
A Topological Centrality Measure for Directed Networks

Fenghuan He∗

December 24, 2021

Abstract

Given a directed network G, we are interested in studying the qualitative features of G
which govern how perturbations propagate across G. Various classical centrality measures
have been already developed and proven useful to capture qualitative features and behaviors
for undirected networks. In this paper, we use topological data analysis (TDA) to adapt
measures of centrality to capture both directedness and non-local propagating behaviors in
networks. We introduce a new metric for computing centrality in directed weighted networks,
namely the quasi-centrality measure. We compute these metrics on trade networks to illustrate
that our measure successfully captures propagating effects in the network and can also be used
to identify sources of shocks that can disrupt the topology of directed networks. Moreover,
we introduce a method that gives a hierarchical representation of the topological influences of
nodes in a directed network.
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1 Introduction

Networks are a useful abstraction for many real-world systems, representing interactions be-
tween objects within a system. Network analysis examines relationships among entities, such
as persons, organizations, or documents [Wri15] and has been extensively adopted for modeling
systems in various domains with a long history of applications [New03] [Cos+11], including neu-
roscience [Şi+21], biology [Lei+20], and social networks [OR02]. Networks exist in various forms:
weighted or unweighted, directed or undirected. However, many complex systems are more accu-
rately modeled by directed weighted networks, where the relation between two different entities in
the system is asymmetric and exists in a range of intensities. For example, citation networks, im-
migration networks, and trade networks are all accurately modeled by directed weighted networks.

Directed networks are mathematically represented as a directed graph where vertices represent
the objects or entities in the system, and edges encode the interaction between individual objects.
Previous studies have implemented a wide range of measures for studying networks [Rid05], in-
cluding node centrality [Fic+21], clustering coefficients [Mas+18] and path lengths between nodes
[MG16]. In this paper, we focus on analyzing node centrality in directed weighted networks.

Node centrality measures the influence of a node in the entire network by assigning rankings
and numbers to nodes within the network based on their network position. Centrality measures
enable us to detect various real-world phenomena, including the identification of banks that are too-
connected-to-fail [Gof17] and decisions regarding human capital or education [Hah+15]. Different
centrality measures have been developed to capture different behaviors. For example, betweenness
centrality has been widely used in social networks [Lee+21], eigenvector centrality has proved to
be useful in temporal networks [Tay+16], optimal percolation centrality has been widely used in
large networks [LSV20], and K-core centrality has been widely used in dynamic networks [Liu+20].

In this paper, we are interested in studying the propagating properties of a network since in-
fluences of individuals in many real-world complex systems have the potential to propagate over
the entire system. This phenomena can be meaningfully illustrated on the global trade network,
where globalization of trade and intertwined economies around the world can cause economic per-
turbations originated in a single country propagate elsewhere. Moreover, since world economies are
exhibiting increasing levels of local heterogeneity and global interdependency [SBV07], it is crucial
to take a topological standpoint on defining the centrality measure for understanding propagating
effects in trade networks. Thus, we define a new centrality measure using persistent homology,
namely the quasi-centrality (Definition 3.4) to determine the ranks of the nodes in directed weighted
networks based on this property.

Persistent homology is a central tool used in topological data analysis (TDA), which is a
burgeoning field in math and data analysis where concepts from algebraic topology are used to
simplify, summarize, and compare complex data sets. TDA has found successful applications in
neuroscience [Dab20], biological models [TZH15] machine learning [Che+15], and other related
fields in statistics, math, physics, and biology. However, while many applications of TDA have
focused on simplifying and identifying the intrinsic shapes of complex data sets, it has not been
extensively applied to analyze networks. Hence the significance of our work is shown by utilizing
TDA concepts in examining network properties.

The quasi-centrality measure (Definition 3.4) is defined based on the idea that if a node plays
a crucial role in the connectivity of the network, we would expect perturbations originating from
this node to propagate significantly through the network. Roughly, we measure a node’s role in the
overall connectivity of a directed network by computing the difference between the connectivity
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of the network before and after deleting this node. In particular, we use the “size” of homology
groups as a proxy to determine the connectivity of a directed network (Remark 3.5).

We show that the quasi-centrality is optimal for measuring the influence of perturbations orig-
inated from individual nodes by (1) computing the quasi-centralities on the star-shape network in
Example 3.8 and comparing with existing centrality measures, and (2) analyzing the importance
of country-industry pairs in the Asia machinery production network (Section 4) by computing the
quasi-centralities and comparing with existing centrality measures.

Moreover, given a directed weighted network G, we introduce a method (Definition 5.6) that
extracts a hierarchical representation of nodes in G based on their topological impacts. This
method combines the bottleneck distance (Definition 5.5), a tool used in TDA, with hierarchical
clustering, a method used in cluster analysis that determines similarity between objects.

We present our findings as follows: in Section 2, we provide background knowledge in networks
and existing centrality measures, algebraic topology, and TDA (specifically persistent homology).
In Section 3, we define quasi-centrality (Definition 3.4). In Section 4, we illustrate the practicality
of quasi-centrality by computing it on the Asia machinery production network. In Section 5, we
present our method that determines the hierarchy of nodes in a given directed weighted network,
and analyze the hierarchical dendrograms extracted from the Asia machinery production networks.
And finally in Section 6, we summarize our results and discuss future directions.

Data and implementations: Our data sets and software are available on https://github.

com/lindahe8989/A-topological-centrality-measure-for-directed-networks.
For plotting persistence diagrams and hierarchical dendrograms, we partially used https:

//github.com/fmemoli/PersNet for reference.

2 Preliminary

In this section, we provide background knowledge in algebraic topology and persistent homol-
ogy, as well as related work in network analysis. We begin by introducing networks.

2.1 Networks

Definition 2.1. A network is a pair (X,wX) where X is a finite set and wX : X×X → R is called
the weight function. An undirected network is a network such that wX(x1, x2) = wX(x2, x1) for
all x1, x2 ∈ X, and a directed network is a network such that wX(x1, x2) 6= wX(x2, x1) for some
x1, x2 ∈ X.

Our definition of quasi-centrality (Definition 3.4) is restricted to dissimilarity networks, intro-
duced below:

Definition 2.2. A dissimilarity network is a network G = (X,wX) where wX : X × X → R is
called a dissimilarity function, i.e. a map such that wX(x, x′) = 0 if and only if x = x′ for all
x, x′ ∈ X.

Remark 2.3. A dissimilarity network can be mathematically represented as a directed graph
without self-loops.

Given a directed network G = (X,mX), the dissimilarity function mX(x1, x2) describes the
intensity of interaction between the two nodes. We can associate a distance metric wX to G such
that if two nodes interact frequently, i.e., mX(x1, x2) >> 0, then they are close to each other in
this distance metric, i.e., wX(x1, x2) ≈ 0. We adapt the definition of effective distance [BH13]1,

1Successful applications include [Ian+17], [BH13], etc.
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which has been proved to have successfully interpreted the relationship between distance and the
volume of interaction between two nodes into our distance metric mX as follows:

Definition 2.4. Let G = (X,wX) be a (dissimilarity) network. Define γ(G) to be (X,mX) where
mX : X ×X → R is given by:

m(xi, xj) =

{
1− log

w(xi,xj)∑
k 6=j w(xk,xj)

≥ 1 if i 6= j

0 if i = j.

