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Abstract. Graphs are used in the modeling of social networks, biological networks, user-product networks, and many other real-world

relationships. Identifying dense regions within these graphs can often aid in applications including product-recommendation, spam

identification, and protein-function discovery. A fundamental dense substructure discovery problem in graph theory is the 𝑘-core

decomposition. However, the 𝑘-core decomposition does not directly apply to bipartite graphs, which are graphs that model the

connections between two disjoint sets of entities, such as book-authorship, affiliation, and gene-disease association. Given the prevalence

of bipartite graphs, solving the dense subgraph discovery problem on bipartite graphs has wide-reaching real-world impacts.

In this paper, we solve the bipartite analogue of the 𝑘-core decomposition problem, which is the bi-core decomposition problem.

Existing sequential bi-core decomposition algorithms are not scalable to large-scale bipartite graphs with hundreds of millions of edges.

Therefore, we develop a theoretically efficient parallel bi-core decomposition algorithm. Our algorithm improves the theoretical bounds

of existing algorithms, reducing the length of the computation graph’s longest dependency path, which asymptotically bounds the runtime

of a parallel algorithm when there are sufficiently many processors. We prove the problem of bi-core decomposition to be P-complete.

We also devise a parallel bi-core index structure to allow for fast queries of the computed cores. Finally, we provide optimized parallel

implementations of our algorithms that are scalable and fast. Using 30 threads, our parallel bi-core decomposition algorithm achieves up

to a 44x speedup over the best existing sequential algorithm and up to a 2.9x speedup over the best existing parallel algorithm. Our

parallel query implementation is up to 22.3x faster than the existing sequential query implementation.
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1 INTRODUCTION

Motivation. The problem of discovering dense clusters in networks is fundamental in large-scale graph analysis. It

has applications in community search of social networks, clustering word-documents, improving advertising, detecting

frauds, and analyzing protein-gene-disease relations in bioinformatics and medicine [27, 36]. Classic algorithms for dense

subgraph discovery include 𝑘-core [25] decomposition, 𝑘-truss [8], and nucleus decomposition [31]. However, these

algorithms apply to general graphs, and do not take into account the bipartite structures that exist in many real-world

graphs.

A bipartite graph𝐺 consists of two mutually exclusive sets of vertices𝑈 ,𝑉 and edges that connect between them. They

model the affiliation between two distinct types of entities. Notably, bipartite graphs have been used to model authorship

networks, group membership networks, peer-to-peer exchange networks, gene-disease associations, protein-protein

interactions, and enzyme-reaction links [15–17, 27, 49].

Traditional dense substructure analysis on bipartite graphs projects bipartite graphs to unipartite co-occurrence

networks by connecting two vertices if they share a neighbor, creating an edge. Then, 𝑘-core decomposition or a similar

analysis is performed on the unipartite co-occurrence network. Co-occurrence network analysis can lose important

connectivity information and cause an explosion of number of edges, making it practically inefficient [36]. Therefore,

bipartite analogues for classic unipartite dense subgraph discovery algorithms are crucial for efficient and accurate dense

substructure analysis on bipartite graphs.

Given the practical values of bipartite graphs, generalizing problems and algorithms for unipartite graphs to bipartite

graphs has become a recent popular direction of research [1, 32, 47, 53]. The bipartite equivalent of 𝑘-core (bi-core) was

introduced by Ahmed et al. [1]. A (𝛼, 𝛽)-core (or a bi-core) is the maximal subgraph where the induced degrees of all

vertices in the first partition is ≥ 𝛼 and the induced degrees of all vertices in the second partition is ≥ 𝛽.

Applications. Bi-core decomposition has been applied to recommendation systems, fraud detection, and community

search [4, 14, 48]. Below, we list 3 specific applications of bi-core decomposition.

(1) Fraudster Detection Bi-core decomposition can be applied to a social network graph for fraudster/spammer

detection by considering the bipartite graph connecting user accounts to posts they like/dislike/upvote/downvote.

A common strategy of fraudulent online influence campaigns is to create a large number of fake social media

accounts to like/dislike specific posts or online products in order to manipulate public opinions. These fake

accounts are generally created to like/dislike a small number of posts; those posts generally receives lots of

likes/dislikes. Therefore, a fraudulent influence campaign can be identified by identifying (𝛼, 𝛽)-cores with a low

𝛼 value (corresponding to each user’s degree) and a high 𝛽 value (corresponding to each post/product’s degree).

(2) Graph Visualization Algarra et al. introduced 𝑘-core decomposition for visualizing bipartite biological networks

modeling gene-protein, host-pathogen, and predator-prey interactions. 𝑘-core decomposition identifies dense

communities within the bipartite graph, which represents communities of generalists (species that interact with

many other species; for example, predators that prey on many species). These dense substructures help researchers

identify critical species in an ecosystem. Similarly, bi-core decomposition can also be applied to the problem and

can potentially generate more accurate representations since it addresses the imbalance between the two entities.

For example, there are generally more predator species than prey species, so intuitively, the number of degrees a

prey species needs to be considered a generalist should be higher than that of a predator species [29].

(3) Community Search Wang et al. applied bi-core decomposition to find significant bipartite communities, which

are densely-connected bipartite subgraphs with high edge weights containing a specific query vertex [48]. Their
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approach uses bi-core decomposition as a subroutine to narrow down the search range of significant bipartite

communities.

Parallel Bi-core Decomposition. Liu et al. [24] proposed the state-of-the-art sequential index-based approach for bi-core

decomposition. Their algorithm runs in 𝑂 (𝑚
3
2 ) time and 𝑂 (𝑚) space, where𝑚 is the number of edges. They leveraged

computation-sharing across different rounds of peeling to improve upon prior works [7, 24]. Liu et al. also introduces a

parallel version of their algorithm. However, their parallel algorithm only parallelizes between rounds of peeling and does

not parallelize the peeling process itself. As a result, it has long sequential dependencies, which limits its scalability to

different large real-world graphs.

As the sizes of graphs such as social media networks and biology graphs increase, leveraging parallelism to speed up

bi-core decomposition becomes increasingly crucial. The importance of parallelism also grows as it becomes increasingly

difficult to increase CPU clock speeds, as a result of which, chip manufacturers have turned to increasing the number of

cores in a CPU [40]. As the number of cores in a CPU grows, shared-memory parallelism in particular becomes necessary

in order to take advantage of the growing number of cores [43].

Motivated by the need of an efficient parallel bi-core decomposition algorithm, we develop in this paper a shared-

memory parallel bi-core decomposition algorithm. Our algorithm uses a peeling-based approach, where each round of

peeling removes all vertices with the lowest induced degree concurrently from the graph until the graph is empty. We

use the classic work-span model to analyze the theoretical complexity of our parallel algorithm. In short, the work is

the total number of operations performed, and the span (or the depth) is the length of the longest chain of sequential

dependencies. We prove that our algorithm achieves 𝑂 (𝑚
3
2 ) work, and because the work complexity matches the time

complexity of the best sequential algorithm, our algorithm is work-efficient. Our algorithm achieves 𝑂 (𝜌 log(𝑛)) span

w.h.p.1. 𝑛 is the number of vertices. We define 𝜌 to be the bi-core peeling complexity, or the maximum number of rounds

of peeling required until the graph is empty. Additionally, our algorithm uses 𝑂 (𝑚) space.

Note that 𝜌 is upperbounded by 𝑛, so our span is 𝑂 (𝜌 log(𝑛)) = 𝑂 (𝑛 log(𝑛)) w.h.p.. In comparison, the parallel

algorithm introduced by Liu et al. has a span of 𝑂 (𝑚). Thus, for sufficiently large graphs, our parallel algorithm has

better span than Liu et al.’s algorithm. Moreover, on real world graphs, we find that 𝜌 log(𝑛) is generally 2–3 orders of

magnitude smaller than𝑚 in practice.

Moreover, we prove the problem of bi-core decomposition to be P-complete. It is as such unlikely that there exists a

parallel bi-core decomposition algorithm with polylogarithmic span.

In addition, to allow finding all vertices 𝑣 ∈ (𝛼, 𝛽)-core in work linear to the size of the core, we develop a parallel

index structure as an extension of Liu et al.’s sequential index structure. While Liu et al. provided a parallel bi-core

decomposition algorithm, they did not provide a parallel index construction algorithm. We provide a work-efficient,

𝑂 (log(𝑛)) span algorithm to construct our index structure in parallel and a work-efficient,𝑂 (1) span algorithm to perform

the query based on the index structure.

Finally, we implement all of our parallel algorithms and introduce practical optimizations to improve their performance

on real-world graphs. We present a comprehensive experimental evaluation of our algorithms on real-world graphs

that contain up to hundreds of millions of edges. We compare our experimental results against Liu et al.’s parallel and

sequential algorithms, which we use as our baselines. Our bi-core decomposition algorithm achieves up to 44x speedup

over Liu et al.’s sequential algorithm on a machine with 30 cores and two-way hyperthreading. Furthermore, it achieves a

2.9x speedup over their parallel algorithm. Our parallel index query achieves 22.3x speedup over Liu et al.’s sequential

1w.h.p. stands for with high probability (meaning a probability of 1 − 𝐶
𝑛𝑎

for some𝐶 and any 𝑎 ≥ 1)
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index query. Overall, we show that our implementations demonstrate good scalability over different numbers of threads

and over graphs of different sizes.

In summary, the contributions of our work are as follows.

(1) We introduce the first theoretically efficient shared-memory parallel bi-core decomposition algorithm with nontrivial

parallelism. We provide an accompanying parallel index construction and query algorithm, and prove that the

problem of bi-core decomposition to be P-complete.

(2) We introduce practical optimizations and provide fast implementations of our parallel algorithms, that outperform

the existing state-of-the-art algorithms. Our code is publicly available at https://github.com/clairebookworm/gbbs.

(3) We perform an extensive empirical evaluation on our algorithms.

2 RELATED WORK

𝐾-core Decomposition. The bi-core decomposition problem is an extension of the well-studied 𝑘-core decomposition

problem, which on general graphs, asks for the largest 𝑘 for each vertex 𝑣 such that there exists an induced subgraph

containing 𝑣 where all vertices have induced degree at least 𝑘. The first efficient sequential algorithm for 𝑘-core

decomposition was given by Matula and Beck [25], and there has been numerous work on parallelizations in both the

distributed memory and shared memory settings [10, 11, 20, 26, 41].

