
Proposed Improvements to the Tor Handshake

Akhil Kammila
Mentor: Kyle Hogan

January 2022

Abstract

Tor is the world’s largest anonymous communication network. It con-
ceals its users’ identities by sending their traffic through three successive
Tor relays. To establish connections between users, relays, and desti-
nations, Tor uses a unique two-staged handshake. The first stage is a
modified version of TLS 1.2 and the second stage is a fully encrypted
exchange of Tor cells. The two-stage process enables both parties to au-
thenticate while masking the differences that the Tor’s handshake has
from standard TLS. The Tor handshake has multiple shortcomings when
compared to widely-used cryptographic protocols like TLS and QUIC. It
has high latency that detracts from the user experience and increased
complexity that makes maintenance challenging. The first stage of the
handshake also only supports TLS 1.2 despite TLS 1.3’s release in 2018.
Our work presents an analysis of Tor’s handshake and proposes improve-
ments. We find messages in the second stage of the Tor handshake that
are redundant. Most notably, the responder sends a certificate that is not
necessary for authentication. Removing these messages reduces the data
transferred in the handshake without compromising the key exchange or
authentication. Further, we find that removing backward compatibility
from the Tor handshake allows for the trivial use of TLS 1.3 in the first
stage. This reduces the round-trips and improves the security of the Tor
handshake.

1 Introduction

As technology continues to advance, the internet is becoming increasingly ac-
cessible and widely used. Rising internet usage, however, comes with more
attackers seeking to steal or spy on users’ information. Online anonymity is
becoming more desirable as a result. Users are using the Tor network to achieve
anonymity, keeping their online activity unlinked from themselves [TOR].

1



Internet users may desire anonymity for a multitude of reasons. Anonymity
provides censorship resistance, which is useful to users who want to bypass
online restrictions in their country [TOR]. It also allows users to communicate
or voice their opinions without being traced. Whistleblowers, for instance, may
choose to access the internet anonymously to send messages while hiding their
identity. As public awareness of privacy issues rises, many users seek anonymity
simply for a higher level of security than HTTPS provides [TOR].

Tor is an anonymity network that conceals its users’ identities using onion
routing [SDM04]. When using onion routing, a client’s traffic passes through a
system of relays called a circuit before reaching the server. Tor uses three relays:
a guard node, a middle node, and an exit node. Because the connection passes
through multiple relays, no one party knows the identity of both the client and
the server. The guard node, for example, knows the identity of the client and
the middle node. The middle node knows the identity of the guard node and
the exit node. Finally, the exit node knows the identity of the middle node and
the server. Even if one relay is malicious, the origin of traffic sent to a server
remains hidden.

Every pair of parties in the Tor circuit must have an encrypted and authen-
ticated connection [SDM04]. This means that four secure connections must be
established: client to guard node, guard node to middle node, middle node to
exit node, and exit node to server. The connections must be secure so that
eavesdroppers cannot observe any exchanged data. Tor establishes connections
using a modified version of the TLS handshake. The TLS handshake has been
proven to be secure [CJJ+19]. To the best of our knowledge, Tor’s handshake
lacks a formal security analysis.

In this paper, we will propose and evaluate potential changes to the hand-
shake that would improve its latency and security. Our hope is that our changes
are implemented and Tor becomes more usable and secure for all users.

2 Background

This section will be focused on the specifics of the Tor handshake protocol. It
will explain the purpose and goals of the handshake and why it differs from
typical TLS. It will also explain the technical specifications of the handshake,
including what packets/cells both parties exchange.

2



2.1 Goals

Tor’s handshake has has four primary goals: authentication, establishing a con-
nection, censorship resistance, and backwards compatibility. Authentication,
establishing a connection, and backwards compatibility are standard for any
handshake. Censorship resistance is a key reason for why Tor has a unique
handshake and does not use TLS alone.

