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Abstract -
Many current online services rely on the interaction be-

tween different components that form a distributed system.
Analyzing distributed systems is important in performance
analysis (e.g. critical path analysis), debugging, and testing
new features [1, 2]. However, the analysis of these systems can
be difficult due to limited knowledge of how components work
and the variety of services and applications that are usually
instrumented. The Mystery Machine , introduced by Chow et
al. in 2014, has a “big data” approach, using logged events
across many traces to generate and refine a causal model [1].
We introduce Scooby Systems, our extension of The Mystery
Machine’s algorithm. We introduce thresholds to increase
the tolerance to violations in the formation of causal rela-
tionships. In the future, we hope to improve Scooby Systems’s
scalability with a Hadoop MapReduce implementation.
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1 Introduction
1.1 Problem

Distributed systems are essential to how the modern
world operates. However, the maintenance of distributed
systems can be riddled with obstacles. Specifically, the
structure of large distributed systems may be difficult to
understand due to black box components and numerous
distinct services or applications interacting with one an-
other. Distilling causal relationships between components
of the system from trace data is important for the compari-
son of different deployments of these systems, the identifi-
cation of latency or structural anomalies, or the elucidation
of request paths to facilitate the debugging, optimization,
and modification of the system.
While numerous software exist for tracing distributed

systems (detailed in Section 1.2), many require extensive
instrumentation of the system to operate, and many do
not generate a comprehensive causal model of the sys-
tem. However, The Mystery Machine, introduced in 2014,
requires less instrumentation and infers the system’s struc-

ture based on trace data from the system’s logs [1].
Nevertheless, The Mystery Machine, while possibly

more flexible, also bears a host of limitations. For in-
stance, The Mystery Machine’s algorithm in particular is
intolerant to inaccuracies in inputted logs; a single error in
the provided data can result in an erroneous output model.
This rigidity means that issues in timestamps caused by
clock skew or missing logs can result in an erroneous out-
put.
We wished to replicate and then expand upon The Mys-

tery Machine’s “big data” approach to allow for a user-
controlled probability threshold for dependencies to pro-
vide a tolerance to timestamp errors caused in traces by
clock skew or anomalies.

1.2 Background

There are several methods that software programs cur-
rently use for end-to-end tracing [3].
As examples, we will discuss Dapper’s and X-Trace’s

approaches to tracing. Dapper uses metadata propagation
(such as the propagation of span parent IDs) to capture
caller-callee relationships [2]. However, Dapper fails to
capture all causal relationships; we discuss this in detail in
Section 1.4. X-Trace can capture a more comprehensive
collection of causal relationships between system com-
ponents. However, it relies on developers’ application-
specific knowledge to instrument the system and specify
causal relationships between components [4].
However, these tracing frameworks that rely heavily

on application-specific knowledge can be difficult to im-
plement in heterogeneous systems whose components are
very diverse (e.g. many different programming languages
present). It can often be extremely time-consuming and
difficult to instrument components of such distributed sys-
tems, such as “client machines” [1].

The Mystery Machine , a “big data” approach introduced
in 2014, uses logged events across multiple requests to in-
fer a similar level of comprehensive causal relationships as
X-Trace, but with the benefit of requiring much less instru-
mentation of the system that relies on application-specific
knowledge. Nevertheless, even though The Mystery Ma-
chine uses logged events instead of the instrumentation of
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communication points, it still requires the logs to contain
a “minimal schema” of information, such as the request
ID [1]. In this paper, we focus on extending The Mystery
Machine’s algorithm, employed by Chow et al. [1].

1.3 The Ideal Trace
Definition 1.3.1 (Span). “The span is the primary building
block of a distributed trace, representing an individual unit
of work done in a distributed system. Each component
of the distributed system contributes a span — a named,
timed operation representing a piece of the workflow” [5]
whose boundaries are determined by system calls.

A

B

RPC1

C

RPC2

Figure 1. A trace represented with the span model

In Figure 1, span A calls spans B and C (these calls
are shown as RPCs, represented by zigzagging arrows
throughout the paper). Note that time increases from left
to right in all span-based trace figures in this paper.
The ordering of span B and span C in this trace could

be purely incidental — based on this information, we do
not know whether or not span C could occur before span B
in another request (see Section 1.4 for more detail). In an
ideal trace, we want to unambiguously display the causal
relationships present in the system.
Thus, in our version of the ideal trace, for various rea-

sons (some ofwhich are detailed in Section 4.1), we choose
to use events instead of spans. For instance, we denote the
start of span A as an event AS and the end of span A as
AE.