Other Dense Subgraph Decompositions. 𝑘-clique decomposition, 𝑘-truss, and (𝑟, 𝑠)-nucleus decomposition are all

extensions of the 𝑘-core decomposition that focus on higher order substructures in order to discover dense substructures

in a graph. 𝑘-clique decomposition [37, 42] involves computing the 𝑘-clique core number of each vertex 𝑣 , or the largest 𝑐

such that there exists an induced subgraph containing 𝑣 where all vertices are incident upon at least 𝑐 induced 𝑘-cliques.

𝑘-truss is a classic extension [2, 8, 21, 34, 44, 51, 52] that asks for the largest 𝑘 for each edge 𝑒 such that there exists

an induced subgraph containing 𝑒 where all edges are contained within at least 𝑘 triangles. Notably, the 𝑘-core and

𝑘-truss decompositions are part of the MIT GraphChallenge [18], demonstrating their practical importance and popularity.

The (𝑟, 𝑠)-nucleus decomposition [33, 35] further generalizes the 𝑘-clique and 𝑘-truss decompositions, by asking for

the largest 𝑘 for each 𝑟 -clique such that there exists an induced subgraph containing the 𝑟 -clique in which all 𝑟 -cliques

are contained within at least 𝑘 induced 𝑠-cliques. Notably, 𝑘-clique decomposition is (1, 𝑘)-nucleus decomposition, and

𝑘-truss is (2, 3)-nucleus decomposition.

Generalization of Decomposition Algorithms to Bipartite Graphs. Another direction of current work focuses on

generalizing these unipartite decomposition algorithms to bipartite graphs by focusing on other higher order structures

available in bipartite graphs. Zou [53] and Sarıyüce and Pinar [32] defined 𝑘-tip and 𝑘-wing decomposition on bipartite

graphs. 𝑘-tip decomposition asks for the largest 𝑘 for each vertex 𝑣 such that there exists an induced subgraph in which

every vertex is incident to at least 𝑘 induced (2, 2)-bicliques. Similarly, 𝑘-wing decomposition asks for the largest 𝑘 for

each edge 𝑒 such that there exists an induced subgraph in which every edge is incident to at least 𝑘 induced (2, 2)-bicliques.

Multiple sequential [30, 32, 45–47, 53] and parallel [23, 38] algorithms have been developed for 𝑘-tip and 𝑘-wing

decomposition.

Ahmed et al. proposed the (𝛼, 𝛽)-core decomposition problem, or the bi-core decomposition problem and gave the

first sequential bi-core algorithm [1]. Ding et al. applied bi-core to recommender systems and provided a sequential

bi-core algorithm based on the classic 𝑘-core peeling algorithm [14]. Liu et al. developed an efficient computation

sharing sequential bi-core peeling algorithm and a memory-efficient indexing structure to store the bi-cores for efficient

https://github.com/clairebookworm/gbbs


6 Yihao Huang and Claire Wang

Table 1. Graph Notation Summary

𝐺 An undirected, simple, bipartite graph

𝑈 One bipartition of the vertices in 𝐺

𝑉 Another bipartition of the vertices in 𝐺

deg(𝑥) Degree or induced degree of a vertex 𝑥 , depending on context

𝑁 (𝑥) 𝑥’s neighbors. In other words, the set of vertices that are adjacent to 𝑥

dmax𝑣 The maximum vertex degree in 𝑉

dmax𝑢 The maximum vertex degree in𝑈

max𝛼 (𝛽) The maximum 𝛼 value such that (𝛼, 𝛽)-core is nonempty

max𝛽 (𝛼) The maximum 𝛽 value such that (𝛼, 𝛽)-core is nonempty

𝛿 The maximum 𝛿 value such that (𝛿, 𝛿)-core is nonempty. In other words, it is the maximum
𝑘-core number of the graph 𝐺 .

membership queries from vertices [24]. Wang et al. extended the problem to weighted bipartite graphs to find the bi-core

component with the highest minimum edge weight containing a given query vertex [48].

3 PRELIMINARIES

In this section, we provide the definitions and notations that we use throughout this paper.

Graph Definitions.
We take every graph to be simple, undirected, and bipartite. A bipartite graph is a graph 𝐺 consisting of two mutually

exclusive sets of vertices𝑈 and 𝑉 , such that every edge connects a vertex in𝑈 with a vertex in 𝑉 . In other words, every

edge is of the form (𝑢, 𝑣) where 𝑢 ∈ 𝑈 and 𝑣 ∈ 𝑉 . Let deg(𝑢) denote the degree of a vertex 𝑢.

DEFINITION 1. A bi-core, or an (𝛼, 𝛽)-core, is the maximal induced subgraph 𝐺 ′ = (𝑈 ′,𝑉 ′) of 𝐺 such that for every

𝑢 ∈ 𝑈 ′, the induced degree deg(𝑢) ≥ 𝛼 , and for every 𝑣 ∈ 𝑉 ′, the induced degree deg(𝑣) ≥ 𝛽.

Note that in this definition, deg(𝑢) denotes the induced degree of vertex𝑢 in the induced subgraph𝐺 ′. For the remainder

of this paper, we take deg(𝑢) to be the vertex 𝑢’s induced degree in 𝐺 ′ instead of in 𝐺 unless specified.

See Table 1 for a table of graph notations we use.

Note the two following facts:

(1) if 𝑢 ∈ (𝛼1, 𝛽1)-core, then 𝑢 ∈ (𝛼2, 𝛽2)-core if 𝛼2 ≤ 𝛼1 and 𝛽2 ≤ 𝛽1.

(2) Every nonempty (𝛼, 𝛽)-core must have 𝛼 ≤ 𝛿 and/or 𝛽 ≤ 𝛿 .

We give a quick proof of the second fact here. Assume for the sake of contradiction there exists a nonempty (𝛼, 𝛽)-core

with 𝛼 > 𝛿 and 𝛽 > 𝛿 . Then, we know that (𝛼, 𝛽)-core ⊆ (𝛿 + 1, 𝛿 + 1)-core. Thus, the (𝛿 + 1, 𝛿 + 1)-core is nonempty and

𝛿 is not the max unipartite 𝑘-core number of the graph, which is a contradiction. Thus, any nonempty (𝛼, 𝛽)-core must

have 𝛼 ≤ 𝛿 and/or 𝛽 ≤ 𝛿 .
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Problem Statement. We formally define the bi-core decomposition problem as follows.

DEFINITION 2. Given a graph 𝐺 and values 𝛼, 𝛽, return all vertices in the (𝛼, 𝛽)-core of graph 𝐺 [24].

Similar to Liu et al.’s algorithm [24], our algorithm for this problem involves a process consisting of three stages:

bi-core peeling, index building, and bi-core querying. In particular, in the bi-core peeling stage, we compute the 𝛼max, 𝛽max

values for each vertex as defined below. Given a bipartite graph 𝐺 = (𝑉 ,𝑈 ), for every vertex 𝑢 ∈ 𝑈 , we define 𝛽max𝛼 (𝑢)
for a fixed 𝛼 to be the maximum 𝛽 value such that 𝑢 ∈ (𝛼, 𝛽)-core [24]. Similarly, for 𝑣 ∈ 𝑉 , we let 𝛼max 𝛽 (𝑣) denote, for

a fixed 𝛽, the maximum 𝛼 value such that 𝑣 ∈ (𝛼, 𝛽)-core [24]. Thus, in the bi-core peeling stage, we compute the values

𝛽max𝛼 (𝑢) for every 𝛼 and for every 𝑢 ∈ 𝑈 , and we compute the values 𝛼max 𝛽 (𝑣) for every 𝛽 and for every 𝑣 ∈ 𝑉 .

Note that with these values, one can determine for every vertex 𝑢 ∈ 𝑈 whether or not it is in (𝛼, 𝛽)-core for any 𝛼, 𝛽

values. If 𝛽max 𝛼 (𝑢) ≥ 𝛽, then 𝑢 ∈ (𝛼, 𝛽)-core. Similarly, if 𝛼max 𝛽 (𝑣) ≥ 𝛼 , then 𝑣 ∈ (𝛼, 𝛽)-core.

Then, the index construction stage uses 𝛼max, 𝛽max values to construct an index structure that allows queries to be

processed in the final query stage.

Model of Computation. We use the shared-memory model of parallel computation, and in particular, we use the classic

work-span model for our analysis, which allows us to derive theoretical bounds on the algorithm’s running time on 𝑃

processors. The work of an algorithm is the total number of operations executed, and the span is the length of the longest

dependency path [9]. Brent’s Theorem [6] states that given an algorithm’s work 𝑇1 and span 𝑇∞, the algorithm’s running

time on 𝑃 processors 𝑇𝑃 can be bounded by

𝑇𝑃 ≤
𝑇1 −𝑇∞

𝑃
+𝑇∞

We assume arbitrary forking for simplicity. In other words, forking 𝑛 processes has a span of 𝑂 (1). With the provided

model, we show that our algorithm is work-efficient, meaning that it has the same work complexity as the best sequential

algorithm.

Parallel Primitives. We now define the parallel primitives that we use throughout our algorithms.

ATOMIC-COMPARE-AND-SWAP(𝑝, 𝑎, 𝑏) takes as input a pointer 𝑝 and two values 𝑎, 𝑏. It atomically reads 𝑝; if its value

equals 𝑎 it then updates the value to 𝑏. If the update is performed successfully, the function returns true, else it returns

false.

PREFIX-SUM(𝐴) takes as input a sequence 𝐴 and returns a sequence 𝐵 of the same length such that 𝐵 [𝑖] = 𝐴[0] ⊕
𝐴[1] ⊕ 𝐴[2] · · ·𝐴[𝑖 − 2] ⊕ 𝐴[𝑖 − 1]. Here ⊕ is a binary associative operator with an identity value denoted by 𝜀. We

assume for the rest of the paper that the operator is the addition operator. PREFIX-SUM has 𝑂 (𝑛) work and 𝑂 (log(𝑛))
span where 𝑛 is the length of the sequence [9].

SUFFIX-MIN(𝐴) is a special case of prefix sum using min as the operator and it is performed on the reverse of 𝐴.

Specifically, it returns sequence 𝐵 such that 𝐵 [𝑖] = min(𝐴[𝑖 + 1], 𝐴[𝑖 + 2], · · · , 𝐴[𝑛]) where 𝑛 is the index of 𝐴’s last

element.

REDUCE-MIN(𝐴) takes as input a sequence of length 𝑛. It returns the minimum element in the sequence. REDUCE-MIN

has work 𝑂 (𝑛) and span 𝑂 (log(𝑛)) [9].