2.1.1 Authentication

Authentication is necessary in any handshake to ensure that the participating
parties are who they claim to be. Without authentication, malicious adversaries
could hijack the handshake and pretend to be one or both parties in what is
called a man in the middle attack [MAST19]. Consider a handshake between
client Alice and server Bob, with malicious adversary Eve. Eve could intercept
Alice’s messages to Bob and send her own messages in their place during the
key exchange process. She could similarly intercept Bob’s messages to Alice.
By pretending to be both parties, Eve can effectively receive all exchanged
information.

In a standard handshake, a client connects directly to the server. While
mutual authentication is supported by protocols like TLS, the server is typically
the only party that authenticates. This is because the server is usually not
interested in the client’s identity. For instance, a public website allows any
internet user to access it, so client authentication is unnecessary [TLS].

Tor differs from the standard because mutual authentication is usually neces-
sary [SWZ16]. The Tor circuit consists of four connections: client to guard node,
guard node to middle node, middle node to exit node, and exit node to server.
The first connection only requires one-way authentication. This is because sim-
ilarly to typical TLS, the client’s identity is unimportant. The remaining three
connections in the circuit, however, require mutual authentication. This is be-
cause relays must always authenticate to show that they are part of the Tor
network and that they are the client’s intended node [SWZ16].

2.1.2 Establishing a connection

Establishing a connection refers to both parties negotiating a shared key. The
shared key allows messages to be encrypted but still readable by the intended
recipient. Malicious observers are unable to read the encrypted data [TLS].

There are two types of shared keys: asymmetric keys and symmetric keys.
Handshakes seek to establish symmetric keys because they allow the fastest form

3



of encrypted communication. Once a symmetric key is established, a sender
encrypts all his messages with the key before sending them and the recipient
decrypts all messages with the same key upon receiving them [TLS].

To establish a shared key, both parties must follow a specific key exchange
algorithm. They cannot simply send each other the shared key because malicious
observers could see it also [TLS]. As the Tor handshake uses a modified version
of TLS in its first stage, it negotiates key exchange algorithms with ClientHello
ciphersuites just as TLS does [Spe].

2.1.3 Censorship Resistance

Censorship resistance is concerned with hiding the fact that a client is connecting
to Tor. If a Tor connection stands out, it can easily be blocked. Anonymous
users can be censored in this way. To achieve censorship resistance, Tor users
must be indistinguishable from the typical internet user [TOR].

Because Tor users must be unrecognizable, the Tor handshake must look like
a typical client’s TLS handshake. As was mentioned in 2.1.1, however, Tor often
requires mutual authentication - and mutual authentication is uncommon. This
is the primary reason why Tor has a unique handshake and does not simply use
TLS. If TLS was used, observers could easily see mutual authentication in the
handshake and find Tor users.

To hide the mutual authentication, the latest version of Tor uses a unique
handshake. It begins with a TLS layer that attempts to mimic a normal internet
user. The mutual authentication is hidden in a secondary Tor layer where all
data is encrypted.

2.1.4 Backwards Compatibility

A final goal of Tor’s handshake is backwards compatibility. The handshake
has been ratified multiple times to improve the censorship resistance. Support
remains so that relays that are not up-to-date can still support the service.
Backwards compatibility has become less necessary, as nearly 0% of relays do
not support the latest Tor handshake version [Met].

2.2 Handshake Versions

Tor has three versions, with version 3 being the most recent. The newer versions
are progressively less distinguishable from typical TLS, improving the censorship
resistance. All three versions are still supported [Spe, line 292]. Tor clients and

4



relays signal which versions they support with covert channels such as cipher
suites and certificate fields. This section will explain each version.

2.2.1 Version 1

Version 1 is the ”Certificates-Up-Front” handshake. In this version, a typical
TLS handshake is performed. Tor relays send a 2-certificate chain that includes a
long-term server identity key and a short-term link key in order to authenticate.
As usual, Tor clients do not authenticate and send no certificate [Spe, line 292].
Figure 1) illustrates the handshake.

This handshake is easily recognizable because the 2-certificate chain that
relays use to authenticate is unusual. There is also no attempt made at hiding
the mutual authentication [Spe, line 292].