AS

BS

BE

CS

CE

AE

10 s 5 s

Figure 2. The Ideal Trace

What would the ideal trace of a system resemble? One
possibility is demonstrated in Figure 2. This is an ideal-
ized representation of the example of a simple distributed

system comprised of spans A, B, and C displayed in Figure
1. Immediately, we can discern several things from Figure
2.
To begin, every arrow in the figure represents a happens-

before relationship as defined in Definition 1.3.2.

Definition 1.3.2 (Happens-Before Relationship). If two
intervals of time (such as segments or spans) or points in
time (such as events) X and Y exist such that Y starts or
occurs strictly after X ends or occurs, we say that X and
Y have a happens-before relationship, denoted as X→Y
in text and as a straight, directed arrow from X to Y on a
diagram.

Additionally, we define concurrent relationships, which
are also displayed in the ideal trace.

Definition 1.3.3 (Concurrent Relationship). Two intervals
or points in time in a causal structure are said to be con-
current if both can occur independently of one another.

We see that the events of span B (BS and BE) have no
happens-before relationships to any of the events that de-
fine span C (CS and CE). Therefore, this trace tells us
immediately that spans B and C are concurrent. Concur-
rency, as seen in the figure, is represented by a “fan-out.”
Additionally, using the ideal trace, we can identify

the longest path (critical path) and observe that it passes
through span B. Therefore, to optimize this system, a de-
veloper would focus on optimizing the tasks that occur as
a part of span B.
This ideal trace, therefore, provides abundant informa-

tion about this simple system in an unambiguous manner.

1.4 Tracing: The Challenges

The Mystery Machine’s use of temporal data to form
causal relationships contrasts other tracing frameworks,
such as those in systems like Dapper and Jaeger. Causal
relationships in these frameworks can be indicated with
spans and caller-callee relationships (Note: we use RPC
calls as an example of calls between parent and child spans
in the remainder of the paper). For example, Jaeger can
display spans in a Gantt chart, which presents temporal
information and parent-child RPC relationships between
spans [6].
Consider, for instance, the simple structure demon-

strated in Figure 3.

A

B

RPC1

C

RPC2

Figure 3. RPC relationships between spans A, B,
and C
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In Figure 3, RPCs are represented with zigzagging ar-
rows. For example, the call from A to B in RPC 1 shows
that span A is span B’s parent span. Similarly, the call
from A to C in RPC 2 shows that span A is also span C’s
parent span. While this model shows developers caller-
callee relationships, it does not capture all of the system
dependencies.
Using the temporal data of this single trace in Figure 3,

we can observe that span C occurs after span B. However,
we have no way of knowing if this is due to span C being
dependent on span B or if the two child spans of span
A can execute concurrently. In other words, given just
this trace information, one cannot infer whether or not the
information from RPC 1 must return to span A before the
execution of RPC 2. For instance, if span B returns a
value to span A that is then manipulated and passed as a
parameter to spanC, therewould be a dependency between
spans B and C; span C’s initiation would be stipulate span
B’s completion. Conversely, it is possible that span A was
calling multiple other children spans, resulting in span B
being scheduled before span C in this particular request
despite there being no requirement of span B completing
before span C — that is, in another request, span C could
be scheduled before span B without affecting the function
of the request.
The inability of the model in Figure 3 to convey the

precise network of dependencies results in an incomplete
image of the structure for developers that may not be famil-
iar with the particular service or application being traced.
Thus, the tracing frameworks that use such a model may
rely on individual programmers’ knowledge of the various
applications in the distributed system to understand the de-
pendencies not shown by the data or to explicitly provide
that information to the tracing software.
Instead, The Mystery Machine’s approach— using tem-

poral data across many traces, instead of just a single trace
— mitigates the issue of relying on programmers’ knowl-
edge of their applications. This is explained further in
Subsection 2.2.