FILTER(𝐴, COND) takes as input a sequence and a condition for filtering. It retains all items for which the condition is

true and then outputs these elements in a sequence, maintaining the original ordering. The function returns a sequence of

filtered elements in 𝑂 (𝑛) work and 𝑂 (log(𝑛)) span [9].

HISTOGRAM(𝐴) takes as input a sequence of indices. It applies a parallel semisort to the indices, which it then uses to

create a histogram of the frequencies of each index. It takes 𝑂 (𝑛) expected work and 𝑂 (log(𝑛)) span w.h.p. [19]. We use

the parallel semisort by Gu et al. [19], and apply FILTER and PREFIX-SUM to obtain the occurrence count for each index.
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RADIX-SORT(𝐴) takes as input a sequence of elements with an natural ordering defined. It sorts them in parallel with

work 𝑂 (𝑛) and span 𝑂 (log(𝑛)) where 𝑛 is the length of the array [5, 28, 39, 50].

4 SEQUENTIAL BI-CORE DECOMPOSITION

In this section, we present the sequential bi-core peeling algorithm introduced by Liu et al. [24] to provide the context for

our parallelization in Section 5. We reiterate that the entirety of this section is not our work.

4.1 Sequential Peeling

First, we note that the problem of computing the 𝛼max 𝛽 (𝑣) values for all 𝑣 ∈ 𝑉 and all 1 ≤ 𝛽 ≤ dmax𝑣 is symmetric to

the problem of finding the 𝛽max 𝛼 (𝑢) values for all possible 𝑢 and 𝛼 . As such, we focus our discussion on the problem of

finding the 𝛼max 𝛽 (𝑣) values. Note that 𝛼max 𝛽 (𝑣) = 𝛼 if 𝑣 ∈ (𝛼, 𝛽)-core but 𝑣 ∉ (𝛼 + 1, 𝛽)-core. Thus, a peeling-based

algorithm is often used to solve this problem [1, 14]. In a baseline peeling-based algorithm [24], we apply a subroutine

PEEL-FIX-𝛽 for every 𝛽 ′ between 1 and dmax𝑣 . PEEL-FIX-𝛽 takes as input a fixed 𝛽 ′ value, and increases the 𝛼 value

of the (𝛼, 𝛽 ′)-core from 1 to max𝛼 (𝛽 ′). For each (𝛼 , 𝛽 ′) pair, it iteratively deletes vertices no longer within the current

(𝛼, 𝛽 ′)-core. In other words, for each 𝛼 from 1 to max𝛼 (𝛽 ′), the algorithm iteratively peels vertices not in each successive

core. When deleting a vertex 𝑣 to discover the (𝛼 + 1, 𝛽 ′)-core, we update 𝛼max 𝛽′ ← 𝛼 , because it is the highest 𝛼 value

for which 𝑣 ∈ (𝛼, 𝛽 ′)-core. The subroutine PEEL-FIX-𝛼 is symmetric.

4.2 Computation Sharing

Liu et al. observed that it is unnecessary to repeat the entirety of the peeling process for each possible 𝛽 ′ value, because

we rediscover some of the same information in the symmetric subroutine. Instead, it is sufficient to perform the peeling

process for 1 ≤ 𝛽 ′ ≤ 𝛿 . Essentially, when a vertex 𝑢 is deleted while discovering the (𝛼 + 1, 𝛽 ′)-core, we know that

𝑢 ∈ (𝛼, 𝛽 ′)-core. Thus, we know that the 𝛽max𝛼 (𝑢) value is at least 𝛽 ′. More precisely, because (𝑖, 𝛽 ′)-core ⊇ (𝛼, 𝛽)-core

for 𝑖 < 𝛼 and thus 𝑢 ∈ (𝑖, 𝛽 ′)-core, we can also update 𝛽max 𝑖 (𝑢) to at least 𝛽 ′, for all 𝑖 < 𝛼 . Provided that the peeling

process is performed for all 1 ≤ 𝛽 ′ ≤ 𝛿 , Liu et al. showed that all 𝛽max𝛼 (𝑢) entries with 𝛼 > 𝛿 will be updated to their

correct values [24].

We give a brief explanation as follows, although further details can be found in their paper. Given 𝑢 ∈ (𝛼, 𝛽max 𝛼 (𝑢))-
core and 𝛼 > 𝛿 , we know 𝛽max 𝛼 (𝑢) ≤ 𝛿 . Therefore, we must have peeled off (𝛼, 𝛽max 𝛼 )-core in the peeling process and

would have recorded that correct 𝛽 value for the entry.

The pseudocode for Liu et al.’s computation sharing algorithm is in Algorithm 1. We discuss this pseudocode in more

detail. On Lines 5–6 of Algorithm 1, we loop over all 1 ≤ 𝛽 ′ ≤ 𝛿 and run PEEL-FIX-𝛽 on each 𝛽 ′ (note that Lines 3–4 are

symmetric for PEEL-FIX-𝛼). Each iteration of PEEL-FIX-𝛽 iteratively removes vertices from𝑈 with degree ≤ 𝛼 for 𝛼 from

1 to max𝛼 (𝛽 ′) for the given 𝛽 ′. In more detail, on Line 18, DEL-UPDATE iteratively deletes all vertices 𝑣 with induced

degree deg(𝑣) < 𝛽 ′, because these vertices are not in any (𝛼, 𝛽 ′)-core for the given 𝛽 ′. Then, until the graph is empty, we

execute Lines 20–26. On Line 20, we find the set of vertices 𝑢 ∈ 𝑈 with the current minimum degree and store them

in delU. We let 𝛼 denote the current minimum degree. At this point, all remaining vertices are in (𝛼, 𝛽 ′)-core. We now

continue with the peeling process, and iteratively delete all vertices in 𝑈 with induced degree ≤ 𝛼 , which we maintain in

the set delU. Lines 21–23 update the 𝛽max 𝑖 (𝑢) values for all 𝑢 ∈ delU and 1 ≤ 𝑖 ≤ 𝛼 , because as discussed earlier, these

𝛽max 𝑖 (𝑢) are at least 𝛽 ′. On Line 24, the DEL-UPDATE subroutine removes the vertices in delU, which affects the degrees

of their neighbors in 𝑉 . If the degrees of these neighbors 𝑣 ∈ 𝑉 fall below 𝛽 ′, this means that each of these vertices 𝑣 is

not in the (𝛼 + 1, 𝛽 ′)-core. Thus, to continue searching for the next core, we peel these vertices as well and record them
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Algorithm 1 Sequential Baseline 1 [24]
1: procedure SEQ-BI-CORE(G)
2: 𝛿 ← PAR-K-CORE(𝐺)
3: for 𝛼′ = 1 to 𝛿 do
4: PEEL-FIX-𝛼(𝐺 , 𝛼′)
5: for 𝛽′ = 1 to 𝛿 do
6: PEEL-FIX-𝛽(𝐺 , 𝛽′)
7: procedure DEL-UPDATE(𝐺 , delX, 𝑘)
8: delY← ∅
9: for all 𝑥 in delX do

10: for all 𝑦 in 𝑁 (𝑥) do
11: deg(𝑦) ← deg(𝑦) − 1
12: if deg(𝑦) < 𝑘 then
13: add 𝑦 to delY
14: remove 𝑦 from 𝐺 ⊲ Or mark 𝑦 as removed in an array
15: remove 𝑥 from 𝐺 ⊲ Or mark 𝑥 as removed in an array
16: return delY
17: procedure PEEL-FIX-𝛽(𝐺 , 𝛽′)
18: DEL-UPDATE(𝐺 , {𝑣 ∈ 𝑉 | deg(𝑣) < 𝛽′ }, 1) ⊲ Iteratively delete vertices in𝑉 with indeced degree less than 𝛽′

19: while𝑈 ≠ ∅ do
20: delU, 𝛼 ← FIND-MIN(𝐺) ⊲ Find min induced degree in𝑈 , store that to 𝛼 , store the set of all 𝑢 ∈ 𝑈 with deg(𝑢) ≤ 𝛼 to delU
21: for all 𝑢 in delU do
22: for 𝑖 = 1 to 𝛼 do
23: 𝛽𝑚𝑎𝑥 𝑖 (𝑢) ← max(𝛽𝑚𝑎𝑥 𝑖 (𝑢), 𝛽′)
24: delV←DEL-UPDATE(𝐺 , delU, 𝛽) ⊲ Peel𝑈 up to 𝛼

25: for all 𝑣 in delV do
26: 𝛼𝑚𝑎𝑥 𝛽′ (𝑢) ← 𝛼 ⊲ Update 𝛼𝑚𝑎𝑥 𝛽′

27: procedure PEEL-FIX-𝛼(G,𝛼′)
28: symmetric to PEEL-FIX-𝛽

in delV. We repeat this peeling process until all vertices in 𝑉 remaining have induced degree at least 𝛽 ′. We update the

𝛼max 𝛽′ (𝑢) values of delV on Line 26.

Note that when we remove a vertex from 𝐺 , as on Lines 14–15, we do not have to remove the vertex physically. We

can maintain an array that tracks whether each vertex is removed and simply mark the vertex as removed in the array.

When traversing the graph, we can skip vertices marked as removed in the array.

The PEEL-FIX-𝛼 subroutine is symmetric to PEEL-FIX-𝛽, swapping 𝛽 ′ with 𝛼 ′, 𝛼 with 𝛽, 𝑉 with𝑈 , and 𝑣 with 𝑢.

Analysis. We first discuss the time complexity of PEEL-FIX-𝛽. Note that the combined time of all of the DEL-UPDATE

subroutines is bounded by 𝑂 (𝑚). This is because these subroutines are called on each vertex at most once, where the

vertex is additionally symbolically deleted from the graph. For each vertex 𝑥 we delete, we traverse its neighbors to

update their degrees. Thus, in total, it incurs 𝑂 (𝑚) time. Lines 25–26 are bounded by 𝑂 (𝑛) since there can be at most

𝑛 updates to 𝛼max 𝛽′ (𝑣) over the entire PEEL-FIX-𝛽 routine. This is because this update is performed at most once for

each vertex. Lines 21–23 are also bounded over all invocations by 𝑂 (𝑚), because the maximal 𝛼 value is 𝑂 (deg(𝑢)), thus

giving a total of 𝑂 (∑𝑢∈𝑈 deg(𝑢)) = 𝑂 (𝑚) time. FIND-MIN can be achieved in 𝑂 (dmax𝑢 ) = 𝑂 (𝑛) with a linear search.