Hence in γ(G), two vertices xi, xj with large volume of interaction w(xi, xj) will correspond to
a closer distance m(xi, xj).

Remark 2.5. The notion of effective distance will be used heavily in our definition of quasi-
centrality (Definition 3.4).

Remark 2.6. For simplicity in our calculation, when w(xi, xj) = 0, we choose a large number for
m(xi, xj), i.e., we let the distance between nodes xi, xj in the new metric m be very far apart so
that it is almost indistinguishable when no relation exists between the two nodes. In Example 3.8,
we let m(xi, xj) = 24.026.

2.2 Existing centrality measures

Given a network G = (X,wX), we can study the qualitative features of the network. One such
interesting feature is to detect the importance of individual nodes in the network. In particular,
node centrality measures have been extensively applied on empirical networks to detect ranks and
influence of individual nodes. Here we summarize existing measures of node centrality for directed
networks. In Section 5 we will use these as a comparison with quasi-centrality (Definition 3.4).

In the following definitions, we let G = (X,wX) be a directed network and Aij be its adjacency
matrix.

• Degree centrality : for a directed network G, the in-degree centrality and out-degree centrality
for a node i ∈ X are defined to be the number of edges going in or out of i.

• Katz centrality : for a directed network G, the the Katz centrality xi for node i ∈ X is
defined to be xi = α

∑
j Aijxj +β, where α and β are constants and Aij is an element of the

adjacency matrix.

• Pagerank centrality : for a directed network G, the Pagerank centrality xi for node i ∈ X is
defined to be xi = α

∑
j Aij

xj

kout
j

+ β, where α and β are constants, Aij is an element of the

adjacency matrix, and koutj is the out-degree of the node i.

• HITS hubs and authorities centrality : The HITS hubs and the HITS authorities centrality
measures are defined such that one measure depends on the centrality measure determined
by the other measure.

Let α and β be non-negative constants. For a directed network G, the HITS-authority
centrality xi for node i ∈ X is defined to be the sum of the hub centralities yj which point
to the node i: xi = α

∑
j Aijyj , and the HITS-hubs centrality yi for node i ∈ X is defined to

be the sum of the authority centrality xj which are pointed by the node i: yi = β
∑
j Ajixj .

We note that all of the above centrality measures are based on the adjacency matrix Aij ,
showing that the centrality measure for a node i is completely dependent on the direct neighbors
of the node, while not taking the propagating influence of the node on the entire network into
account. The goal of our research is to provide a centrality measure that takes propagating
influences into account, and we do so by using algebraic topology and persistent homology, which
we will provide background knowledge in the following section.
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2.3 Algebraic topology and homology

We begin by introducing simplicial complexes, which are the foundational objects of study in
algebraic topology and homology.

Definition 2.7. Given a finite set T , an (abstract) simplicial complex X is a subset of Pow(T ),
the power set on T , such that

• singletons {x} ⊆ T belong to X, and

• whenever σ ∈ Pow(T ) belongs to X, then any subset τ ⊆ σ belongs to X as well. We refer
to a proper subset τ of σ is as a face of σ.

The elements of T are called the vertices of X, the two-element subsets of T that belong to X
are called the edges, and in general the k-element subsets of T are called the (k-1)-simplices in X.

Given a simplex σ = {x0, . . . , xn}, an orientation of σ is a choice of an equivalence class of
the orderings of its vertices. We say that two orderings are equivalent if they differ by an even
permutation. For n > 0, there are thus two equivalence classes of orderings. A choice of one of the
classes will be called an orientation of σ. If σ = {v0, ..., vn}, then σ with a choice of an orientation
will be denoted by σ = [v0 : ... : vn].

We now define homology for simplicial complexes. Let X be a simplicial complex, and let Xn

denote the set of oriented n-simplices in X, then for any dimension n ∈ Z+, the vector space of
n-chains of X over the field K, denoted by Cn(X,K), is the free K-vector space with basis the set
of oriented n-simplices:

Cn(X,K) =
{∑

αiσi : σi ∈ Xn, αi ∈ K
}
.

Definition 2.8. Given any n-chain vector space Cn(X,K), where n ∈ Z+, we define the boundary
map ∂n : Cn(X,K)→ Cn−1(X,K) as the the linear transformation specified on the generators as

∂n([v0, ..., vn]) =

n∑
i=1

(−1)i[v0, ..., vi−1, vi+1, ..., vn].

Informally, ∂n maps each (n + 1)-simplex to its boundary comprised of its faces. It is easy to
check that the boundary of a boundary is empty, and hence the linear maps ∂n satisfy the property
that composing any two consecutive boundary maps yields the zero map:

Proposition 2.9. [Mun84] For all n ∈ Z+, ∂n−1 ◦ ∂n = 0.

We axiomatize the properties of Cn(X;K) in the definition of a chain complex. Namely, a chain
complex of vector spaces A• is a collection of vector spaces {An} such that the linear transforma-
tions ∂n : An → An−1 satisfy ∂n−1 ◦ ∂n = 0 for all n ∈ Z+. From the chain complex A•, one may
define the following two subspaces:

k-cycles : Zk(A•) := ker(∂k) = {a ∈ Ak : ∂ka = 0},

k-boundaries : Bk(A•) := im(∂k) = {a ∈ Ak : a = ∂k+1b}.

Remark 2.10. By Proposition 2.9, the image of ∂n+1 is contained in the kernel of ∂n, so we can
take the quotient of kernel(∂n) by the image(∂n+1).

Definition 2.11. For a chain complex A•, the nth homology group Hn(A•) is defined as the
quotient

Hn(A•) = ker(∂n)/im(∂n+1).
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Roughly, we can think of homology groups as the subspace of homotopy classes of cycles in
Zk(A•) that are not the boundaries of elements of Bk+1(A•). The quotient vector space Hn(A•)
is called the k-th homology of the chain complex A•.

Definition 2.12. The dimension of Hn(A•) over K is called the n-th Betti number of A•, denoted
by βn(A•).

Example 2.13. Suppose X is the simplicial complex homeomorphic to the boundary of a triangle
with vertices v0, v1, and v2. Then C0(X,K) = K3, generated by the vertices [v1], [v2], [v3], and
C1(X,K) = K3, generated by the edges [v0, v1], [v1, v2], [v0, v2], and Cn(X,K) = 0 for all n > 1.
Then

H0(X) =
Z0(X)

B0(K)
=

〈[v0], [v1], [v2]〉
〈[v0]− [v1], [v0]− [v2]〉

= K,

H1(X) =
Z1(X)

B1(K)
=
〈[v0, v1]− [v0, v2] + [v0, v2]〉

〈0〉
= K.

All other homology groups are trivial because Cn(X;K) = 0 for n ≥ 2. The geometric re-
alization2 |X| of this simplicial complex X is homotopic3 to S1, so this example computes the
homology of S1.

Note that the dimension H0(S1) corresponds to the number of path components of S1, and
the dimension of H1(S1) corresponds to the number of 1-dimensional cycles in S1. In general, if
we have a n-dimensional sphere Sn, then Hn(Sn) = K and H0(Sn) = K and all other homology
groups are trivial.

