter once in [x, djx]. The
former term can be realized as a path in the expansion of [x, dix] after reflecting
across the main diagonal (the reflection must be done since the first step will
always be horizontal in ξ).

– Alternatively, the differential could apply dA to a vertical step, say at xi, along
the path. In this case, the path can immediately be interpreted as a path in
[x, dix]. Finally, if the differential is applied to a horizontal step along the path,
we can reflect it over the main diagonal as in the argument above.

Hence, the paths appearing in dξx and [x, dx] can be placed in a bijection with each
other. This establishes the final identity, and we are done.

�

The culmination of this section is that the E1 term in our spectral sequence is a restricted
Lie algebra.

Corollary 3.5. The E1-page of the spectral sequence given by B∗,∗(H∗(Ω
nX)) is a restricted

Lie algebra.

Proof. Let ∗ denote the space of a single point. There is a natural induced augmentation in
homology H∗(Ω

nX) → H∗(∗) ∼= F2. It is straightforward to check that the Qn−1 operation

may be restricted to H∗(ΩnX). Furthermore, the differential on homology is trivial, so the
ξ operator is compatible with the internal differential and is a restriction for the Browder
bracket on the E1 page. �

4. Structure on the Bar Spectral Sequence

Our goal is to prove that the bar spectral sequence of C∗(Ω
nX) is a spectral sequence

of restricted Lie algebras by defining an operation on the total complex that induces a
restriction on the spectral sequence. We expect the induced operation on the E1-page to be
identical to the ξ operation constructed in Section 3.

4.1. A commutative multiplication on the chain complex. We follow here the expo-
sition provided in [7]. The multiplication map defined in Section 2 relies on the commuta-
tivity of the multiplication map A⊗A → A (otherwise, there is no algebra homomorphism
A ⊗ A → A). In the case A = C∗(ΩG), the multiplication is not commutative. However
(c.f. [1]), it is still possible to define a multiplication on the spectral sequence that matches
with the shuffle product on the E0 and E1 page.

Note that Ω is a functor from the category of pointed spaces to itself, so there is an induced
map

M0 : ΩG× ΩG ∼= Ω(G×G)→ ΩG,

sending (γ1, γ2) to the pointwise product γ1(t)γ2(t) for t ∈ I. Unlike [7], since we have used
the non-associative model, the two spaces ΩG× ΩG and Ω(G×G) are identical.
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For the map M0, Clark [1] constructs homotopies

Mn : (ΩG× ΩG)× (I × ΩG× ΩG)n → ΩG

satisfying

Mn(y0, t1, y1, · · · , tn, yn) =

{
Mn−1(y0, t1, · · · , ti−1, yi−1yi, ti+1, · · · , tn, yn) if ti = 0

M0(y0, t1, · · · , ti−1, yi−1)Mn−i(yi, ti+1, · · · , tn, yn) if ti = 1
.

Lemma 2.2 of Sugawara [8] constructs a delooping B(ΩG × ΩG) → BΩG from the Mn’s.
Each homotopy Mn induces the chain map

(C∗(ΩG)⊗ C∗(ΩG))⊗ (C∗(I)⊗ C∗(ΩG)⊗ C∗(ΩG))n → C∗(ΩG).

Taking the identity map in C1(I) for each occurrence yields a map

hn : (C∗(ΩG)⊗ C∗(ΩG))n+1 → C∗(ΩG).

We obtain the algebra homomorphism from B∗,∗(A⊗A)→ B∗,∗(A) by mapping

[x1 ⊗ y1| · · · |xm ⊗ ym]

7→
∑

i1+···+ik=m

[hi1−1(x1 ⊗ y1| · · · |xi1 ⊗ yi1)| · · · |hik−1(xm−ik+1 ⊗ ym−ik+1| · · · |xm ⊗ ym)].

This defines a multiplication on the total complex after composing with the shuffle product,

Bp,q(C∗(ΩG))⊗Bs,t(C∗(ΩG))→ Bp+s,q+t(C∗(ΩG)⊗ C∗(ΩG))→ Fp+s(tot B∗,∗(C∗(ΩG))),

and extending linearly.

4.2. The double loop space. We begin by studying the spectral sequence for the double
loop space. Ni [7] proves that the commutator [x, y] = xy+ yx on the total complex induces
a bracket on the spectral sequence making it a spectral sequence of Poission Hopf algebras.
He also shows that the commutator converges to the commutator on H∗(ΩX). Our goal is
to show that the squaring operation x2 induces a restriction Lie algebra structure on the
spectral sequence that converges to the squaring operation on H∗(ΩX).

Proposition 4.1. The bar spectral sequence

E2
s,t = Tor

H∗(Ω2X)
s,t (F2,F2)⇒ H∗(ΩX)

is a spectral sequence of restricted Lie algebras, with a restriction ζr : Er
s,t → Er

2s−1,2t+1

satisfying drζrx = [x, drx], where [−,−] : Er
s,t ⊗ Er

p,q → Er
p+s−1,q+t+1 is the bracket induced

by the commutator.