Thus PEEL-FIX-𝛽 runs in 𝑂 (𝑚) time [24] and PEEL-FIX-𝛼 is symmetric.

For the overall peeling procedure SEQ-BI-CORE, we make 𝑂 (𝛿) calls to subroutines PEEL-FIX-𝛽 and PEEL-FIX-𝛼 .

Here 𝛿 is the degeneracy of the graph, or the maximal value such that (𝛿, 𝛿)-core is nonempty.

Since 𝛿 is bounded by 𝑂 (
√
𝑚) [24], Algorithm 1 runs in 𝑂 (𝛿𝑚), or 𝑂 (𝑚

3
2 ).

4.3 Memory-Efficient Bi-core Index

Liu et al. also introduced a memory-efficient bi-core indexing structure to allow for efficient queries of (𝛼, 𝛽)-cores.

Specifically, their data structure returns the set of all vertices in an (𝛼, 𝛽)-core for a given (𝛼, 𝛽) in time linear to the size
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of the core. The indexing structure consists of two data structures, I𝑈 and I𝑉 , where I𝑈 stores the vertices in𝑈 partition,

while I𝑉 stores vertices in 𝑉 partition. Because these are symmetric, we discuss only I𝑈 here.

Let I𝑈
𝛼,𝛽

be the set of vertices 𝑢 ∈ 𝑈 such that 𝛽max𝛼 (𝑢) = 𝛽. In other words, I𝑈
𝛼,𝛽

is the set of all 𝑢 that are in the

(𝛼, 𝛽)-core but not in the (𝛼, 𝛽 + 1)-core. Thus, by definition, I𝑈
𝛼,𝛽1
∩ I𝑈

𝛼,𝛽2
= ∅ for all 𝛽1 ≠ 𝛽2. Further, note that if 𝑢 ∈ I𝑈

𝛼,𝛽
,

then 𝑢 is in the (𝛼, 𝛽 ′)-core for all 𝛽 ′ ≤ 𝛽. Therefore, the (𝛼, 𝛽)-core is given by
⋃max𝛽 (𝛼)

𝑖=𝛽
I𝑈
𝛼,𝑖

. I𝑈 is a lookup table

containing all sets I𝑈
𝛼,𝛽

that is nonempty, allowing us to access a specific set in 𝑂 (1) time. Therefore, the operation of

taking the union across all sets I𝑈
𝛼,𝑖

for 𝛽 ≤ 𝑖 ≤ max𝛽 (𝛼) is in time linear to the number of vertices in these sets. Thus, we

can find all vertices in (𝛼, 𝛽)-core with time complexity linear to the number of vertices in the core.

Liu et al. implemented I𝑈 as a jagged 2D pointer array with indices corresponding to 𝛼, 𝛽 values. Each element of the

array with index 𝛼, 𝛽 points to the set I𝑈
𝛼,𝛽

Analysis. Liu et al. showed that the indexing structure takes 𝑂 (𝑚) space, which we discuss here. First, we prove that the

size of the 2D dynamic array is proportional to 𝑂 (𝑚).
The size of the array is

∑dmax𝑢
𝛼=1 max𝛽 (𝛼), by construction. To bound this value, we can consider the process of

constructing the bipartite graph by adding vertices in the𝑈 partition while the 𝑉 partition is already in place. When we

add vertex 𝑢𝑖 , it only affects cores with 𝛼 ≤ 𝑢𝑖 . Since the addition of each vertex can at most increase max𝛽 (𝛼) by 1,

the addition of vertex 𝑢𝑖 increases
∑dmax𝑢
𝛼=1 max𝛽 (𝛼) by at most 𝑂 (deg(𝑢𝑖 )). Therefore, after the construction process

finishes, the space of the array is 𝑂 (∑𝑢∈𝑈 deg(𝑢)) = 𝑂 (𝑚).
Now, we show that the space occupied by all of the vertex sets in I𝑈 is bounded by 𝑂 (𝑚).
For each 𝑢 ∈ 𝑈 , 𝑢 exists in I𝑈𝛼 exactly once for each 𝛼 ≤ deg(𝑢). Thus each 𝑢 ∈ 𝑈 exists in I𝑈 exactly deg(𝑢) times.

Therefore, the total number of vertices in I𝑈 is 𝑂 (∑𝑢∈𝑈 deg(𝑢)) = 𝑂 (𝑚).
Thus, in total, since this argument is symmetric for I𝑉 , Liu et al.’s indexing data structure takes 𝑂 (𝑚) total space.

5 PARALLEL BI-CORE DECOMPOSITION

The sequential nature of Liu et al’s [24] bi-core decomposition (Algorithm 1) limits its practical applicability to large

graphs. While Liu et al. [24] provides a parallel version of their algorithm, their parallel algorithm only parallelizes

between rounds of peeling (subroutines PEEL-FIX-𝛼 and PEEL-FIX-𝛽), and does not parallelize the peeling process itself.

As a result, it has a high span of 𝑂 (𝑚). We present in this section a parallel bi-core decomposition algorithm using the

same computation-sharing technique developed by Liu et al [24]. We prove that our algorithm is work-efficient and has

span 𝑂 (𝜌 log(𝑛)) w.h.p., where 𝜌 is the peeling complexity, which we define as follows.

DEFINITION 3. The bi-core peeling complexity 𝜌 is the maximum number of rounds needed to empty the graph by

any call of PAR-PEEL-FIX-𝛼 or PAR-PEEL-FIX-𝛽, where in each round of peeling, the set of vertices with the minimum

induced degree is removed from the graph

It is worth remarking that the bi-core peeling complexity 𝜌 cannot be bounded by𝑂 (𝜌𝑘 ) where 𝜌𝑘 is the 𝑘-core peeling

complexity introduced by Dhulipala et al. [12].

Our algorithm is based on a peeling paradigm. For PAR-PEEL-FIX-𝛽 given a fixed 𝛽 ′, in each round, we remove all

vertices 𝑢 with the lowest induced degree concurrently. In other words, we peel all vertices 𝑢 with deg(𝑢) ≤ 𝛼 for the

current 𝛼 . In order to efficiently peel these vertices concurrently, we must update the degrees of the neighbors of the

peeled vertices in parallel, using an approach that we describe in Section 5.2. Additionally, to reduce the span of the
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Algorithm 2 Parallel Exponential Search
1: procedure HAS-MIN-DEG(buckets) ⊲ check if the given slice of array of buckets contain a nonempty bucket
2: hasMinDeg← false ⊲ hasMinDeg records whether the interval contain the next nonempty bucket
3: parfor 𝑖 = 0 to |buckets | do
4: if buckets[𝑖 ] exists then
5: ATOMIC-COMPARE-AND-SWAP(hasMinDeg, false, true)
6: return hasMinDeg
7: procedure NEXT-BUCKET(buckets, 𝑘) ⊲ find and return the next nonempty bucket and its corresponding degree
8: 𝑖 ← 1 ⊲ 𝑖 is doubled in each iteration of the while loop. In each iteration, we search interval ( 𝑖2 , 𝑖 ] for the next nonempty bucket
9: while HAS-MIN-DEG(buckets[𝑘 + 𝑖

2 + 1 to 𝑘 + 𝑖 ])= false do
10: 𝑖 ← 2𝑖
11: minDeg← REDUCE-MIN(buckets[𝑘 + 𝑖

2 + 1 to 𝑘 + 𝑖 ])
12: return buckets[minDeg],minDeg ⊲ Return next min deg

sequential search used in Algorithm 1, we use a parallel exponential search technique to find the next set of vertices with

minimum degree; we discuss this in Section 5.1.

5.1 Parallel Bucketing and Exponential Search

To achieve polylogarithmic span while maintaining work-efficiency, we use an efficient parallel bucketing structure to

store the subset of vertices to be peeled in each round. Dhulipala et al. introduced this parallel bucketing structure and

applied it to their parallel 𝑘-core decomposition algorithm [11]. The data structure consists of an array of buckets, where

the indices represent vertex degrees. Each bucket stores all vertices with current degree corresponding to its index. It

supports two types of operations. UPDATE-VERTICES allows batch update of vertices’ degrees. It moves those vertices to

new buckets corresponding to their new degrees in parallel [11]. On the other hand, NEXT-BUCKET, given a degree value

𝑘 , searches for the next subset of vertices with lowest induced degree ≥ 𝑘 . We introduce a parallel exponential search to

complete this in logarithmic span. We provide its pseudocode in Algorithm 2.

NEXT-BUCKET finds and returns the next nonempty bucket with degree ≥ 𝑘. First, we initialize 𝑖 to 1. Then, in each

iteration of the while loop on Lines 9–10 of Algorithm 2, we determine if the interval (𝑘 + 𝑖
2 , 𝑘 + 𝑖] contains the next

nonempty bucket. Then, we double 𝑖 and repeat until the next nonempty bucket is found. For instance, we start the search

from the interval (𝑘, 𝑘 + 1]. The HAS-MIN-DEG subroutine called on Line 9 checks in parallel whether the next minimum

degree vertex exist in the given interval. If it does not exist in this interval, we proceed to interval (𝑘 + 1, 𝑘 + 2], and then

to (𝑘 + 2, 𝑘 + 4], (𝑘 + 2𝑖 , 𝑘 + 2𝑖+1) for each 𝑖 until a nonempty bucket is found.

On Line 11, we perform a parallel REDUCE-MIN on the sequence of the indices of nonempty buckets to obtain the next

minimum degree with nonempty bucket. On Line 12, we return the next nonempty bucket.

Analysis.
First, let 𝑛 be the number of vertices stored in the bucketing structure.

Given 𝑝 calls to UPDATE-VERTICES updating a total of 𝑞 vertices (a repeating vertex is counted repeatedly), UPDATE-

VERTICES achieves an overall work complexity of 𝑂 (𝑞) and span complexity of 𝑂 (𝑝 log(𝑛)) [11].