In fact, the homology groups have a very nice interpretation: for all simplicial complexes X,
H0(X) is the free K-vector space on the set of 0-dimensional cycles of X modulo boundaries. i.e.,
two vertices are equivalent if there exists a sequence of edges between them, which can be visualized
as path components in |X|; H1(X) is the free K-vector space on the set of 1-dimensional cycles
of X modulo boundaries, which can be visualized as 1-dimensional holes in |X|; more generally,
Hk(X) is the free K-vector space on the set of k-dimensional cycles of X modulo boundaries, and
can be visualized as k-dimensional holes in |X|.

Fact 2.14. Let X and Y be topological spaces4, then a continuous map f : X → Y induces a
K-linear map H(f) : H∗(X;K)→ H∗(Y ;K).

Remark 2.15. Let X and Y be topological spaces. If f, g : X → Y are homotopic, i.e., they can
be continuously deformed into each other, then they induce the same K-linear homomorphisms on
the respective homology groups.

Remark 2.16. If two topological spaces X,Y are homotopy equivalent5, then X and Y have
isomorphic homology groups.

2.4 Persistent homology

Computing the homology of finite simplicial complexes can be simplified to computing linear
algebra. However, most empirical data sets do not exist in the form of simplicial complexes. Here
we introduce the method in which we build simplicial complexes from directed networks.

2See Section 1.8 in [RB20]: vaguely, the geometric realization |X| of a simplicial complex X is the operation that
interprets each algebraic n-simplex as a standard topological n-simplex gluding together in a “nice” way.

3See Section 1.8 in [RB20]: vaguely, two topological spaces X and Y are homotopic if one can be continuously
deformed into the other.

4In fact, we can define homology for “sufficiently nice” topological spaces, not just abstract simplicial complexes.
5Two topological spaces X and Y are homotopy equivalent if there exists a pair of continuous maps f : X → Y

and g : Y → X such that f ◦ g is homotopic to idY and g ◦ f is homotopic to idX .
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Given a directed network G, one can induce a sequence of simplicial complexes Dδ,G for a
sequence of values of parameter δ ∈ R+ such that Dδ=m,G ⊆ Dδ=n,G for all m ≤ n, where Dδ,G is
called the Dowker sink complex (Definition 2.17), introduced first in [CM18]:

Definition 2.17. Given a network G = (X,wX) and δ ∈ R, define Rδ,G ⊆ X ×X as:

Rδ,G := {(x, x′) : wX(x, x′) ≤ δ}.

Using Rδ,G, we build a simplicial complex Dδ,G called the Dowker sink complex as:

Dδ,G := {σ ∈ Pow(X) : there exists p ∈ X s.t. (xi, p) ∈ Rδ,G for each xi ∈ σ}.

The node p is called the sink for the simplex σ, and one can check that Dδ,G ⊆ Dδ′,G for all
δ ≤ δ′.

Remark 2.18. Let G = (X,wX) be a dissimilarity network, then Rδ=0,G is precisely the set of
|X| vertices, i.e., 0-simplices.

We note that the Dowker sink complex and the Vietoris-Rips complex [Ott+17], one of the
most prevalent tools used in TDA, are analogous. While the Vietoris-Rips complex induces a
filtration of simplicial complexes from a point cloud data set, the Dowker sink complex induces a
filtration of simplicial complexes from a directed network.

Definition 2.19. A filtration of simplicial complexes is a set of simplicial complexes X1, X2, ..., Xn

such that each simplicial complex is contained in its successive simplical complex:

X = X1 ⊆ X2 ⊆ ... ⊆ Xn.

X is called a filtered simplicial complex.

Example 2.20. Let G = (X,wX) be a directed network in a finite metric space, and let the
simplicial complexes Dδ1,G, Dδ2,G, ..., Dδn,G be the Dowker sink complexes at δ1 ≤ δ2 ≤ ... ≤ δn
respectively, then the sequence

Dδ1,G ⊆ Dδ2,G ⊆ Dδ3,G ⊆ ... ⊆ Dδn,G = DG
is a filtration of simplicial complexes, and DG is a filtered simplicial complex.

One can compute the homology groups of the simplicial complex Dδ,G for a given value of
δ. As the value of δ increases, one can record the birth (the value of δ at which a homological
feature appears) and death (the value of δ at which a homological feature disappears) values for
all homological features (path components, 1-cycles, etc.) that appear in DG.

Remark 2.21. The definitions of birth, death values, and a persistence barcode of a homological
feature in a filtered simplicial complex are presented in Section 4 of [Ott+17]. We will omit these
definitions since they are not necessary for the work presented in this paper.

Thus, given a filtered simplicial complex X, we can associate X a union of persistence barcodes,
each representing the birth and death values of a homological feature of X. Persistence barcodes
record changes in the n-dimensional homology group Hn for some n ∈ Z≥0 when one simplicial
complex Xi is included in its successor Xi+1 in the filtration. In particular, each persistence
barcode [b, d) represents the lifetime of a generator of a homology group Hn, where δ = b is the
birth value of the feature and δ = d is the death value of the feature in the filtered simplicial
complex X. The value d− b is called the persistence of the feature.

Definition 2.22. A persistence diagram D is a union of a finite set of points above the diagonal
D = {(x, y) ∈ R2|x = y} in R≥02 and the entire diagonal D.
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Remark 2.23. Each point (x, y) ∈ D represents the birth and death δ values of a persistent
barcode [b, d) with x = b and y = d.

Remark 2.24. Roughly, a persistence diagram inherits the same data as the persistence barcodes.
However, the persistence diagram D contains the diagonal D, which will be useful for comparing
the similarity of data sets. Specifically, a matching between two persistence diagrams map each
point of a persistence diagram to another point of the other persistence diagram or to the diagonal,
For more concrete details, see Section 5.1.

Generally, given any dissimilarity network G(X,wX), we denote Dgmn(G) as the n-dimensional
persistence diagram for the filtered simplicial complex DG. Moreover, we denote

Pn(G) := {[b1, d1), [b2, d2), ..., [bk, dk)}

to be the set of n-dimensional persistence barcodes for the filtered simplicial complex DG.

3 Quasi-centrality measure

In this section, we present our definition of quasi-centrality for a directed dissimilarity network
based on persistent homology and the Dowker sink complex, which is given in Definition 3.4.

Definition 3.1. LetG = (X,wX) be a (dissimilarity) network and let x ∈ X, define f(G, x) = (X \ {x}, wX)
to be the sub-network induced by deleting x and all edges incident to x in G.

Remark 3.2. We note that for a trade network G = (X,wX), where wX(x1, x2) represents the
trade volume between individual countries or industries x1, x2 ∈ X, the induced network f(G, x)
models an embargo trade barrier6 on x.

Definition 3.3. Let G = (X,wX) be a (dissimilarity) network and γ(G) = (X,mX) be defined
as in Definition 2.4. Given, x ∈ X, define µ(x) to be the minimum distance between x and any
other node x′ ∈ X with respect to the metric mX .