Proof. Let J = totB∗,∗(H∗(Ω
2X)) denote the total complex and let ζ(x) = x2 be the squaring

operation. By Leibniz,
Dζ(x) = xDx+ (Dx)x = [x,Dx],

where [a, b] = ab + ba denotes the commutator. Ni establishes that the commutator defines
a map FpJs⊗FqJt → Fp+q−1Js+t ([7]). Fix an x ∈ FpJs. Since the h0 map is multiplication,
the terms appearing in filtration F2p cancel. Thus, ζ defines a map FpJs → F2p−1J2s.

Define

Zr
p,q = FpJp+q ∩D−1(Fp−rJp+q−1),

Br
p,q = FpJp+q ∩D(Fp+rJp+q+1).
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Then, the rth page is given by

Ep,q
r = Zr

p,q/(Z
r+1
p+1,q−1 +Br+1

p,q ),

as in [6].

The first step is to check that ζ defines a map Zr
p,q → Zr

2p−1,2q+1. Take

x ∈ Zr
p,q = FpJp+q ∩D−1(Fp−rJp+q−1).

Note ζ(x) ∈ F2p−1J2p+2q and Dx ∈ Fp−rJp+q−1. By the Leibniz relation,

Dζ(x) = [x,Dx] ∈ F2p−1−rJ2p+2q−1,

and so ζ(x) ∈ D−1(F2p−1−rJ2p+2q−1). We conclude that

ζ(x) ∈ F2p−1J2p+2q ∩D−1(F2p−1−rJ2p+2q−1) = Zr
2p−1,2q+1.

The next step is to verify that

ζ(Zr+1
p+1,q−1 +Br+1

p,q ) ⊆ Zr+1
2p.2q +Br+1

2p−1,2q+1.

Take a ∈ Zr+1
p+1,q−1 and b ∈ Br+1

p,q , and note

ζ(a+ b) = ζ(a) + ζ(b) + [a, b].

Since Dζ(b) = 0, we have ζ(b) ∈ D−1(F2p−r−1J2p+2q+1). However, because b ∈ FpJp+q, we
have ζ(b) ∈ F2p−1J2p+2q. It follows that

ζ(b) ∈ F2pJ2p+2q ∩D−1(F2p−r−1J2p+2q+1) ⊆ Zr+1
2p,2q.

Now we analyze ζ(a). Note that a ∈ Zr
p,q, and so a ∈ FpJp+q. This means that ζ(a) ∈

F2p−1J2p+2q. Note further that since a ∈ Zr+1
p+1,q−1, that Da ∈ Fp−rJp+q−1. Next, we see that

Dζ(a) = [a,Da] ∈ F2p−r−1J2p+2q−1,

and so we conclude that ζ(a) ∈ F2p−1J2p+2q ∩ D−1(F2p−r−1J2p+2q−1) ⊆ Zr+1
2p,2q. Finally, we

must handle the bracket. This is easy since,

D[a, b] = D[a,Dc] = [Da,Dc] = [Da, b] ∈ F2p−r−1J2p+2q−1.

However, since both a and b are in FpJp+q (as they are both in Zr
p,q) we also have [a, b] ∈

F2p−1J2p+2q. Thus, the bracket is contained in Zr+1
2p,2q and we obtain stronger statement

ζ(Zr+1
p+1,q−1 +Br+1

p,q ) ⊆ Zr+1
2p,2q.

Hence, ζ induces an operation ζr : Er
p,q → Er

2p−1,2q+1 such that the following diagram com-
mutes:

Zr
p,q Zr

2p−1,2q+1

Er
p,q Er

2p−1,2q+1

ζ

ζr
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The vertical maps are the canonical projection maps Zp,q
r → Ep,q

r .
It remains to establish that ξr, the induced ζ operation on the Er-page, satisfies drξrx =

[x, drx]. This follows readily from the commutativity of the following diagrams:

Zr
p,q Zr

2p−1,2q+1 Zr
2p−1−r,2q+r

Er
p,q Er

2p−1,2q+1 Er
2p−1−r,2q+r

Zr
p,q Zr

p,q ⊗ Zr
p−r,q+r−1 Zr

2p−1−r,2q+r

Er
p,q Er

p,q ⊗ Er
p−r,q+r−1 Er

2p−1−r,2q+r

ζ

ζr

D

dr

x 7→x⊗Dx

x 7→x⊗drx a⊗b 7→[a,b]

a⊗b7→[a,b]

Since Dζ(x) = [x,Dx], the identity holds true on Er
∗,∗. Similarly, we find:

• The operator ξr satisfies the adjoint identity, since ζ satisfies the adjoint identity.
• The operator ξr satisfies top additivity, since ζ satisfies top additivity.

�

Conjecture 4.2. The operation ζ1 on the E1-page of the spectral sequence agrees with the
ξ operation on B∗,∗(H∗(Ω

2X)).
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