We perform 𝑝 calls to NEXT-BUCKET with the condition that the degree value 𝑘 passed in at the 𝑖 th call equals the

return value of the (𝑖 − 1)th call. In other words, we find the next nonempty bucket starting from the previous nonempty

bucket. Given the condition, over all 𝑝 calls to subroutine NEXT-BUCKET, we now show that it achieves an overall work

complexity of 𝑂 (𝑛) and span complexity of 𝑂 (𝑝 log(𝑛)).
Assume NEXT-BUCKET is called with current degree value 𝑘 and that the next minimum degree is 𝑘 + ℎ. Then, notice

that NEXT-BUCKET searches at most 2ℎ elements before terminating and returning 𝑘 +ℎ as the next minimum degree. If it
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Algorithm 3 Parallel Bi-core Decomposition
1: procedure PAR-BI-CORE(𝐺)
2: parfor 𝛼′ = 1 to 𝛿 do
3: PAR-PEEL-FIX-𝛼(𝐺 , 𝛼′)
4: parfor 𝛽′ = 1 to 𝛿 do
5: PAR-PEEL-FIX-𝛽(𝐺 , 𝛽′)
6: procedure PAR-DEL-UPDATE(𝐺 , 𝑋del)
7: 𝑌update ← ∅
8: degs← array storing the corresponding degree of each vertex 𝑥 ∈ 𝑋del
9: offsets← PREFIX-SUM(degs)

10: parfor all 𝑖, 𝑥 in 𝑋del do
11: remove 𝑥 from 𝐺

12: parfor all 𝑦 in 𝑁 (𝑥) do
13: offset← offsets[𝑖]+𝑗 ⊲ Obtain the location in 𝑌update to store 𝑦 at. 𝑗 is the index of 𝑦 in 𝑁 (𝑥)
14: 𝑌update[offset]← 𝑦 ⊲ Record 𝑦 for degree update
15: 𝑌hist ← HISTOGRAM(𝑌update) ⊲ Count occurrences of vertices
16: parfor all 𝑦, count in 𝑌hist do
17: deg(𝑦) ← deg(𝑦) − count
18: return 𝑌update

19: procedure PAR-PEEL-FIX-𝛽(𝐺 , 𝛽′)
20: PAR-DEL-UPDATE(𝐺 , {𝑣 | deg(𝑣) < 𝛽′ }) ⊲ Remove all vertices in𝑉 with degree < 𝛽′

21: Store vertices in𝑈 into buckets ⊲ Construct bucketing structure from vertices in𝑈 based on their degrees
22: while buckets ≠ ∅ do
23: 𝑈del, 𝛼 ← NEXT-BUCKET(buckets, 𝛼) ⊲ Extract the next set of vertices with minimum degree
24: parfor all 𝑢 in𝑈del do
25: parfor 𝑖 = 1 to 𝛼 do
26: 𝛽max 𝑖 (𝑢) ← max(𝛽max 𝑖 (𝑢), 𝛽′) ⊲ Update 𝛽max 𝑖 (𝑢)
27: 𝑉update ← PAR-DEL-UPDATE(𝐺 ,𝑈del) ⊲ Peel𝑈 up to 𝛼

28: 𝑉del ← FILTER(𝑉update, deg(𝑣) < 𝛽′)
29: parfor all 𝑣 in𝑉del do
30: 𝛼max 𝛽′ (𝑣) ← max(𝛼max 𝛽′ (𝑣), 𝛼) ⊲ Update 𝛼max 𝛽′ (𝑣)
31: 𝑈update ← PAR-DEL-UPDATE(𝐺 ,𝑉del) ⊲ Remove peeled 𝑣

32: buckets.UPDATE-VERTICES(𝑈update) ⊲ Update vertices with changed degrees in the bucketing structure
33: procedure PAR-PEEL-FIX-𝛼(G, 𝛼′)
34: symmetric to PAR-PEEL-FIX-𝛽

searches only ℎ elements ahead, the algorithm has an overall work upperbounded by 𝑂 (dmax𝑣) = 𝑂 (𝑛). Since it searches

only 2𝑝 ahead, its work is bounded by 𝑂 (2𝑛) = 𝑂 (𝑛) as well.

Next, we show that the subroutine NEXT-BUCKET has a span of 𝑂 (𝑝 log(𝑛)). Assume, as previously, that the current

degree is 𝑘 and the next degree is 𝑘 + ℎ. Note that NEXT-BUCKET takes at most log(ℎ) iterations of its while loop on

Line 9 of Algorithm 2 to find the next minimum degree 𝑘 + ℎ. To loosen the bound, log(ℎ) = 𝑂 (log(𝑛)). Therefore, the

overall span of 𝑝 calls to NEXT-BUCKET is 𝑂 (𝑝 log(𝑛)). An assumption we make in this derivation is that subroutine

HAS-MIN-DEG as used on Line 9 has span 𝑂 (1). This is true because at most one ATOMIC-COMPARE-AND-SWAP

operation can be successfully executed for a given interval. Additionally, note that REDUCE-MIN on Line 11 of Algorithm

2 has span𝑂 (log(𝑛)); it is executed only once for each call of NEXT-BUCKET, thus totaling a span of𝑂 (𝑝 log(𝑛)) as well.

5.2 Parallel Bi-core Decomposition

The parallel bi-core decomposition algorithm shares a similar structure to Algorithm 1. Instead of removing vertices

with minimum induced degree sequentially, we delete all vertices with the same minimum induced degree in parallel.

Further, to achieve optimal span, we replace the linear search used in Algorithm 1 to find the next lowest degree vertex

with Algorithm 2 to find the next bucket of vertices with lowest induced degree.

The pseudocode is given in Algorithm 3 and we now discuss it in more detail.



Efficient Algorithms for Parallel Bi-core Decomposition 13

First we discuss the subroutine PAR-DEL-UPDATE. Subroutine PAR-DEL-UPDATE takes as input a generic subset of

vertices 𝑋del and then peels all these vertices in parallel. On Lines 7–14, we construct an array 𝑌update that stores all

neighbors 𝑦 of 𝑋del. Note that if 𝑦 is incident to multiple vertices in 𝑋del, it appears the same number of times in 𝑌update.

This array is constructed in parallel by first building the array offsets as the PREFIX-SUM of degs on Line 9. offsets[𝑖]
records the total number of neighbors of vertices [1, 2, · · · , 𝑖 − 1] in 𝑋del. Therefore, offsets[𝑖] + 𝑗 gives the index location

to store the 𝑗 th neighbor of the 𝑖 th vertex in 𝑋del, which is used on Lines 13-14 to store neighbor 𝑦 into its place in 𝑌update.

On Line 15, HISTOGRAM returns a sequence of pairs (𝑦, count). For every 𝑦, count is the number of its occurrences in

𝑌update. On Lines 12–13, we iterate through each 𝑦 and decrease its degree by its corresponding count. Note that on Line

11, it is unnecessary to remove 𝑥 from 𝐺 . We can simply maintain an array that tracks whether each vertex is removed

and ignore vertices marked as removed in our traversals.

Since many threads may be updating the degree of the same vertex, our parallel aggregation approach is necessary to

maintain low theoretical span.

Now, we discuss the main algorithm. On Line 20 in PAR-PEEL-FIX-𝛽, we peel off all 𝑣 ∈ 𝑉 with degree less than 𝛽 ′

using the subroutine PAR-DEL-UPDATE. On Line 21, we construct a bucket representation of 𝑈 , buckets, as discussed by

Dhulipala et al. [11] and as described in Section 5.1. We call NEXT-BUCKET on buckets on Line 23 to obtain the next

nonempty bucket, which we store into𝑈del. We also update the 𝛼 value appropriately; importantly,𝑈del records all 𝑢 with

induced degree deg(𝑢) ≤ 𝛽. Note that for all 𝑢 ∈ 𝑈del, 𝑢 ∈ (𝛼 ′, 𝛽)-core but 𝑢 ∉ (𝛼 ′, 𝛽 + 1)-core. On Lines 24–26, we

in parallel update the 𝛽max𝛼′ values. Note that Line 26 does not incur race conditions if we keep a copy of 𝛽max𝛼 and

similarly 𝛼max 𝛽 for each thread. On Line 27, we peel off all vertices in the current bucket, 𝑈del. Lines 29–30 updates

𝛼max 𝛽′ values in the same way as in Algorithm 1. Then, Line 31 calls PAR-DEL-UPDATE to peel off all vertices stored in

𝑉del. Finally, on Line 32, we update the degrees of vertices in 𝑈update, which consist of all vertices 𝑢 ∈ 𝑈 whose degree

is affected by peeling off 𝑉del; UPDATE-VERTEX moves 𝑦 ∈ 𝑈update to new buckets corresponding to their new degrees.

Note that a minor detail we exclude here is that some vertices in𝑈update could take on a degree < 𝛼 . We simply set their

degree to 𝛼 , so they are peeled together in the next round of peeling.

PAR-PEEL-FIX-𝛼 is symmetric to PAR-PEEL-FIX-𝛽, with all 𝑢, 𝑣 and 𝛼, 𝛽 flipped.

Analysis. PAR-PEEL-FIX-𝛽 has work complexity 𝑂 (𝑚). First note that NEXT-BUCKET, and UPDATE-VERTICES [11] all

have overall work across all iterations of the while loop bounded by 𝑂 (𝑚) as discussed in Section 5.1.

Over all invocations of subroutine PAR-DEL-UPDATE, each vertex is peeled exactly once. Since we traverse the neighbor

of each vertex in PAR-DEL-UPDATE once, the total work given by PAR-DEL-UPDATE in one call of PAR-PEEL-FIX-𝛽 is

𝑂 (∑𝑥 ∈𝑉 or 𝑈 deg(𝑥)) = 𝑂 (𝑚).
The work of updating the 𝛽max𝛼 and 𝛼max 𝛽 values in Algorithm 3 is the same as the sequential updates performed in

Algorithm 1, totaling 𝑂 (𝑚). FILTER, over all invocations, also total 𝑂 (𝑚) work. Therefore, PAR-PEEL-FIX-𝛽 has work

complexity 𝑂 (𝑚). Thus, procedure PAR-BI-CORE has overall work complexity 𝑂 (𝛿𝑚) or more loosely 𝑂 (𝑚
3
2 ).

Now we analyze the span complexity. First note that PAR-DEL-UPDATE has span 𝑂 (log(𝑛)) w.h.p.; this is because

PREFIX-SUM and HISTOGRAM both have span upperbounded by 𝑂 (log(𝑛)) w.h.p.. Each iteration of the while loop on

Line 22 has span 𝑂 (log(𝑛)) w.h.p. because FILTER, PAR-DEL-UPDATE, UPDATE-VERTICES [11], and NEXT-BUCKET

all have span bounded by 𝑂 (log(𝑛)) w.h.p.. The rounds of iterations of the while loop is bounded by 𝑂 (𝜌). The span is

therefore 𝑂 (𝜌 log(𝑛)) w.h.p.. Overall, PAR-BI-CORE has span 𝑂 (𝜌 log(𝑛)) w.h.p..
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5.3 P-completeness

The span of our algorithm is not polylogarithmic. However, this is to be expected as the problem of bi-core decomposition

is P-complete, which we prove here. We prove the P-completeness of the decision version of the bi-core decomposition

problem. The decision problem is: given values 𝛼, 𝛽 and a simple bipartite graph, decide if (𝛼, 𝛽)-core is nonempty in the

graph. This is a generalization of the 𝑘-core decision problem on a bipartite graph: given value 𝑘, decide if (𝑘, 𝑘)-core

exists. We show the P-completeness of bi-core decision problem using a reduction from the 𝑘-core decision problem.