Definition 3.4. Let G = (X,wX) be a (dissimilarity) network and let x ∈ X. We define the
quasi-centrality C(x) as follows:

C(x) =
∑

b∈P0(f(γ(G),x))

l(b)−
∑

b∈P0(γ(G))

l(b) + µ(x)

where b represents a persistence interval in P0 and l(b) is the persistence of the interval, i.e., the
length of the interval, and γ(G) is given in Definition 2.4 and µ(x) is given in Definition 3.3.

Remark 3.5. We first give an intuitive explanation of what C(x) measures before proving that
C(x) is nonnegative for all x ∈ X. We note that γ(G) not only can be treated as a topological
space where Dγ(G) encompasses the data of its homological features, but it also can be treated as
a metric space since it comprises the data of the pairwise distances between nodes in the network.

Roughly speaking, we think of the sum
∑
b∈P0(γ(G)) l(b) as a measure of how disconnected

γ(G) is, i.e., if
∑

is large, then γ(G) is considered to be highly disconnected and vice versa. In
particular, since the dimension of the 0-th homology group of a simplicial complex X measures the
number of path components (disconnected components) in |X|, we consider

∑
b∈P0(γ(G)) l(b) to be

the “size” of the 0-th homology group of γ(G), and γ(G) is considered to be highly disconnected
if the sum

∑
is large and vice versa. Similarly, the sum

∑
b∈P0(f(γ(G),x)) l(b) as a measure of

6For our purposes, an embargo on x refers to the situation in which all other countries/nodes refuse to trade
with x.
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Figure 1: Left: G = (X,wX). Right: γ(G) = (X,mX).
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Figure 2: Left: f(γ(G), x3)). Right: f(γ(G), x6)).

how disconnected f(γ(G), x) is. We think of the difference as measuring of how much node x
contributes to the overall connectivity of the network.

Intuitively, a network should become ‘more disconnected’ after deleting a node, which is made
precise by the following theorem.

Theorem 3.6. For a (dissimilarity) network G = (X,wX), C(x) is nonnegative for all x ∈ X.

Proof. Recall that each [0, dj) ∈ P0(γ(G)) represents the lifetime of a path component in γ(G),
hence by definition one connected component α joins another connected component β at δ = dj .
Therefore, at least two 0−simplices [x1] ∈ α and [x2] ∈ β belong to a 1-simplex ±[x1 : x2] at
δ = dj . By definition of the Dowker sink complex, there exists p ∈ X such that m(x1, p) ≤ dj and
m(x2, p) ≤ dj .

If x ∈ {x1, x2, p}, then the 0-th persistence barcode in P0(f(γ(G), x))) representing the life-
time of path component α or β will have a death resolution δ greater than or equal to dj . If
x 6∈ {x1, x2, p}, then the 0-th persistence barcode in P0(f(γ(G), x))) representing the lifetime of
path component α or β is still equal to dj .

Hence all persistence barcodes representing the lifetime of connected components have death
values in P0(γ(G)) greater than or equal to the death values of corresponding components in
P0(f(γ(G), x))). Therefore ∑

b∈P0(f(γ(G),x))

l(b) + µ(x) ≥
∑

b∈P0(γ(G))

l(b),

and our proof is complete. �

Remark 3.7. As the value of δ increases, C(x) measures how often node x bridges between two
disconnected components. We think of the node x as serving as a δ-sink not only for a pair of
nodes in a neighborhood of x, but rather the pair of connected components the nodes belong to.
In this way, the quasi-centrality C(x) takes into account not only the local neighborhood of node
x, but also propagating effects in said neighborhood.

Example 3.8. In this example, we compute the quasi-centrality measure on nodes in an example
directed weighted network G as shown in Figure 1 (left), and compare the result with existing
centrality measures.
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The illustrations of G and γ(G) are shown in Figure 1 (left and right respectively). In the
illustration of γ(G), we leave out the edge eij when w(xi, xj) = 0. However, in our calculation
of C(x), we let the m(xi, xj) to be a very big number when w(xi, xj) = 0 so that nodes xi, xj in
mX are very far apart that it is almost indistinguishable when no relation exists between the two
nodes. In this example, we let m(xi, xj) = 24.026 to make computations more convenient.

Figure 2 illustrates the networks for f(γ(G), x3)) and f(γ(G), x6)), and Figure 3 illustrates the
Dowker persistence barcodes for f(γ(G), x3))), f(γ(G), x6))), and γ(G).

(a) Dgm0(γ(G))) (b) Dgm0(f(γ(G), x3))) (c) Dgm0(f(γ(G), x6)))

Figure 3

We illustrate the computation of C(x3) as an example. Since µ(x3) = 2.01,

C(x3) =

n−1∑
j=1

d′j −
n∑
j=1

dj + 2.01

= (1 + 24.026× 4)− (1 + 2.01 + 2.70 + 3.40 + 3.40 + 24.026) + 2.01

= 65.978.

Similarly, we have C(x1) = C(x2) = C(x4) = C(x5) = 0 and C(x6) = 0.29. This shows that in G,
node x3 has the most propagating influence in the entire network, followed by node x6.

Figure 4 illustrates the values obtained by other existing centrality measures. We have included
two measures for the Pagerank centrality: Pagerank 1 outputs the centrality values for nodes in
the original network G and Pagerank 2 outputs the centrality measures for nodes in the network
obtained by switching the direction of edges from G.

We included Pagerank 2 for the following reason: since all existing centrality measures are
based on the term

∑
Aijxj , i.e., the centrality value xi for node i only sums up the contribution

values xj of nodes j that points toward node i, by computing Pagerank 2 and comparing to the

Node
Quasi-
centrality

Katz Pagerank 1 Pagerank 2 HITS-hubs
HITS-
authorities

x1 0 0.38 0.15 0.50 0.00 0.11
x2 0 0.38 0.13 0.09 0.00 0.06
x3 65.978 0.23 0.12 0.09 0.47 0.00
x4 0 0.38 0.16 0.09 0.53 0.17
x5 0 0.38 0.13 0.14 0.00 0.06
x6 0.29 0.61 0.31 0.09 0.00 0.60

Figure 4: Centrality values for G obtained from the quasi-centrality, Katz centrality, HITS-hubs
and authorities centralities, and Pagerank centrality.
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results obtained by the quasi-centrality, we essentially eliminates the possibility that the differences
in the centrality values is solely due to the fact of the direction of the edges.

We note that x3 has low centrality values for all existing centrality measures, including both
Pagerank centrality measures. On the contrary, we note that x3 has the high quasi-centrality value,
which is what we would expect since node x3 holds the center position in the directed dissimilarity
network G. Therefore in this case, the quasi-centrality better measures the propagating influences
of nodes in this example.

We expect the reason for all existing centrality measures having resulted in a low centrality
value for x3 for two reasons: firstly, all existing centrality measures depend on the adjacency matrix
Aij and contain the term

∑
Aijxj , which sums up the contribution values of nodes j that links

with node i. However, it is possible that the nodes j are not central in the network and hence does
not contribute to the centrality value of node i, which can be shown in this example. However, it is
still possible that node i holds the center position in the network even when its neighbors are not
important in the network (such as in this example), in which all existing centrality measure fail
to accurately measure its importance. Secondly, the adjacency matrix term

∑
Aijxj only sums

up the contribution values of nodes j that has an ingoing edge to node i while ignoring the nodes
that have an outgoing edge from node i, meaning that the centrality values are only taking into
account of propagating influences on one side while ignoring the other.