2 Mystery Machine
2.1 The Big Data Approach

The Mystery Machine approaches the ideal trace using a
unique “big data” method— displaying causality within a
distributed system using logged events over an enormous
sample of requests as opposed to using a single request.
To begin, we must understand how The Mystery Ma-

chine processes log data. The Mystery Machine constructs
its model from logged events in a request, which then form
the endpoints of temporal intervals denoted segments [1].

Definition 2.1.1 (Segments). Chow et al. define trace
segments as “the execution interval between two consec-

utive logged events for the same task,” where a task is a
“distributed thread of control.” [1].

We further discuss segments (as compared to spans and
events) in 4.1.
As segments are created from logged events, The Mys-

tery Machine operates primarily off of temporal data.
Therefore, the causal relationships in the models The Mys-
tery Machine forms are based solely on temporal informa-
tion.
To explore how this enhances The Mystery Machine’s

functionality in contrast to other tracing frameworks, we
depend on the concept of happens-before and concurrency
relationships (see Definitions 1.3.2 and 1.3.3).

2.2 The Mystery Machine’s Algorithm

Wediscuss the details The Mystery Machine’s algorithm
here.

The Mystery Machine begins by iterating through all
the traces formed by the logged events of requests. When
The Mystery Machine encounters a new segment, it forms
edges from that segment to all other segments already in
the model. That is, the algorithm assumes that all pos-
sible edges from and to a newly encountered node exist,
where nodes are segments and edges represent happens-
before relationships (although it also considers mutually
exclusive and pipeline relationships, these are unimpor-
tant to our goal and thus are not discussed here). The
Mystery Machine then refines this causal network as it it-
erates through the trace data in the following manner: if it
encounters a counterexample/violation to one of the hypo-
thetical edges, then the algorithm removes that edge from
the causal model. We call this final causal model the dis-
tributed system’s global causal model (GCM) as defined
in Definition 2.2.1.

Definition 2.2.1 (Global Causal Model (GCM)). The
global causal model (GCM) of a distributed system is de-
fined to be a model representative of causal relationships
in that system with a scope that cannot be captured solely
based on information from one trace.

We now consider a simple example of The Mystery
Machine’s algorithm. The example consists of the same
distributed system as in Figure 3 in which current tracing
frameworks were unable to determine the causal relation-
ship between B and C. Figure 4 and Figure 5 show traces
(that were constructed from logged events) of two different
requests in the system. For simplicity, we only consider the
relationships between segments B and C, and we ignore
all other segments. The Mystery Machine’s algorithm will
go through both of the traces. When updating the causal
model in Figure 7’s trace, the following occurs:

The Mystery Machine begins iterating through the
traces. As it encounters B and C in Trace 1 (Figure 4),

3



Massachusetts Institute of Technology Program for Research in Mathematics, Engineering and Science for High
School Students (MIT PRIMES 2021)

B C

Figure 4. Trace 1 — Segment-based representation
of a request

C B

Figure 5. Trace 2 — Segment-based representation
of a second request

creates both B→C and C→B in its GCM. Then, as The
Mystery Machine processes the trace, it sees B→C; this
contradicts C→B, so The Mystery Machine removes that
edge from the GCM. Then, in the second trace (Figure 5),
The Mystery Machine likewise removes B→C as it sees
C→B in the trace. Therefore, the GCM would declare B
and C concurrent.

2.3 Reformatted Traces

The Mystery Machine is able to transitively reduce their
traces and calculate the critical path, as well as other con-
duct other analysis, on a “per-request basis,” which we
refer to as reformatted traces (see Definition 2.3.1).

Definition 2.3.1. Given a trace, we define the reformatted
trace as a subset of the global causal model. The refor-
matted trace contains only events that are present in the
original trace (and the relationships between those events
that are in the global causal model).

Indeed, reformatted traceswould be essentially be “ideal
traces” as introduced in Section 1.3 — individual traces
represented with accurate causal relationships. For in-
stance, if two concurrent tasks incidentally appear se-
quential, the ideal trace would still show them as being
concurrent, rather than focusing on the temporal order.