THEOREM 1. The (𝛼, 𝛽)-core decomposition problem is P-complete if and only if 𝛼 ≥ 3 or 𝛽 ≥ 3. Otherwise, if 𝛼 ≤ 2
and 𝛽 ≤ 2, it is in NC.

When 𝛼 ≤ 2 and 𝛽 ≤ 2. For 𝛼 = 2 or 𝛽 = 2, the (2, 2)-core decomposition problem is equivalent to the 𝑘-core

decomposition problem on the bipartite graph with 𝑘 = 2, which has an NC solution [3].

If 𝛼 = 1, then the (1, 𝛽)-core decomposition problem is equivalent to finding all vertices 𝑥 ∈ 𝑉 such that deg(𝑥) ≥ 𝛽 as

well as its neighbors in partition 𝑈 . Similarly, we can solve (𝛼, 1)-core decomposition for some arbitrary 𝛼 with 𝑂 (1)
span.

When 𝛼 ≥ 3 and 𝛽 ≥ 3. We perform the reduction from the 𝑘-core decision problem in a general graph𝐺 by constructing

𝐺 ′ such that 𝐺 ′ is bipartite and the 𝑘-core decision problem on 𝐺 is equivalent to the (𝑘, 𝑘)-core decision problem on 𝐺 ′.

Let 𝐺 ′ consist of two partitions𝑈 ,𝑉 where each partition is a copy of all vertices of 𝐺 . In other words, a vertex 𝑥 ∈ 𝐺
is copied to 𝑥𝑢 and 𝑥𝑣 in 𝐺 ′. Now, we connect an edge (𝑥𝑢 , 𝑦𝑣) in 𝐺 ′ if (𝑥,𝑦) is an edge in 𝐺 .

Now, we show that for any value 𝑘 , 𝑘-core is nonempty in 𝐺 if and only if (𝑘, 𝑘)-core is nonempty in 𝐺 ′. If the 𝑘-core

of 𝐺 is nonempty and comprises a vertex subset𝑊 , then for𝑤 ∈𝑊 , deg(𝑤) ≥ 𝑘, or there exists ≥ 𝑘 edges of the form

(𝑤, 𝑝), where 𝑝 ∈𝑊 . Now consider𝑊 ′ =𝑊𝑉
⋃
𝑊𝑈 in 𝐺 . Given that𝑊𝑈 ,𝑊𝑉 are copies of𝑊 , and each𝑤 ∈𝑊 has ≥ 𝑘

edges of the form (𝑤, 𝑝), we know each 𝑤𝑈 ∈ 𝑊𝑈 is incident to ≥ 𝑘 edges of the form (𝑤𝑈 , 𝑝𝑉 ). Similarly for each

𝑤𝑉 ∈𝑊𝑉 . Therefore,𝑊 ′ forms a (𝑘, 𝑘)-core on the bipartite graph and so the (𝑘, 𝑘)-core is nonempty in 𝐺 ′.

Reversely, if the (𝑘, 𝑘)-core in𝐺 ′ is nonempty, we show that the 𝑘-core in𝐺 is nonempty. Due to the symmetry of𝑈 ,𝑉

partitions, if𝑤𝑈 ∈ (𝑘, 𝑘)-core, then𝑤𝑉 ∈ (𝑘, 𝑘)-core. Therefore, if the (𝑘, 𝑘)-core of 𝐺 ′ is𝑊 ′, then𝑊 ′ =𝑊𝑈
⋃
𝑊𝑉 and

𝑊𝑈 ,𝑊𝑉 are mirror images of each other. Let𝑊 be the vertex subset in 𝐺 that corresponds to𝑊𝑈 ,𝑊𝑉 . We show that it is

a 𝑘-core in 𝐺 . For each vertex𝑤𝑈 incident to edges of the form (𝑤𝑈 , 𝑝𝑉 ) where 𝑝𝑉 ∈𝑊𝑉 , its corresponding vertex𝑤

in𝑊 is incident to the corresponding edges of the form (𝑤, 𝑝) and 𝑝 ∈𝑊 because 𝑝𝑉 ∈𝑊𝑉 . Since deg(𝑤𝑈 ) ≥ 𝑘 for

each 𝑤𝑈 ∈𝑊𝑈 , deg(𝑤) ≥ 𝑘 for each 𝑤 ∈𝑊 . Therefore,𝑊 forms a 𝑘-core of graph 𝐺 and so the 𝑘-core of graph 𝐺 is

nonempty.

Given the correspondence between the 𝑘-core decision problem on graph𝐺 with the (𝑘, 𝑘)-core decision problem on

graph 𝐺 ′, we have obtained an NC reduction from the 𝑘-core problem to the bi-core problem since constructing 𝐺 ′ takes

work 𝑂 (𝑚) and span 𝑂 (1). Therefore, given that 𝑘-core decomposition is P-complete for 𝑘 ≥ 3, we know that bi-core

decomposition is P-complete for 𝛼 ≥ 3, 𝛽 ≥ 3.

When one of 𝛼 , 𝛽 = 2. For the case where 𝛼 = 2 and 𝛽 is some arbitrary value ≥ 3 (the reverse of this is symmetric and

thus not shown). We show that deciding whether (2, 𝛽)-core is nonempty has a reduction from the 𝑘-core equivalent with

𝑘 = 𝛽. Consider an arbitrary simple graph and the 𝑘-core problem on this graph. We create a middle-vertex for each

edge in the graph. Putting these middle-vertices into the𝑈 partition and the original vertices into the 𝑉 partition, we can

create in 𝑂 (1) span a bipartite graph where all vertices in 𝑈 has a degree of 2. Now, deciding if (2, 𝛽)-core nonempty is

equivalent to deciding if the 𝑘-core of the original graph is nonemtpy, where 𝑘 = 𝛽, because each wedge in the bipartite
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(a) Example Graph (b) Example Peeling Space

Fig. 1. On the left is an example bipartite graph, and on the right is an illustration of the peeling space of the graph. This is
discussed in more detail in Section 5.4

graph corresponds to an edge in the original graph. Given this reduction, we know the problem of bi-core decomposition

is P-complete if the core (𝛼, 𝛽) is of the form (2, 𝛽) with 𝛽 ≥ 3 or (𝛼, 2) with 𝛼 ≥ 3.

Thus, we have proven that the bi-core decomposition problem is in NC if and only if 𝛼 = 1 or 𝛽 = 1 or 𝛼, 𝛽 = 2.

Otherwise, it is P-complete, meaning that it is most likely impossible to obtain an algorithm with polylogarithmic span.

5.4 Peeling Space Pruning Optimization

In this section, we introduce a peeling space pruning optimization to our algorithm. This optimization is also applicable

to the sequential bi-core decomposition algorithm in Algorithm 1. The baseline algorithm introduced by Liu et al. [24]

performs a complete peeling from 𝛼 = 1 to 𝛼 = dmax𝑢 for each 1 ≤ 𝛽 ′ ≤ 𝛿 . Then, it performs a complete peeling from

𝛽 = 1 to 𝛽 = dmax𝑣 for each 1 ≤ 𝛼 ′ ≤ 𝛿 . We observe that, in the process of peeling, all (𝛼, 𝛽)-cores with 1 ≤ 𝛼 ≤ 𝛿 and

1 ≤ 𝛽 ≤ 𝛿 are peeled twice, once when we perform peeling along increasing 𝛼 values for different 𝛽 ′ and another time

when we perform peeling along increasing 𝛽 values for different 𝛼 ′.

To avoid repetition, we can modify Algorithm 3 such that each PAR-PEEL-FIX-𝛼(𝐺, 𝛼 ′) starts peeling along 𝛽 values

from the (𝛼 ′, 𝛼 ′)-core instead of from (𝛼 ′, 1)-core. In other words, the algorithm starts iteratively increasing 𝛽 value from

𝛼 ′ to dmax𝑣 and removing vertices no longer within the current (𝛼 ′, 𝛽)-core at the same time. Notably, we confine 𝛽 to

𝛼 ′ ≤ 𝛽 ≤ dmax𝑣 as opposed to 1 ≤ 𝛽 ≤ dmax𝑣 as used in Algorithms 1 and 3.

We illustrate this optimization with an example. Consider a graph and its peeling space visualization as shown in

Figure 1.

Each integral intersection in the grid of Figure 1 represents an (𝛼, 𝛽)-core. Edges represent a single-step peeling

operation from (𝛼, 𝛽)-core to (𝛼, 𝛽 +1)-core (upward) or to (𝛼 +1, 𝛽)-core (rightward). The numerals on an edge represents
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(a) Algorithm 3’s Peeling Path (b) Optimized Peeling Path

Fig. 2. This figure compares unoptimized vs optimized peeling paths. The left hand side shows the unoptimized peeling
paths while the right hand side shows the optimized ones.

the indices of vertices that would be deleted by that specific peeling operation. The circled nodes represent (𝛼, 𝛽)-cores

that are empty, and the boxed node represents the (𝛿, 𝛿)-core. Every core corresponding to a grid position that is not

drawn is empty. The circled nodes form the boundary of the peeling space.

The peeling operations performed by Algorithm 3 can be visualized by the blue highlighted peeling paths in Figure

2 (a). For 𝛼 ′ = 1, we perform 𝛽-core peeling from 𝛽 = 1 to 𝛽 = 5. For 𝛼 ′ = 2, we again increase 𝛽 from 1 to 3 while

iteratively removing vertices not within the current bi-core. With the proposed optimization, for 𝛼 ′ = 2, we only perform

peeling from 𝛽 = 2 to 𝛽 = 5, starting from the (𝛼 ′, 𝛼 ′)-core, or the (2, 2)-core in this case. This is represented by the blue

highlighted peeling paths in Figure 2 (b).