Generally, when measuring the propagating influence of a node, both incoming edges and
outgoing edges should positively impact the centrality value. For example, when measuring the
influence of perturbations originated from a country or industry in the empirical trade production
network, if a particular country or industry is both an important exporter and importer, it will
have a greater influence on the entire economy compared to a country or industry that is only
an important importer. The quasi-centrality in this case would give a more thorough measure of
a node’s propagating influence as it takes into account of the nodes’ impact in both directions,
whereas other centrality measures might only focus on ingoing edges or outgoing edges.

4 Quasi-centrality applications

In this section, we apply the quasi-centrality measure to an empirical network describing trade
among countries and industries–the Asia machinery production network in 2007 and 2011. We show
that the quasi-centrality measure gives a more refined evaluation of the propagating influences of
nodes in the trade network than existing centrality measures.

The trade network exhibits many properties common to complex networks, including high
clustering coefficient and degree-degree correlation between different vertices [SBn03]. Moreover,
research suggests that random microeconomic shocks have the ability to propagate through a
network with high inter-connectivity and cause “cascade effects” in the entire network and economy
[Eco]–a prime example is the Asiatic crisis. Therefore, it is important to take into account of the
propagating effects of the trade network when evaluating node centrality. We later show that the
quasi-centrality accurately predicts the influences of nodes in the trade network as it takes into
account of such propagating effects.

We examine the machinery production network in Asia during 2007 and 2011 (network illustra-
tions are shown in Figure 5), before and after the 2008-2009 financial crisis. Our network consists
of both different intermediate products and different countries as nodes, as either counterpart plays
a crucial role in supply and production chains7, which are central for our understanding of the
entire network.

7A supply/production chain is a system of intermediate transactions, suppliers, distributors, consisting of different
countries and intermediate products.
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(a) 2007 Asia machinery production network (b) 2011 Asia machinery production network

Figure 5

Our data consists of 8 × 4 pairs of countries and industries, obtained from the OECD Inter-
Country Input-Output (ICIO) Tables [OECD21], which provides transport values between country-
industry pairs. The eight countries and four industries are labeled in the following table:

Country Label Country Name
KOR North Korea
JPN Japan
MYS Malaysia
SGP Singapore
TWN Chinese Taipei
CN China

VNM Vietnam
THA Thailand

Industry Label Industry Name
C29 Machinery and equipment
C30 Computer, electronic and optical equipment
C31 Electrical machinery and apparatus
C34 Motor vehicles, trailers and semi-trailers

For brevity, we abbreviate the 32 nodes by [label of industry]-[label of the country]. For
example, the machinery and equipment industry in Korea is referred to as KOR-C29.

Remark 4.1. In our data obtained from the OECD Inter-Country Input-Output (ICIO) Tables,
imports are valued at basic prices of the country of origin, i.e., the domestic and international
distribution included in goods imports in c.i.f. purchasers’ prices are re-allocated to trade, transport
and insurance sectors of foreign and domestic industries.

Remark 4.2. We exclude taxes paid and subsidies received in foreign countries in our network.

Remark 4.3. For the rest of Section 4, we will use “node” and “country-industry pair” inter-
changeably.
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Figure 6: Quasi-centralities for the 2007 Asia machinery production network.

4.1 2007 Asia machinery production network

We first examine nodes’ propagating influences in the 2007 Asia machinery production network.
We compute the quasi-centralities (Figure 6) for nodes in the network and compare with existing
centrality measures (Figure 7) and later demonstrate that quasi-centrality successfully captures
propagating effects and more accurately evaluates nodes’ propagating influences in the network.

According to Figure 6, JPN-C34 (marked in orange) has the highest quasi-centrality value,
implying that it has the highest propagating influence over the network, followed by CN-C30
(marked in pink), JPN-C29 (marked in grey), THA-C34 (marked in green), etc. These values reflect
that China and Japan were the two largest contributors to the machinery production industry in
Asia in 2007 [OK16].

We note that THA-C34 also has a relatively high quasi-centrality value. Although Thailand
only accounted for 1.12% of global exports of vehicle parts in 2007, while Japan, Korea, and China
accounted for 10.2 %, 4.05 %, and 3.98 % ([OEC21]) respectively, Thailand holds an important
network position locally in Asia due to its high inter-correlation with China, the leading player in
the network. According to [OEC15], between 2000 to 2010, Thailand’s exports in motor vehicles
parts, electronics and electrical appliances increased by > 40 percent, and growth in trade with
China (both imports and exports) also grew substantially. By 2010, China became Thailand’s lead
export destination.

Since quasi-centrality is designed to capture how much a node contributes to the overall con-
nectivity of the network, meaning that higher intensity of links between nodes will lead to a higher
connectivity, we may also conclude the following: if a node a is highly influential in the network,
and if another node b exhibits strong linkage with node a, then node b also plays a relatively im-

13



Figure 7: Existing centralities (Katz, Pagerank, HITS-hubs, HITS-authority) for the 2007 Asia
machinery production network.
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portant role in the network because perturbations originated from b will have a high influence on a,
and will then be highly influential to the entire network. Since Thailand is highly interconnected
with China, one of the main players in the network, we may infer that perturbations originating
from Thailand have a high potential to propagate over the entire network.

Comparison with existing centrality measures. We observe that the relative importance of
THA-C34 according to the quasi-centrality is not reflected in other existing centrality measures.
We hypothesize that this is due the fact that the existing centrality measures are dependent on
the adjacency matrix Aij , implying that the centrality value for THA-C34 is based on its local
neighborhood, while the quasi-centrality evaluates the THA-C34’s contribution to the connectivity
of the entire network, emphasizing its interconnectedness with CN-C30.

According to Figure 7, the Katz centrality returns similar centrality values for all nodes in
the network, failing to capture subtleties in the influences of nodes. Since the trade network
exhibits high clustering properties, i.e., every country-industry pair is linked with almost every
other country-industry pair, the Katz centrality is unable to capture the relative differences in the
influence of nodes. We may conclude that this is due to the fact that Katz centrality ignores the
importance of the intensity of interaction between edge links, i.e. it does not take edge weights
into account.

Moreover, both HITS-hubs and HITS-authorities centralities are not refined since their output
values fail to evaluate the relative scale of the the influences of nodes in the network: they are only
able detect a single node that is highly influential, while ignoring the influences of other nodes.
This is not helpful for detecting potential souces of shocks in supply chains because we are only
able to detect one single chain instead of many chains.

Of the existing centrality measures, the Pagerank centrality gives similar relative information
of the influence of nodes compared to the gradation given by the quasi-centrality. However, we
note that the Pagerank centrality outputs a high centrality value for KOR-C34 (marked in yellow),
while the quasi-centrality measure for KOR-C34 is zero. According to [OK16], even though Korea
has high import value for machinery final products, its export value is relatively low–in particular,
KOR-C34 has a many more incoming edges than outgoing edges. Since the Pagerank centrality xi
for a node i is α

∑
j Aijxj + β, which only sums up the contribution value of nodes j that has an

edge that points toward node i, KOR-C34 has a high Pagerank centrality value as it has a large
number of incoming edges, i.e., imports.