2.2.2 Version 2

Version 2 of the handshake uses renegotiation in an attempt to become less
detectable. The initiator of the handshake, whether it is a client or a relay,
does not send a certificate. The responder always sends a single certificate.
This portion of the handshake is similar to typical TLS. To achieve mutual
authentication, the initiator renegotiates. In the renegotiation handshake, the
parties exchange their true certificates [Spe, line 304]. See Figure 1) for a full
handshake illustration.

While Version 2 was effective at the time of its implementation, the us-
age of renegotiation handshakes drastically dropped. This made the version 2
handshake easy to profile, as renegotiation became unusual [TOR].

2.2.3 Version 3

Version 3, the in-protocol handshake, attempts to make the TLS portion of
the handshake as generic as possible by eliminating any renegotiation. Instead,
authentication is done using Tor cells after the TLS portion of the handshake
is fully complete [Spe, line 314]. Figure 1 shows the full handshake.

The protocol begins with a typical TLS handshake. A TCP connection is
first established. The responder (Bob) then sends a certificate to the initiator
(Alice) in the TLS portion, and both parties securely agree on a symmetric key
[Spe, line 314].

When Bob is a Tor relay, he sends a self-signed certificate with a long-term

5



identity key. Alice verifies this certificate by checking a live consensus that
contains the expected identity key [Spe, line 377].

In the second portion of the handshake, both parties exchange Tor cells and
seek to authenticate if they are Tor relays. Both parties first send a VERSIONS
cell. This is a variable-length cell which is used to negotiate a commonly sup-
ported tor protocol version [Spe, line 330].

Following the VERSIONS cells, Bob sends a CERT cell. This cell con-
tains multiple certificates that contain Bob’s long-term and short-term RSA or
Ed25519 keys [Spe, line 334]. Upon receiving the CERTs cell, Alice uses the
live consensus to check the certificates and authenticate Bob [Spe, line 382].

Bob then sends an AUTH-CHALLENGE cell and a NETINFO cell. The
AUTH-CHALLENGE cell contains a randomly generated string that Alice must
use if she is authenticating. The NETINFO cell contains time and relay address
information [Spe, line 334].

Alice’s response depends on if she is a client or a Tor relay. If she is a client,
she does not authenticate. She sends a NETINFO cell to conclude the Tor
handshake [Spe, line 334].

If Alice is a Tor relay, she must authenticate. She sends a CERT cell and
an AUTHENTICATE cell. The AUTHENTICATE cell contains a HMAC of
information from the TLS portion of the handshake such as the client random,
the server random, and the TLS master secret [Spe, line 334].

6



Figure 1: V1, V2, and V3 Handshakes

3 Design

While the Tor handshake has been developed for many years, there remain areas
for improvement. Its latency is high due to redundancy and the presence of two
stages. Its censorship resistance and security is also weak in v1 and v2. This
section will provide a new design for the Tor handshake, which improves latency,
censorship resistance, security, and complexity.

3.1 Overview

The new design has two primary changes.

First, a certificate sent by the responder in the second stage of the handshake
is removed. The initiator instead uses data from the first stage of the handshake
to verify authentication. This change decreases the complexity and the amount
of data exchanged.

7



Second, backwards compatibility to v1 and v2 is removed. Restrictions on
the client’s ClientHello and the responder’s TLS certificate are also removed.
The change allows for native TLS to be trivially supported, as modifications for
backwards compatibility are no longer needed. The removals do not negatively
impact Tor’s usability because about 0% of relays support solely v1 and v2
[Met].

3.2 Design

This model is derived from the specification of TLS and Tor, modified to im-
plement the above changes.

8



Figure 2: Tor Handshake Improved Design

3.3 Improvements

The design has the following improvements over Tor’s current implementation:

• Bandwidth improvement: Less data is sent because the responder no

9



longer requires a CERT cell in the second stage of the handshake. This
data savings is multiplied because there are four connections in each Tor
circuit.

• Checks: Removal of v1 and v2 backwards compatibility means that the
following checks are no longer performed, thus simplifying the handshake.

1. In stage 1, the responder no longer checks if the initiator’s client hello
contains specific cipher suites. Previously, cipher suites were used to
indicate a v1 handshake, as was mentioned in Section 2.2.