To show the correctness of the optimized algorithm, we divide the peeling space into 3 parts: part C with the diagonal

(𝑥, 𝑥)-cores, part B where all the (𝛼, 𝛽)-cores satisfy 𝛽 > 𝛼 and part A where the (𝛼, 𝛽)-cores satisfy 𝛼 > 𝛽. Note that

part A of the peeling space corresponds visually to the part of peeling space below the diagonal (𝑥, 𝑥)-cores; part B

corresponds instead to the section above the diagonal (𝑥, 𝑥)-cores. Thus, for the optimized algorithm, when peeling along

increasing 𝛼 values, it operates in part A of the peeling space; when peeling along increasing 𝛽 values it operates in part B

of the peeling space.

First, we note that the correct 𝛼max 𝛽 (𝑣) values are computed for all vertices 𝑣 with (𝛼max 𝛽 (𝑣), 𝛽)-cores in part A or C

of the peeling space. For a specific 𝛽 value, if vertex 𝑣 ∈ (𝛼, 𝛽)-core but 𝑣 ∉ (𝛼 + 1, 𝛽)-core, with 𝛼 ≥ 𝛽, then 𝛼max 𝛽 (𝑣) is

recorded correctly to be 𝛼 as we perform peeling along 𝛼 values from 𝛼 = 𝛽 to its maximum value.

Then, we show that the optimized algorithm computes the correct 𝛼max 𝛽 (𝑣) values for all vertices 𝑣 with (𝛼max 𝛽 (𝑣), 𝛽)-
cores in part B of the peeling space. When peeling along increasing 𝛽 values with 𝛼 ′ = 𝛼max 𝛽 (𝑣), the algorithm would

remove 𝑣 at (𝛼max 𝛽 (𝑣), 𝛽 ′)-core, where 𝛽 ′ is some core value higher than 𝛽. Given that, the updates of 𝛼max 𝛽 (𝑣) in
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PAR-PEEL-FIX-𝛼 in Algorithm 3 as described in Section 5.2 ensures the 𝛼max 𝛽 (𝑣) value recorded is 𝛼 ′, the correct value.

Because A, B, and C form the entire peeling space, we have shown that for all 𝛽 and 𝑣 values, 𝛼max 𝛽 (𝑣) is correctly

recorded.

Symmetric correctness arguments can be established for 𝛽max𝛼 (𝑢) values to show that the overall optimized algorithm

is correct.

6 PARALLEL BI-CORE INDEX STRUCTURE

To allow for linear-time queries of (𝛼, 𝛽)-cores, we parallelize the indexing structure introduced by Liu et al. [24]. In this

section, we discuss our parallel index construction and query algorithms. Both algorithms are work-efficient. The index

construction algorithm has 𝑂 (log(𝑛)) span, and the query algorithm has 𝑂 (1) span.

We define PI𝑈 , PI𝑉 to be the parallel index structures for the 𝑈 ,𝑉 vertex partitions respectively. PI𝑈 is the parallel

version of I𝑈 , and PI𝑈
𝛼,𝛽

is the parallel version of I𝑈
𝛼,𝛽

. Again, due to symmetry, we only discuss PI𝑈
𝛼,𝛽

. PI𝑈
𝛼,𝛽

is a set

containing the same elements as I𝑈
𝛼,𝛽

for any combination of 𝛼, 𝛽. In Liu et al.’s work, each set I𝑈
𝛼,𝛽

is stored separately,

pointed to within I𝑈 . In our parallelization, we store all the sets of vertices contiguously in an array, ordered first by their

𝛼 value and then by their 𝛽 value. We call this array P. This is similar to the compressed sparse row (CSR) format used in

graph representations. Then, we define M, a 2D jagged array where each M[𝛼] [𝛽] corresponds to a set PI𝑈
𝛼,𝛽

and contains

the starting index of that set in the array P. By definition, PI𝑈
𝛼,𝛽

= all vertices in P in range [M[𝛼] [𝛽],M[𝛼] [𝛽 + 1]).

This way, [M[𝛼] [𝛽],M[𝛼 + 1] [0]) directly gives the range of vertices in P that corresponds to
⋃max𝛽 (𝛼)

𝑖=𝛽
PI𝑈

𝛼,𝑖
= (𝛼, 𝛽)-

core.

Thus, to query the (𝛼, 𝛽)-core, we return all vertices in 𝑃 in the range [M[𝛼] [𝛽],M[𝛼 + 1] [0]). This takes𝑂 ( | (𝛼, 𝛽)-core|)
work and 𝑂 (1) span.

6.1 Parallel Index Construction

The objective of the index construction algorithm is to take as input 𝛽max𝛼 (𝑢) for every 𝑢 ∈ 𝑈 and construct M and P.

To construct P, we perform parallel RADIX-SORT on the vertices based on their 𝛼, 𝛽 values. Then, we use a parallel

filter to find the indices at which the 𝛼 or 𝛽 value differs, which we store in an array TPT (total pointer table). We also

find indices where the 𝛼 value differs, which we store in FPT (first pointer table). Then, using these two pointer tables,

the 2D jagged array M is constructed.

The pseudocode for our parallel index construction algorithm is given in Algorithm 4. We now discuss our algorithm

in more detail. First, on Line 2, we store a list of tuples (𝛼, 𝛽max𝛼 (𝑢), 𝑢) to P. This is the list of all possible combinations

of 𝛼 and vertex 𝑢 ∈ 𝑈 , with the 𝛽max𝛼 (𝑢) value attached. We perform parallel RADIX-SORT on P based on the ordering

of first the 𝛼 values and then the 𝛽 values on Line 3. We initialize an empty TPT on Line 4 with the same size as P. The

parallel for loop on Lines 5–8 finds all indices at which either the 𝛼 value or the 𝛽 value in P changes. This is accomplished

by marking the indices where changes happen on Line 7 and filtering out all the unmarked index positions on Line 8.

Constructing TPT essentially breaks up the array P into blocks where each block has constant 𝛼, 𝛽 value and corresponds

to set PI𝑈
𝛼,𝛽

. TPT[𝑖] records the starting index location of the 𝑖 th block. Lines 9–13 repeats the entire process, but for

FPT to filter out index positions where the 𝛼 value of P changes. Note that the indices stored in FPT are not indices of

positions in P. Instead, they are indices of positions in TPT. [FPT[𝛼 − 1], FPT[𝛼]) gives the range of blocks defined by

TPT that has this particular 𝛼 value. It corresponds to set PI𝑈𝛼 .
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Algorithm 4 Parallel Index Construction
1: procedure BUILD-U-INDEX(𝛽max)
2: P← list of (𝛼, 𝛽max𝛼 (𝑢),𝑢) for every 𝑢 ∈ 𝑈
3: RADIX-SORT(P) ⊲ Sorts the list of tuples by first 𝛼 , then 𝛽 values
4: Initialize TPT ⊲ Creates an empty TPT with the same size as P
5: parfor 𝑖 = 0 to P.size − 1 do
6: if 𝑖 = 0 or P[𝑖 − 1].𝛼 ≠ P[𝑖].𝛼 or P[𝑖 − 1].𝛽 ≠ P[𝑖].𝛽 then
7: TPT[𝑖]← 𝑖 ⊲ Records index location where 𝛼 or 𝛽 changes value
8: FILTER(TPT, element is not empty) ⊲ Filter out empty indices in TPT
9: Initialize FPT ⊲ Creates an empty FPT with the same size as TPT

10: parfor 𝑖 = 0 to TPT.size − 1 do
11: if 𝑖 = 0 or P[TPT[𝑖 − 1]].𝛼 ≠ P[TPT[𝑖]].𝛼 then
12: FPT[𝑖]← 𝑖 ⊲ Records index location on TPT array of where 𝛼 value changes
13: FILTER(FPT, element is not empty) ⊲ Filter out empty indices in FPT
14: Initialize M ⊲ Creates empty M array with 1st dimension = FPT.size and 2nd dimension = max𝛽 (𝛼)
15: parfor 𝛼 = 1 to FPT.size do
16: parfor 𝑗 = FPT[𝛼 − 1] to FPT[𝛼]−1 do
17: start← TPT[𝑗 ] ⊲ Gets start index location of 𝑗 th block
18: M[𝛼][P[start].𝛽]← start ⊲ Stores start location; P[start] .𝛽 gives 𝑗 th block’s corresponding 𝛽 value
19: M[𝛼]← SUFFIX-MIN(M[𝛼])
20: return M
21: procedure BUILD-V-INDEX(𝛼max)
22: symmetric to BUILD-U-INDEX

Finally, based on FPT and TPT, we create M in the following manner. We obtain M[𝛼] for each 𝛼 value independently.

Line 16 iterates in parallel over the blocks that have the particular 𝛼 value. For each block 𝑗 , we store its starting position

TPT[ 𝑗] to M[𝛼] [𝛽 𝑗 ] where 𝛽 𝑗 is the 𝛽 value corresponding with the 𝑗 th block. This is done on lines 17–18. Now, we

have constructed M[𝛼] [𝛽 ′] correctly for all (𝛼, 𝛽 ′) pairs such that 𝛽 ′ appears in 𝛽max𝛼 (𝑢) for some 𝑢 ∈ 𝑈 .

For pairs (𝛼, 𝛽) such that 𝛽 does not appear in 𝛽max𝛼 (𝑢) for some 𝑢 ∈ 𝑈 , we point M[𝛼] [𝛽] to the same destination as

M[𝛼] [𝛽 ′] where 𝛽 ′ is the smallest value larger than 𝛽 and appears in 𝛽max𝛼 (𝑢) for some 𝑢 ∈ 𝑈 . We accomplish this by

performing SUFFIX-MIN on M[𝛼] on Line 19.

Analysis. Since P.size = 𝑂 (𝑚), the work is bounded by 𝑂 (𝑚) since all operations on lines 3–14 have linear work with

respect to the length of the array input. Lines 15–19 have work complexity 𝑂 (𝑚), because we loop through the M table

exactly once and from Section 4.3, we know the table takes 𝑂 (𝑚) space.

Algorithm 4 has span 𝑂 (log(𝑛)) w.h.p., since RADIX-SORT, FILTER, and all other operations are bounded by

𝑂 (log(𝑚)) = 𝑂 (log(𝑛)) span w.h.p..

7 EXPERIMENTS

In this section, we provide a comprehensive evaluation of our implementations of parallel bi-core algorithms.

7.1 Experiment Setup

We use real-world graphs from the KONECT graph database [22], the details of which are given in Table 2. Specifically,

we used the graphs, in descending number of edges, Orkut, Web Trackers, LiveJournal, Delicious, TREC, Reuters,

Epinions, Flickr.