2.4 Transitive Reduction in The Mystery Machine

We consider the GCM produced by The Mystery Ma-
chine’s algorithm. If all events are present in every trace,
then A→B and B→C would mean that those relationships
hold in all traces (since one counterexample is enough to
remove an edge). Hence, we can conclude that there are
no violations of A→C, and thus, that edge would be left
in the global causal model. However, the restriction that

all events are present in every trace is not always true. For
example, suppose we have two traces. In the first trace,
suppose the only relationship found is A→B. In the second
trace, suppose the only relationship found is B→C, then
the causal model would have edges A→B and B→C, but
it would not have any edge A→C (because events A and C
never even occur in the same trace). In fact, it could even
be the case that in a third trace, C→A. Therefore, applying
a transitive reduction to the global causal model does not
make sense as the transitivity of the→ relation does not
hold.
Nevertheless, The Mystery Machine is able to transi-

tively reduce their traces on a “per-request basis” [1],
which we refer to as reformatted traces (see Definition
2.3.1). This is due to the idea that if events A, B, and C
occur together in a specific trace, and A→B and B→C oc-
cur in the causal model, then A→B and B→C must occur
in the specific trace as well. Then, it follows that A→C in
the reformatted trace. Therefore, transitivity holds within
the reformatted trace, and transitive reduction is allowed.

3 Limitations of The Mystery Machine
The Mystery Machinemakes amultitude of assumptions

about its trace data to ensure that its algorithm is accurate.
These assumptions create several limitations in its design.

The Mystery Machine uses data fromÜberTrace , which
needs to account for clock skew in the timestamps [1]. This
requires having data about RPC communication.
Finally, we list one of the main assumptions on which

The Mystery Machine relies:
True causality is very hard to determine, but through

the temporal data, one can determine happens-before re-
lationships. The Mystery Machine assumes that the traces
have enough variation that the happens-before relation-
ships left in the final causal model are the only true causal
dependencies.

3.1 Repeated Event Names

The Mystery Machine states that “ÜberTrace requires
that each <event, task> tuple is unique, which implies that
there are no cycles that would cause a tuple to appear mul-
tiple times” [1]. Here, an event refers to a logged event
while a task is defined as where a task is a “distributed
thread of control” [1]. Thus, The Mystery Machine as-
sumes that events never repeat on the same task.
However, this is neither necessarily true nor generally a

safe assumption.
Let us consider two events that both have the same

name represented by X. For instance, we can consider an
authentication function that is called twice, the second time
being after a user enters a wrong password. This could
potentially result in events with identical names produced
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as the same authentication function is re-run, thus causing
us to get many unreasonable relationships. For example,
we could get X→X, which does not make practical sense.
We propose an idea to mitigate this issue in Section 5.2.

3.2 Excessive Rigidity

Another limitation of The Mystery Machine stems from
its excessive rigidity. As per its algorithm, even one
counterexample to a hypothetical edge among hundreds of
thousands of traces will result in that edge being entirely
removed from the GCM. Thus, The Mystery Machine is
inflexible to any errors in the input data — potential for
error from an anomalous trace are not accounted for, and
The Mystery Machine attempts to account for clock skew
assuming that RTT (round-trip time— the estimated times
for request and response times) is symmetric [1]. We hope
to address this rigidity by introducing the concept of a
threshold for every edge as detailed in Section 4.2.

4 Scooby Systems
Scooby Systems is our extension of The Mystery Ma-

chine’s “big data” approach to learning causality between
events in a distributed system. We discuss some of the
choices we made to account for our input data described in
Section 4.4 and to improve The Mystery Machine’s func-
tionality. This involved addressing some of the limitations
of The Mystery Machine detailed in Section 3 — in par-
ticular, The Mystery Machine’s rigidity.

4.1 Spans, Segments, and Events: Trace Structure
Interpretations

Before we discuss our algorithm and pertaining con-
cepts, we discuss our choice to represent Scooby Systems’s
GCM as an event-based model.

RPC

A

B

Figure 6. Causal relationship represented with spans
A and B

Figure 6 displays an RPC between span A and span B,
where span A initiates span B through an RPC. Spans are
defined in Definition 1.3.1 and are currently a widespread
method of displaying trace structure across tracing algo-
rithms [5].
Spans are effective in displaying caller-callee relation-

ships as users can infer these relationships at a glance to
understand the flow of information in a distributed system.