2. In stage 1, the initator no longer checks if the responder’s certificate
is self-signed or has a certain commonname field. Previously, fields
in the cert were used to indicate support of v2 (2.2).

• Native TLS Support: The new design supports TLS 1.3, which was previ-
ously not usable because it lacked the renegotiation feature needed for v2.
It also supports native TLS, rather than modified versions with covert
channels for backwards compatibility. This results in the following im-
provements:

1. Security. TLS 1.3 has improved security guarantees compared to TLS
1.2, which Tor currently uses. This is because it removes insecure
features like SHA-1 and RC4 that TLS 1.2 still supports [1.3].

2. Latency. Support for TLS 1.3 results in a reduced round-trip time
for each of four connections in every tor circuit. This is because TLS
1.3 takes one round-trip-time, while TLS 1.2 takes two [1.3].

3. Censorship Resistance. Tor handshakes may be identifiable during
TLS due to their use of a modified protocol. Supporting native TLS
makes the type and order of packets exchanged in stage 1 of Tor
indistinguishable from a non-tor TLS handshake.

4. Future-Proofing. Using a modified version of TLS forces Tor volun-
teers to create their own updates when new TLS versions come out.
Creating this updates is time-consuming, which leads to older ver-
sions being used for a significant period of time. For instance, Tor
still uses the outdated TLS 1.2 even though TLS 1.3 was released in
2018. Using native TLS will allow Tor to trivially support the most
up-to-date one, leading to optimized latency and security.

4 Discussion

This section will discuss the effects of the proposed changes in relation to threats
to Tor. It will also discuss potential problems with Tor that remain and future
work to address them.

10



4.1 Threats

This section will cover the two threats to Tor that this paper is concerned with:
an adversary that identifies and blocks Tor connections, and an adversary that
compromises relationship anonymity for the client and destination.

4.1.1 Adversary Blocking Connections

A primary function of Tor is to resist censorship. It is often used by whistle
blowers and people under restrictive governments to bypass restrictions [TOR].

To achieve censorship resistance, Tor’s handshake must look similar to the
typical internet user’s handshake. Otherwise, it is trivial for onlookers to iden-
tify Tor users and block their connection. Much of the design behind Tor’s
handshake is based on this censorship resistance goal. Tor could simply use
TLS and send two-certificate chains in the clear instead of having a unique
handshake. This is not done, however, because the unusual certificates would
make the handshake too easy to identify [SDM04].

4.1.2 Adversary Compromising Anonymity

A Tor circuit consists of a client, an entry node, a middle node, an exit node,
and a destination. Each entity in the circuit only knows the two ”adjacent”
parties that it connects to. For instance, the entry node only knows the identity
of the client and the middle node.

The circuit is compromised if both the entry node and exit node are cor-
rupted by a single adversary. This is because the entry node knows the identity
of the client, and the exit node knows the identity of the destination. As the
relays in each circuit are chosen randomly, Tor’s aims to support enough relays
such that it is highly unlikely for an adversary to control multiple nodes in a
single circuit.

Changes to the Tor handshake that improve the user experience thus indi-
rectly improve security. More users leads to more relays, which strengths Tor’s
resistance to an adversary that compromises a client’s anonymity.

4.2 Design Improvements

While the improvements to bandwidth, checks, security, and future-proofing
mentioned in Section 3.3 are standard, the reduced latency and censorship re-
sistance have different effects on the usability of Tor than they would on a typical

11



internet connection. This section will discuss the importance of these changes
in relation to the aforementioned threat models.

4.2.1 Censorship Resistance

The new design’s use of native TLS greatly improves Tor’s censorship resis-
tance. Previously, Tor’s modified TLS 1.2 had restrictions on certificate fields
for backwards compatibility purposes. These fields could be analyzed by an
adversary to selectively block Tor connections. As the new design uses native
TLS, certificate fields no longer have restrictions and the threat of an adversary
identifying and blocking Tor connections is reduced.