We use Google Cloud Platform c2-standard-60 instances for all our experiments, which are 30-core machines

with two-way hyper-threading, with Intel 3.1 GHz Cascade Lake processors and 240 GB of memory; the processors have

a max turbo clock-speed of 3.8 GHz.
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Graph Name Type |𝑈 | |𝑉 | 𝑛 𝑚 dmax 𝛿 𝜌max

Orkut Membership 2.78M 8.73M 11.51M 327M 318K 466 12100
Web Trackers Inclusion 27.7M 12.7M 40.43M 140.6M 11.57M 437 4542
LiveJournal Membership 3.20M 7.49M 10.69M 112M 1.05M 108 6831
Delicious Purchase 833K 33.7M 34.6M 101.8M 143K 183 4771

TREC Inclusion 556K 1.17M 1.73M 83.6M 457K 508 6029
Reuters Inclusion 781K 284K 1.06M 60.6M 345K 192 4767

Epinions Rating 120K 755K 880k 13.67M 162K 151 3049
Flickr Membership 396K 104K 500k 8.55M 35K 147 2300

Table 2. Data and information on tested graphs.

7.2 Implementation and Other Optimizations

While our parallel bi-core decomposition algorithm, given in Algorithm 3, is theoretically efficient, it is practically slow

due to the overhead incurred by the histogram-based PAR-DEL-UPDATE subroutine. We find that its high parallelism fails

to compensate for this overhead.

To implement a practically fast bi-core decomposition algorithm, we do not implement the fully parallelized version

of our algorithm, and only parallelize between different calls of PAR-PEEL-FIX-𝛼 and PAR-PEEL-FIX-𝛽. This practical

parallel algorithm, which corresponds to PAR-BASELINE, is similar to the parallel algorithm introduced by Liu et al. [24];

however, our implementation differs from theirs in that we employ a lazily instantiated bucketing structure, where we only

instantiate a constant number of buckets at any given time in our bucketing structure. This technique was introduced by

Dhulipala et al. [11] for implementing their 𝑘-core decomposition algorithm. We further apply the peeling space pruning

optimization to PAR-BASELINE to obtain PAR-OPTIMIZED.

To reiterate, the 6 algorithms we implement are

(1) SEQ-BASELINE: Algorithm 1, the state of the art sequential algorithm proposed by Liu et al.

(2) SEQ-OPTIMIZED: Algorithm 1, but with peeling space pruning optimization introduced in section 5.4

(3) PAR-BASELINE: Liu et al.’s parallel algorithm, but with an optimized bucketing structure

(4) PAR-OPTIMIZED: PAR-BASELINE, but with the peeling space pruning optimization

(5) PAR-INDEX: Algorithm 4

(6) PAR-QUERY: Parallel index query algorithm described in Section 6.

We use the Graph Based Benchmark Suite [13] to implement our algorithms. All code is written in C++ with the -O3
optimization level enabled. We perform each experiment 3 times and report the average running time.

Despite the difference in machines, with Liu et al. reporting their runtimes on a 3.4 GHz CPU, our sequential baseline

closely reproduces the result reported by Liu et al. [24]. The paper reported a runtime of 4103 seconds for their sequential

algorithm, while our reproduction attains a runtime of 4539 seconds. We are not able to obtain their source code.

7.3 Bi-core Decomposition

In this section, we report the runtime of the 4 bi-core decomposition algorithms SEQ-BASELINE, SEQ-OPTIMIZED,

PAR-BASELINE, and PAR-OPTIMIZED.

Performances Comparison.
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(a) runtimes (log-scale) (b) runtimes

Fig. 3. This figure comparatively shows the runtime (in seconds) of the 4 bi-core decomposition algorithms, SEQ-BASELINE,
SEQ-OPTIMIZED, PAR-BASELINE, PAR-OPTIMIZED. Graph (a) is in log-scale while graph (b) is in linear-scale. PAR-OPTIMIZED

consistently performs all 3 other algorithms.

(a) Speedup Ratios for Tested Graphs (b) Ratio of Runtimes Relative to Serial Time

Fig. 4. Graph (a) shows plots of the runtime of PAR-OPTIMIZED across different number of threads for various graphs. The
plots show consistent speedups. Graph (b) shows the runtime ratios, which are the multiplicative inverses of the speedup
numbers

Figure 3 shows the runtimes of the 4 algorithms for graphs in Table 2. The parallel algorithms are run with 30 threads.

We do not run on 60 threads because the extra threads are hyperthreads and are not actual cores. Therefore, we observed

that using 60 hyperthreads did not improve our running times.

PAR-BASELINE and PAR-OPTIMIZED significantly outperforms SEQ-BASELINE and SEQ-OPTIMIZED. While the

parallel algorithms can process graphs with hundreds of millions of edges within several minutes, the sequential

algorithms can take more than an hour to finish.

Running on 30 threads, PAR-OPTIMIZED attains 23–44x speedup over SEQ-BASELINE, the sequential state of the art.

To compare against the parallel state of the art, also introduced by Liu et al., we note that they reported a runtime for

12 threads of 732 seconds for the Orkut graph. On the other hand, still running on 12 threads, PAR-OPTIMIZED attains

a runtime of 253 seconds for the Orkut graph. Thus, our algorithm achieves a 2.9x speedup over Liu et al.’s parallel

algorithm, demonstrating the effectiveness of out introduced optimizations.

Figure 3 also demonstrates the effectiveness of the peeling space pruning optimization we introduce. SEQ-OPTIMIZED

consistently outperforms SEQ-BASELINE by 2.1-2.8x. Similarly, PAR-OPTIMIZED is about 1.6-4.2x faster than PAR-

BASELINE. This demonstrates the effectiveness of the optimization technique across sequential and parallel setting.

Analysis of Scalability.
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(a) Speedup Ratios for Tested Graphs (b) Ratio of runtimes relative to serial time

Fig. 5. Graph (a) shows plots of PAR-INDEX’s speedup over different number of threads used. Graph (b) shows the runtime
ratios.

As shown in Figure 4, PAR-OPTIMIZED achieves a 11.5–14.1x self-relative speedup when running on 30 threads

compared to 1 thread. The speedup plateaus at 60 threads. Increasing from 30 threads to 60 threads introduces virtual

hyper-threads and not physical cores. So it is expected that there is no significant runtime improvement.

Further, Figure 4 demonstrates that the speedup achieved by PAR-OPTIMIZED is consistent across different graphs,

showing that PAR-OPTIMIZED is scalable to graphs of sizes up to hundreds of millions of edges without noticeable

deterioration in its parallel speedup.

7.4 Bi-core Index Construction

Now, we report the runtimes of the bi-core index construction algorithm, or PAR-INDEX. Using 30 threads, PAR-INDEX

terminates for most graphs within several seconds. For example, when run on Orkut, a graph with 327 millions edges, with

30 threads, PAR-INDEX takes only 3.76 seconds to finish. This is 2.4% of the runtime of PAR-OPTIMIZED. PAR-INDEX

takes up similar percentage of time for other large graphs while taking up larger portion of time for smaller graphs. For

example, on Flickr, PAR-INDEX is 10% of PAR-OPTIMIZED in terms of runtime. This observation matches the theoretical

prediction based on PAR-INDEX’s lower work complexity as compared to PAR-OPTIMIZED, which predicts that the

runtime of PAR-OPTIMIZED grows faster than that of PAR-INDEX as the number of edges increases.

Analysis of Scalability.
Given its span of 𝑂 (log(𝑛)), PAR-INDEX predictably has significant parallelism. Figure 5 demonstrates the parallel

speedup of PAR-INDEX across different number of threads and different graphs used. Running on Delicious with 30

threads, PAR-INDEX achieves a near-linear self-relative speedup of 25.0x. A similar speedup number is achieved for all

other graphs, as shown in Figure 5. This demonstrates PAR-INDEX to be scalable to graphs of large sizes.

7.5 Bi-core Index Query

In this section, we give the runtimes of our bi-core index query algorithm. Following the convention adopted by Liu et

al., we report the runtime of completing 10 query calls with each query having 𝛼 = 10, 𝛽 = 10. On the graph Delicious,

Liu et al. reported a runtime of 0.04 second. PAR-QUERY, running on a single thread, outperforms it, attaining a runtime

of 0.0154 second. Our implementation achieves a 2.6x speedup. This proves that our optimization of storing the index

structure in CSR format is effective (it potentially reduces the number of cache misses). Using 30 threads, PAR-QUERY

achieves a runtime 0.0018 second, which is a 22.3x speedup over the Liu et al.’s sequential query algorithm.

Analysis of Scalability.
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(a) Speedup ratios for tested graphs (b) Ratio of runtimes relative to serial time

Fig. 6. Graph (a) shows plots of PAR-QUERY’s speedup over different number of threads used. Graph (b) shows the runtime
ratios.

Figure 6 demonstrates the tangible self-relative speedups achieved by PAR-QUERY. It achieves up to 15.1x self-relative

speedup using 30 threads as compared to 1 thread. The speedup achieved is mostly consistent across different graphs, but

has higher volatility when compared to the PAR-OPTIMIZED or PAR-INDEX. This is expected due to the low runtime of

the query algorithm as well as its strong dependence on cache efficiency, with parallel copy of contagious array being its

only time-consuming operation.

8 CONCLUSION

In this paper, we study parallel algorithms for bi-core decomposition, which is an important theoretical problem with many

real-world applications. We develop the first shared-memory work-efficient parallel bi-core decomposition algorithm

with nontrivial span bounds. Our parallel algorithm improves the span complexity from the state-of-the-art 𝑂 (𝑚) to

𝑂 (𝜌 log(𝑛)) w.h.p.. Practically, the span we achieve is 2–3 orders of magnitude lower than the span of existing parallel

algorithm. Further, we prove the problem of bi-core decomposition to be P-complete. We also introduce a parallel

indexing structure to store the bi-cores, and provide a work-efficient parallel index construction algorithm and query

algorithm. Finally, we introduce optimizations such as peeling space pruning and provide optimized implementations

of our algorithms. We perform experimental evaluation of our algorithms on real-world bipartite graphs. Our parallel

algorithms outperform sequential baselines by up to 44x for peeling and 22.3x for query. Experimental results also prove

our bi-core decomposition algorithms are capable of scaling to real-world graphs with hundreds of millions of edges,

processing them in minutes and performing bi-core queries in milliseconds.
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