However, a country-industry pair’s propagating influence in the entire trade network should
depend on both its export and import values, as a country-industry pair with both high export
and import should have a larger propagating influence than a country-industry pair with only high
import values. Thus in this case, quasi-centrality offers a better assessment of a node’s influence
than Pagerank does. While the Pagerank centrality only remembers one direction at a time,
meaning that it captures some propagating influence but not all, the quasi-centrality captures
both directions and gives a more comprehensive evaluation of the propagating influence of a node.

4.2 2011 Asia machinery production network

Now we proceed to analyze the propagating influences of nodes in the 2011 Asia machinery
production network, following the 2007-2008 financial crises. The objective is to identify changes
in power dynamics of nodes in the network compared to 2007.

According to Figure 8, CN-C30 (marked in pink) has the highest quasi-centrality value, followed
by JPN-C34 (marked in orange) and SGP-C30 (marked in red). It is worth noting the change in
the quasi-centrality values for JPN-C34, CN-C30, and SGP-C30 from 2007 to 2011. While the
quasi-centrality value for CN-C30 and SGP-C30 have significantly increased, the value for JPN-C34
has significantly decreased.

15



Figure 8: Quasi-centralities for the 2011 Asia machinery production network.
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Figure 9: Existing centralities (Katz, Pagerank, HITS-hubs, HITS-authority) for the 2011 Asia
machinery production network.
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According to [OK16], China became a dominant player in the global machinery production
network in terms of both export value and the diversity of industry-destination pairs following
the 2008-2009 financial crisis. Since the quasi-centrality measures how a node contributes to
the overall connectivity of the network, accounting for all factors of import, export values, and
industry-destination pairs, China’s growth of impact in the network is substantially illustrated by
its increase in the quasi-centrality value.

According to [OK16], Japan’s machinery production growth, on the other hand, stagnated
because of two main reasons after the financial crisis of 2008-2009. First, transportation links
between Japan and multiple countries weakened, specifically with Korea. Second, there was a
noticeable decrease in the number of product–destination pairs in Japan’s exports of machinery.
Both of these factors have led to Japan’s stagnation in economic growth, and the stagnation
is distinctively illustrated by the change of Japan’s quasi-centrality value relative to others as
computed in Figure 8.

In addition to the significant power dynamic changes of Japan and China in the network,
we also note that the quasi-centrality value for SGP-C30 has significantly increased compared to
2007. According to [Hoo22], the Singapore electrical machinery and apparatus industry became
more central in numerous supply chains (see footnote 7) after the financial crisis, thereby playing
an important role as an intermediary between an abundance of production, supply, distribution,
and post-sales activities of goods and services.

Comparison with existing centrality measures. We note that China’s dominance in the
network and Japan’s stagnation of economic growth are not reflected in the existing centrality
measures. Figure 9 shows that the HITS-hubs and authorities centrality measures are not refined
in that they continue to only detect the node with the highest influence in the network (KOR-C34
and JPN-C34 respectively), and that the Katz centrality continues to output the same centrality
measure for almost all the nodes.

Moreover, the Pagerank centrality continues to measure JPN-C34 (marked in yellow) as being
the most influential node in the network. We hypothesize that this is due to the fact that since
the Pagerank centrality only sums up the contribution values of nodes having an incoming to
JPN-C34, the decrease in product–destination pairs for JPN-C34 of exports would not affect its
Pagerank centrality. Furthermore, CN-C30 (marked in pink) also has a relatively low Pagerank
centrality value even though it is the dominant player in the network in 2011. We hypothesize
that this is again due to the fact that the Pagerank centrality only sums up the contribution
values of nodes having an incoming edge to CN-C30, but CN-C30 exports far more than imports.
Specifically, China’s raw export value of machines globally was $894 billion dollars in 2011, while
its raw import value of machines globally was only $328 billion dollars.

Moreover, the increase of Singapore electrical machinery industry’s influence in the network is
substantially reflected by its quasi-centrality value, while not reflected in the existing centrality
measures, again showing how the quasi-centrality is effective in measuring a node’s propagating
influence in the network.

4.3 Summary

We computed the quasi-centralities of nodes in the 2007 and 2011 Asia machinery production
network and compared the result with the existing centrality measures. Based on empirical trade
statistics, we showed that quasi-centrality is optimal for detecting propagating influences of a
node in the network as it takes into account both the import and export values of a country and
industry pair, as well as the node’s number of industry-destination pairs and its role in intermediary
transactions.

Specifically, we showed that empirical facts support the information obtained by computing
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the quasi-centrality measure: a set of countries and industries such that perturbations originating
from this set of nodes can propagate significantly through the network.

Potential applications Trade is often adversely affected by perturbations in a single country,
including natural disasters such as a hurricane, earthquake or flood, and political turmoil or an
armed conflict [KPD17]. Understanding which collections of nodes in the network might potentially
cause significant propagating impacts can aid in identifying bottlenecks, thereby making the trade
network more resilient. We propose that using the quasi-centrality measure can ultimately serve
to protect world economies.

5 Clustering nodes by topological influences

In section 5.1, we introduce a method (Definition 5.6) that combines hierarchical clustering
and persistent homology to construct a hierarchy of nodes based on their impact in the overall
topology of a directed weighted network. In sections 5.2 and 5.3, we apply our method to the 2007
and 2011 Asia machinery production network.

5.1 Node hierarchy using TDA

Before introducing our method in Definition 5.6, we recall how hierarchical clustering works.
Given a set of objects and a specified weight function [Kul02] that computes the similarity

between two objects in the set, hierarchical clustering is a method for detecting community struc-
tures within this set of objects by arranging the objects into a hierarchy of groups according to
the weight function. For a given value of parameter t, hierarchical clustering groups objects that
are “at most t far apart from each other” according to the weight function.

Definition 5.1. Given a finite set X, a partition P of X is a collection P = {B1, ..., Bk} of subsets
of X such that:

1. For all i 6= j, Bi ∩Bj = ∅, and
2. The union ∪ki=1Bi = X.

Each Bi is referred to as a block of P . We denote the set of all partitions of X by Part(X).

Because the partition depends on t, we would like a family of t-partitions, hence a hierarchical
dendrogram is defined to be a function that outputs a partition given an input value of t:

Definition 5.2. LetX be a finite set. A dendrogram over X is a weight functionDX : R+ → Part(X)
such that:

1. For t′ ≥ t, every block of DX(t) is contained in a block of DX(t′).
2. There exists tF ∈ R+ such that for all t ≥ tF , DX(t) = {X}.
3. The weight function DX(0) consists of singletons {x} for all x ∈ X .
4. For all t ∈ R+, there exists ε > 0 such that DX(t) = DX(t′) for all t′ ∈ [t, t+ ε].

As the value of parameter t increases, the partition DX(t) gets “coarser”, i.e., objects that are
within t similar to each other belong to the same block in DX(t).

A dendrogram can be thought of as a (nested) family of partitions of X into similarity classes,
with the variable t specifying the desired fineness and granularity of the partition DX(t). Elements
that belong to the same block in DX(t) for small values of t ∈ R+ are more similar according to
the weight function DX , and vice versa.