4.2.2 Latency

For Tor, reduction in latency not only means faster connections, but protection
against an adversary that corrupts users’ circuits. Reducing latency improves
Tor’s practical usability, encourages more clients to use it. Tor is a volunteer-
based network, and so its popularity affects its ability to maintain a healthy
number of relays. More relays subsequently decreases the chances that an ad-
versary controls both an entry node and an exit node in a Tor circuit [SDM04].

5 Conclusion

The redesign of the Tor handshake has substantial benefits and limited down-
sides. The primary changes made were the removal of a redundant certificate
and the backwards compatibility to v1 and v2. The design brings bandwidth
improvement, a simplified handshake, and native TLS support. The native TLS
support further improves security, latency, censorship resistance, and future up-
dates. The design loses support of the few v1 and v2 relays, but these comprise
about 0% of all nodes.

5.1 Future Work

Though Tor’s TLS stage will be native under the new design, there may remain
ways to identify its handshakes. Both parties must begin the Tor portion of the
handshake immediately following the completion of the TLS portion. They must
send a specific series of cells such as VERSIONS and CERTs. Though these
messages are encrypted, onlookers may be able to identify Tor handshakes by

12



analyzing the volume of traffic sent following the TLS portion. Traffic analysis
could be used to test the effectiveness of this type of attack in the future.

Additionally, the Tor handshake may be further optimized to reduce latency.
The VERSIONS cell could potentially be sent by the server before the client in
the second stage. This would reduce a round-trip time in the connection, greatly
improving latency. Future work could include investigating the feasibility of
changing this message order.

6 Acknowledgements

I would like to express my gratitude for my mentor Kyle Hogan, who supported
and guided me throughout the research process. I would also like to thank the
MIT PRIMES program for providing me with this research opportunity.

References

[1.3] Tls 1.3 - enhanced performance, hardened security. https://

www.cloudflare.com/learning-resources/tls-1-3/. Accessed
September 20, 2021.

[CJJ+19] Shan Chen, Samuel Jero, Matthew Jagielski, Alexandra Boldyreva,
and Cristina Nita-Rotaru. Secure communication channel estab-
lishment: Tls 1.3 (over tcp fast open) vs. quic. Cryptology ePrint
Archive, Report 2019/433, 2019.

[MAST19] Avijit Mallik, Abid Ahsan, Mhia Shahadat, and Jia-Chi Tsou. Man-
in-the-middle-attack: Understanding in simple words. 3:77–92, 01
2019.

[Met] Tor metrics. https://metrics.torproject.org/. Accessed
September 20, 2021.

[SDM04] Paul Syverson, Roger Dingledine, and Nick Mathewson. Tor: The
secondgeneration onion router. In Usenix Security, pages 303–320,
2004.

[Spe] Tor protocol specification. https://github.com/torproject/

torspec/blob/main/tor-spec.txt. Accessed June 20, 2021.

[SWZ16] John M Schanck, William Whyte, and Zhenfei Zhang. Circuit-
extension handshakes for tor achieving forward secrecy in a quantum
world. Proc. Priv. Enhancing Technol., 2016(4):219–236, 2016.

13

https://www.cloudflare.com/learning-resources/tls-1-3/
https://www.cloudflare.com/learning-resources/tls-1-3/
https://metrics.torproject.org/
https://github.com/torproject/torspec/blob/main/tor-spec.txt
https://github.com/torproject/torspec/blob/main/tor-spec.txt


[TLS] What is tls? https://www.cloudflare.com/learning/ssl/

transport-layer-security-tls/. Accessed January 14, 2021.

[TOR] Tor project. https://www.torproject.org/. Accessed January 10,
2021.

14

https://www.cloudflare.com/learning/ssl/transport-layer-security-tls/
https://www.cloudflare.com/learning/ssl/transport-layer-security-tls/
https://www.torproject.org/

	Introduction
	Background
	Goals
	Authentication
	Establishing a connection
	Censorship Resistance
	Backwards Compatibility

	Handshake Versions
	Version 1
	Version 2
	Version 3


	Design
	Overview
	Design
	Improvements

	Discussion
	Threats
	Adversary Blocking Connections
	Adversary Compromising Anonymity

	Design Improvements
	Censorship Resistance
	Latency


	Conclusion
	Future Work

	Acknowledgements