We can see in Figure 6 above that span A initiates an RPC
that is sent to span B. This means that the execution of
span B is dependent on that of span A; span B cannot
occur without span A to initiate it.
We now consider another method to represent trace data

— segments. Consider the following alternative interpre-
tation of the structure in Figure 7:

A1 A2

RPC

A3

B

A

Figure 7. Trace Segments

We see that span A above is divided into smaller inter-
vals where span A sends and receives the RPC to span B.
These smaller intervals are precisely what we refer to as
segments, as defined in Definition 2.1.1.
In the example above, we assume that RPC send-receive

instances are logged events. This is not always the case,
as is the case with our input data (see Section 4.4).
Figure 8 shows Figure 7’s trace structure would be rep-

resented with a segment-based causal model. We note the
following:

• Segment B and Segment A2 are dependent on Seg-
ment A1

• Segment B and Segment A2 are concurrent

• Segment A3 is dependent on Segment B and Segment
A2

Using these observations to make causal relationships
yields Figure 8.

A1

A2

A3

B

Figure 8. Trace Segments: Causal Representation

We see in Figure 8 that the concurrency between B and
A2 is clear as there is no happens-before relationship be-
tween the two. The fact that the segment model lends to
these causal relationships makes them preferable for de-
velopers. Spans do not have the same flexibility; they rely
on caller-callee relationships to convey a limited picture
of causality. Spans are better designed to portray duration
[7] and less suitable for causal models.
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A

B

RPC

A1 A2 A3

Figure 9. Span Failure

This is most clear when contrasting figures 8 and 9. In
the former, segments allow for a clear inference of a causal
temporal relationship by means of happens-before.
However, displaying causality with spans can be fun-

damentally impossible. For example, parts of span A are
concurrent with span B but other parts are not. A single
caller-callee relationship between the two spans cannot
capture these more nuanced relationships.
We now discuss events as a method of interpreting trace

structure. Consider Figure 7 with the event annotations E𝑖
superimposed with the trace segments.

A1 A2

RPC

A3

B

E1 E2

E3 E4

E5 E6

Figure 10. Events (denoted E𝑖) added to Figure 7

This, in a sense, is what algorithms such as The Mys-
tery Machine’s receive; these logged events are translated
as the ends of the aforementioned segments. However,
the events and the segments differ in displaying causal
relationships; we can see this with the example from Fig-
ure 11, which represents the happens-before relationships
translated from Figure 10.
We see from Figure 11 that the event-based represen-

tation is related to the segment model. If using the event
model in Figure 11, the user would would have to see that
E2 and E5 are start and end of A2 and they encompass
start and end of B, which are E3 and E4. Then, the user
would have to apply The Mystery Machine’s definition of
happens-before to A2 and B to conclude that the two are
concurrent.
We believe that this lengthier process — the identifica-

tion and comparison of two pairs of events — reaches the
same conclusion that the segment-based model in Figure 8
would give us in a single glance. Therefore, while events
are quite accurate in a depiction of causal structure, they
can also be cumbersome for a user to interpret.

E1

E2

E3

E4

E5

E6

Figure 11. Event-based Causal Representation

However, events have one other advantage that segments
lack; they are tolerant of missing data. Whereas the accu-
racy of the segment model requires logged events for when
RPCmessages are sent and received, the event model does
not. For instance, the event model could operate solely off
of span start and end events (as Scooby Systems does)
whereas the segment model would collapse.
This is precisely why we must resort to the event model.

In the trace data we used, the spans did not have logged
events (as detailed in Figure 4.4), thus preventing us from
splitting spans into segments. The Mystery Machine as-
sumes that the given data provides the necessary logged
events to construct an accurate output— it “cannot identify
causal relationships involving the unlogged segment” [1].
Therefore, our best model is the event-based interpretation
of trace structure.