Remark 5.3. We will not be going into detail of the computer algorithm that we use to construct
our hierarchical dendrogram since the exact computer algorithm will not be necessary for explaining
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our work. We will use single-linkage clustering8 as our clustering algorithm, which is also used in
Definition 5.6.

Now we explain how we can extract a hierarchical dendrogram from a dissimilarity directed
network G = (X,wX) based on nodes’ impact in the topology of the network (Definition 5.6). We
first introduce the set of objects included in our hierarchy:

Definition 5.4. Given a dissimarity network G = (X,wX), let γ(G) be as defined in Definition
2.4 and assume that |X| = n, the number of nodes in G. For each node x ∈ X, let f(γ(G), x) be as
defined in Definition 3.1. Define the set of objects denoted by SG in the hierarchical dendrogram
associated to G as:

SG := {Dgm(f(γ(G), x)) | x ∈ γ(G)} ∪ {Dgm(γ(G)))}.
We are interested in using dendrograms to express the hierarchy of nodes in a given directed

network based on nodes’ topological influences in the network. The main idea is that the bottleneck
distance between the Dowker persistence diagram associated toG and the diagram associated to the
induced network Gx = (X \ {x}, wX) is small if x does not play an important role in the topology
of G, and vice versa. We first introduce the set of objects SG in the hierarchical dendrogram
associated to G:

Recall that given a directed weighted network, the Dowker persistence diagram summarizes the
homological features in the Dowker complex associated to the network. We may then conclude
that given two directed weighted networks, if the two Dowker persistence diagrams associated to
the networks are similar, then the networks have similar topology.

We measure the similarity between two persistence diagrams using the bottleneck distance
(Definition 5.5), which describes the cost of the optimal matching9 between points of the two
diagrams [Aga20], introduced below:

Definition 5.5. Given two persistence diagrams D1 and D2, the bottleneck distance of D1 and
D2 denoted by dB∞(D1, D2) is defined as

dB∞(D1, D2) = inf
η:D1→D2

sup
x∈D1

||x− η(x)||∞

where η ranges over all embeddings η : D1 ↪→ D2∪∆, where ∆ denotes the diagonal and ||(x, y)||∞
is the usual L∞ norm.

If the bottleneck distance between two Dowker persistence diagrams is close to zero, i.e., if
dB∞(Dgm1,Dgm2) ≈ 0, then we may conclude that two corresponding directed weighted networks
have similar topological structure, and vice versa.

Using SG, we may obtain the hierarchical dendrogram associated to the dissimilarity directed
network G as follows:

Definition 5.6. Given a dissimilarity network G = (X,wX) with the bottleneck distance, the
hierarchical dendrogram HG associated to G is the function

HG :R+ → Part(SG)

t 7→ partition of SG (SG,bottleneck distance).

And we implement the single-linkage clustering (see footnote 8) algorithm to extract the hier-
archical dendrogram from the function HG.

For a given object x ∈ X and parameter value t = t′, we will denote the block containing x in
HG(t′) by BHG

(x, t′).

8You can read more concrete details about the algorithm in Section II of [VSB19].
9A matching η between persistence diagrams D1 and D2 pairs each point in D1 with a point in D2 or a point

on the diagonal line, and pairs each point in D2 with a point in D1 or a point on the diagonal.
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5.2 Hierarchical clustering of the 2007 Asia machinery production net-
work

In this section, we examine the 2007 Asia machinery production network by analyzing the
hierarchical dendrogram associated to the network obtained by the method we introduced in the
previous section (Definition 5.6).

Figure 10 shows the hierarchical dendrogram associated to the 2007 Asia machinery production
network, where the y-axis shows the 33 nodes10 in the dendrogram, corresponding to the elements
in SG, where each of Dgm(f(γ(G), x)) is labeled by the node x deleted, and Dgm(γ(G)) is labeled
by STANDARD, and the values along the x-axis corresponds to the values of the parameter t in
the weight function HG. The vertical line at t = t′ corresponds to the blocks of the partition
HG(t′).

We consider the smallest value of t for which Dgm(f(γ(G), x)) belongs to the cluster containing
STANDARD to be its topological impact on the network. In other words, we expect nodes in the
dendrogram belonging to the block containing the STANDARD node at smaller values of t in the
partition HG(t) to have a smaller impact in the topology of the network, i.e., if given two nodes
a, b and t < t′, and that a ∈ BHG

(STANDARD, t) and b ∈ BHG
(STANDARD, t′) then b has a

greater topological influence in the network topology.
According to Figure 10, we see that THA-C30,VNM-C34 ∈ BHG

(STANDARD, t = 0), imply-
ing that the country-industry pairs THA-C30 and VNM-C34 are insignificant in the topological
structure of the network. We consider these nodes as “peripheral,” i.e. deleting them doesn’t
really change the network topology.

On the contrary, when t < 0.48, JPN-C34 6∈ BHG
(STANDARD, t) while

BHG
(STANDARD, 0.42) = {SG \ {JPN-C34}}, thus we conclude that deleting JPN-C34 has the

most significant impact in the topological structure of the network. Indeed, we see that the
1-dimensional barcodes of Dgm(f(γ(G), JPN-C34)) (Figure 11(b)) differs significantly from the 1-
dimensional barcodes of Dgm(γ(G)) (Figure 11(a)): while all 1-dimensional barcodes in Dgm(γ(G))
have death parameters δ ≤ 4.38, there exists a 1-dimensional barcode in Dgm(f(γ(G), JPN-C34))
with death parameter δ = 5.64, indicating that JPN-C34 has a significant impact in the one-
dimensional homological features of γ(G), reflecting its importance in the network topology.

We note that from the result illustrated in Section 4.1, JPN-C34 also has the highest quasi-
centrality value in the 2007 Asia machinery production network. Since the quasi-centrality mea-
sures the propagating influence of JPN-C34 and the network hierarchy reflects JPN-C34’s impact
in the overall topological structure of the network, we conclude that perturbations originating
from JPN-C34 not only effectively propagate throughout the entire network, but also changes the
network topology significantly.

Similarly, when t < 0.33, CN-C31 6∈ BHG
(STANDARD, t), implying that CN-C31 also has a sig-

nificant impact in the network topology. Indeed, the 1-dimensional barcodes of Dgm(f(γ(G),CN-C31))
(Figure 11(d)) also differ significantly from the 1-dimensional barcodes of Dgm(γ(G)) (Figure
11(a)). Hence similar to JPN-C34, we conclude that perturbations originating from CN-C31 not
only effectively propagate throughout the entire network, but also changes the network topology
significantly.

On the contrary, although VNM-C31 has zero quasi-centrality value from the result in Section
4.1, when t < 0.43, VNM-C31 6∈ BHG

(STANDARD, t), implying that VNM-C31 has a significant
impact in the network topology. Indeed, the 1-dimensional barcodes of Dgm(f(γ(G),VNM-C31))
(Figure 11(c)) exhibit considerable differences compared to the one-dimensional barcodes of Dgm(γ(G))
(Figure 11(a)). However, the 0-dimensional persistence diagrams do not reflect significant differ-
ences. Since the quasi-centrality is measured based on how much VNM-C31 contributes to the over-
all connectivity of the network and is measured in terms of connected components (0-dimensional

10For brevity, we will refer to the objects in the hierarchy to be the nodes in the dendrogram.
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Figure 10: Hierarchichal dendrogram associated to the 2007 Asia machinery production network.
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(a) Dgm(γ(G)). (b) Dgm(f(γ(G), JPN-C34)).

(c) Dgm(f(γ(G),VNM-C31)). (d) Dgm(f(γ(G),CN-C31)).

Figure 11: Dowker persistence diagrams for sub-networks obtained from the 2007 Asia machinery
production network.

homological features), we conclude that although perturbations originating from VNM-C31 can-
not propagate effectively throughout the entire network, it can potentially cause changes in the
network topology.

In fact, the hierarchical dendrogram produced using the method in Definition 5.6 not only
illustrates the hierarchy of the nodes based on their topological impact in the network, but also
allows us to identify which collections of nodes have similar impacts in the network. In particular,
the nodes that first belong to BHG

(STANDARD, t) at approximately the same value of t are
considered to have similar topological influence in the network.

For example, it is clear from Figure 10 that the nodes THA-C31,MYS-C29,VNM-C30,VNM-C29
all first join BHG

(STANDARD, t) at close values of t (0.26 < t < 0.28), implying that this set of
nodes have similar topological influence in the network. Indeed, a close resemblance between the
Dowker persistence diagrams corresponding to this set of nodes can be observed in Figure 12.
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(a) Dgm(f(γ(G),THA-C31)). (b) Dgm(f(γ(G),MYS-C29)).

(c) Dgm(f(γ(G),VNM-C30)). (d) Dgm(f(γ(G),VNM-C29)).

Figure 12: Dowker persistence diagrams for sub-networks obtained from the 2007 Asia machinery
production network.

5.3 Hierarchical clustering for the 2011 Asia machinery production net-
work

Now we analyze the hierarchical dendrogram associated to the 2011 Asia machinery production
network obtained from Definition 5.6. We hope that comparing the 2011 network hierarchical
dendrogram (Figure 13) with the 2007 network hierarchical dendrogram (Figure 10) will afford
insights into how the country-industry pairs’ influence in the topological structure of the network
changed in the wake of the financial crisis.

In contrast to the 2007 hierarchical dendrogram where JPN-C34 6∈ BHG
(STANDARD, t) when

t < 0.48 while BHG
(STANDARD, 0.42) = {SG \ {JPN-C34}}, the 2011 hierarchical dendrogram

(Figure 13) reflects that the absolute power of the node JPN-C34 in the network has significantly
weakened; it now shares the influential role with another node: VNM-C31. The position change
of JPN-C34 in the hierarchy further reflects that over the course of 2007 to 2011, the Japanese
industry has stagnated [OK16] both in terms of its topological impacts in the structure of the
network (reflected by the hierarchy) and its propagating influence through the entire network
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Figure 13: Hierarchichal dendrogram associated to the 2011 Asia machinery production network.
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(reflected by the quasi-centrality).
The Dowker persistence diagram of the original network γ(G) is illustrated in Figure 14(a)

and the Dowker persistence diagrams obtained by deleting the node JPN-C34 (VNM-C31, resp.)
from γ(G) are illustrated in Figure 14(b) ((c), resp.) respectively. We see that both JPN-C34
and VNM-C31 had cause big changes in the network topology in terms of the 1-cycles. Indeed,
because JPN-C34 and VNM-C31 are ”well-connected” to other nodes, deleting these nodes have
a high potential disrupt the 1-dimensional homological features.

(a) Dgm(γ(G)). (b) Dgm(f(γ(G), JPN-C34)).

(c) Dgm(f(γ(G),VNM-C31)). (d) Dgm(f(γ(G),CN-C30)).

Figure 14: Dowker persistence diagrams for sub-networks obtained from the 2011 Asia machinery
production network.

Although CN-C30 had the largest quasi-centrality value as computed in Section 4.2, and that
the Dowker persistence diagram of f(γ(G),CN-C30) illustrated in 14(c) also reflects significant
changes in the 0-dimensional barcodes compared to the Dowker persistence diagram of γ(G), its
impact on the 1-dimensional homological features is notably less than JPN-C34 and VNM-C31.

We note that the hierarchical clustering method incorporates higher dimensional topology in
the network while the quasi-centrality gives a direct measure of the extent of propagating influence
of a node in terms of changes in the 0-dimensional homological features.
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5.4 Summary

We used the bottleneck distance between persistence diagrams obtained from the Dowker sink
complex, to cluster nodes by their impact on the topology of the network, with a high emphasis on
higher order homological features. We showed that our hierarchical clustering dendrogram reflects
both the extent to which each node changes the topology of the network and which collections of
persistence diagrams have similar topological effects.

We note the key distinction between computing quasi-centrality on nodes and hierarchical
clustering: while the quasi-centrality gives a direct measure of the node’s propagating influence by
recording how frequently the node serves as a bridge between path components, i.e., 0-dimensional
homological features, the hierarchical clustering method directly compares the Dowker persistence
diagrams, which includes higher dimensional homological features. While the deletion of a node
can potentially have a smaller impact on the 0-dimensional persistence barcodes, it might disrupt
1-cycles or higher dimensional cycles, illustrating its impact in the overall network topology.

6 Discussion

Summary In this paper, we apply persistent homology to develop a network centrality measure
quasi-centrality that captures propagating influences in directed networks. We computed the quasi-
centrality on the Asia machinery production network and demonstrated that our centrality measure
accurately reflects the propagating influences of perturbations originating from individual nodes.

Furthermore, we introduced a method that allows us to express the hierarchy of nodes based
on their impact in the topology of a directed network. By incorporating hierarchical clustering
and the bottleneck distance, we are able to not only detect which nodes play a significant role in
the topology of the network, but also determine which nodes change the topology of the network
in a similar fashion.

Future directions We expect that many other properties in networks (directed or undirected)
admit characterizations using tools in TDA: one direction for future research is to define other
measures in network analysis using TDA, such as density, robustness, efficiency, connectivity,
etc. We expect that using TDA to investigate network properties allows us to bring a different
perspective to examine networks.

Another open question is how to relate higher dimensional homological features in the simplicial
complexes that arises from networks to real-world phenomena, such as trade flow, embargo, value
and supply chains, patterns of trade, biological cycles, etc.

Another direction for future research is to apply the quasi-centrality measure on other directed
networks. We expect that the quasi-centrality can not only be useful in assessing the influence
of individual components within industries or trade networks, but also in other highly clustered
complex directed networks, such as biological networks, air flight networks, etc.

We believe that many network structures such as trade flows, supply chains, and biological
cycles can be better understood from a topological point of view by employing tools in TDA. Just
as TDA has been successfully applied to detect intrinsic shapes in complex data sets, we believe
that TDA can also find interesting structures in network topology and detect structural properties
in networks, allowing us to better understand these networks, and gain more insights into the
complex systems they model.

Limitations We note that although the quasi-centrality measure and the hierarchical clustering
function we defined in this paper can be useful for detecting nodes’ propagating influences and
topological impacts in a given directed network, computations and dendrograms generated are
highly computationally costly as the number of nodes in the network exceeds 70-80 nodes.
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