4.2 User-Defined Threshold

We extend beyond The Mystery Machine by employ-
ing a threshold that increases the algorithm’s tolerance to
flawed data. Only edges that pass the condition provided
by threshold are displayed in the output model.
The threshold value is user-defined, allowing the user to

customize the functionality of the program as they desire.
For instance, if the user expects there to be no mistakes in
the provided data, they can choose the route ofThe Mystery
Machine and set a threshold of 100% for the number of
successes of an edge out of the total number of traces (see
Subsection 4.2 for specific definitions and more details).
The definition of threshold depends on the concept of an

edge’s successes, violations, and unknowns, so we define
those terms first.
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Definition 4.2.1 (Timestamp). The timestamp of an event
𝐴 is denoted by 𝑡𝐴. We assume that this timestamp is
given as a quantity of some arbitrary temporal unit, such
as nanoseconds or microseconds.
Definition 4.2.2 (Success (of an edge)). A success of an
edge 𝐴 → 𝐵 is a instance where events 𝐴 and 𝐵 both occur
in a trace and 𝑡𝐴 < 𝑡𝐵 in that trace. The number of traces
with successes of an edge 𝐴 → 𝐵 is denoted as 𝑠𝐴→𝐵.

Definition 4.2.3 (Violation (of an edge)). A counterex-
ample of an edge 𝐴 → 𝐵 is considered a violation for the
edge. Specifically, if 𝑡𝐴 ≥ 𝑡𝐵 in a trace, it is a violation of
𝐴 → 𝐵. The number of traces with violations of an edge
𝐴 → 𝐵 is denoted as 𝑣𝐴→𝐵.

Definition 4.2.4 (Unknowns (of an edge)). If in a trace,
at least one of 𝐴 or 𝐵 does not occur at all, we call this
an unknown of 𝐴 → 𝐵 and 𝐵 → 𝐴. The number of traces
with unknowns of an edge 𝐴 → 𝐵 is denoted by 𝑢𝐴→𝐵.
Note that these unknown relationships can occur when
some components of a distributed system are not used in
processing a certain request.

Definition 4.2.5 (Threshold Condition). The threshold
condition for an edge 𝐴 → 𝐵 is an inequality using the
variables 𝑠𝐴→𝐵, 𝑣𝐴→𝐵, and 𝑢𝐴→𝐵. The edge 𝐴 → 𝐵 is
only included in the global causal model if the threshold
condition is true for that edge.

There is not just one way to define a threshold. For
example, onemight want to look at the proportion of traces
in which the edge has a success out of the total number of
traces 𝑇 . So, we could have 𝑠𝐴→𝐵

𝑇
≥ 𝑐 for some threshold

frequency 𝑐. Alternatively, we could count unknowns as
well, so we would have 𝑠𝐴→𝐵+𝑢𝐴→𝐵

𝑇
≥ 𝑐.

Note that considering 𝑠𝐴→𝐵+𝑢𝐴→𝐵

𝑇
≥ 𝑐 is the same as

𝑣𝐴→𝐵

𝑇
≤ 1 − 𝑐.

If we consider The Mystery Machine , it defines an edge
𝐴 → 𝐵 to be valid only if 𝑣𝐴→𝐵

𝑇
≤ 0,which is equivalent to

saying 𝑠𝐴→𝐵+𝑢𝐴→𝐵

𝑇
≥ 1. There are also other options, such

as looking at the ratio between successes and violations.
For a given user, they could prefer one definition of the
threshold based on certain properties of their system. For
example, if a certain system is being updated and hasmany
new events occurring, one might want to use the threshold
where 𝑠𝐴→𝐵 and 𝑢𝐴→𝐵 are grouped together so that causal
model does not assume events from new features were not
originally dependent on the events previously present in
the model. Thus, due to the variety of choices for defining
a threshold, we let the user choose their threshold.

4.3 Subtractive and Additive Models
Definition 4.3.1 (Subtractive Model). We call GCM-
producing algorithms for constructing causal models sub-
tractive if they track the occurrences of violations or coun-
terexamples of edges to determine if each edge passes the
threshold and updates the causal model accordingly.

The Mystery Machine employs a subtractive algorithm
since makes all changes to its GCM based on violations.

However, since The Mystery Machine has zero tolerance
for violations, it can remove edges as it iterates through
the trace data, instead of updating the causal model after
iteration.
Definition 4.3.2 (Additive Model). On the other hand, we
say GCM-producing algorithms are additive if they track
the occurrences of successes of edges to determine if each
edge passes the threshold and updates the causal model
accordingly.

Considering each relationship between two events (e.g.
𝐴 → 𝐵), we have 3 possible relationships in each trace:
successes, violations, and unknowns.
Now, let us consider the additive model — the GCM-

producing data structure will have an element that stores
𝑠𝐴→𝐵. It will also have an element that stores 𝑠𝐵→𝐴.

So, we already have 𝑠𝐴→𝐵.

Now, consider 𝑣𝐴→𝐵.Aviolation can only happenwhen
𝐵 → 𝐴 or 𝑡𝐴 = 𝑡𝐵. So, we would need to count the cases
when 𝑡𝐴 = 𝑡𝐵.We call such cases simultaneous as defined
in Definition 4.3.3.
Definition 4.3.3 (Simultaneous (of events)). We say that
two events A and B are simultaneous if 𝑡𝐴 = 𝑡𝐵.

Let us denote that with a variable 𝑞 that represents the
number of traces in which 𝑡𝐴 is equal to 𝑡𝐵. Thus,

𝑣𝐴→𝐵 = 𝑠𝐵→𝐴 + 𝑞.

Finally, we compute 𝑢𝐴→𝐵. If we let the total number of
traces be 𝑇 ,

𝑢𝐴→𝐵 = 𝑇 − 𝑠𝐴→𝐵 − 𝑣𝐴→𝐵 = 𝑇 − 𝑠𝐴→𝐵 − 𝑠𝐵→𝐴 − 𝑞.

If we choose to implement the subtractive model, it
will essentially be counting the number of violations of
each edge. So, in the GCM-producing data structure, we
will have an element for 𝑣𝐴→𝐵 and 𝑣𝐵→𝐴. We already
have 𝑣𝐴→𝐵. Next, we compute 𝑠𝐴→𝐵. Note that 𝑣𝐵→𝐴

means 𝑡𝐵 ≤ 𝑡𝐴. So, if 𝑞 counts the number of traces where
𝑡𝐴 = 𝑡𝐵,

𝑠𝐴→𝐵 = 𝑣𝐵→𝐴 − 𝑞.

Finally, given the total number of traces is 𝑇 ,

𝑢𝐴→𝐵 = 𝑇 − 𝑠𝐴→𝐵 − 𝑣𝐴→𝐵 = 𝑇 − 𝑣𝐵→𝐴 − 𝑞 − 𝑣𝐴→𝐵.

So, it makes sense that The Mystery Machine uses the
subtractive model, since their threshold depends solely on
the number of violations (If there is even one violation,
Mystery Machine removes the edge). If we refer to our
analysis of the subtractive model, we can see that 𝑣𝐴→𝐵

can be calculated directly, without needing to store 𝑞 as
well.
Given that we want to allow the user-defined formulae

for thresholds, we want our causal model to be able to
calculate 𝑠𝐴→𝐵, 𝑣𝐴→𝐵, and 𝑢𝐴→𝐵.
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Thus, we observe from our analysis that the additive
model and the subtractive model are equivalent in terms
of the information they provide us (assuming both models
also keep track of cases when 𝑡𝐴 = 𝑡𝐵.)
There is one other option thatwe have considered, which

is counting both successes and violations for each potential
happens-before edge. Then, after iterating through all
traces, we have 𝑠𝐴→𝐵 and 𝑣𝐴→𝐵. Then, we could just
calculate 𝑢𝐴→𝐵 by doing 𝑇 − 𝑠𝐴→𝐵 − 𝑣𝐴→𝐵. While this
method works, we end up counting times when 𝑡𝐴 < 𝑡𝐵
under both 𝑠𝐴→𝐵 and 𝑣𝐵→𝐴, which may lead to larger
numbers in the GCM-producing data structure.
Similarly, in the subtractive model, 𝑡𝐴 = 𝑡𝐵 is not only

counted in 𝑞, but it is also counted in 𝑣𝐴→𝐵 and 𝑣𝐵→𝐴.

Although 𝑡𝐴 = 𝑡𝐵 is less likely to occur than 𝑡𝐴 < 𝑡𝐵 or
𝑡𝐴 > 𝑡𝐵, the additive model does not count cases twice.
In particular, 𝑡𝐴 < 𝑡𝐵 is counted only in 𝑠𝐴→𝐵. 𝑡𝐴 = 𝑡𝐵
is counted only in 𝑞. Finally, 𝑡𝐴 > 𝑡𝐵 is counted only in
𝑠𝐵→𝐴.

Thus, we chose to use the additive model in our imple-
mentation; an overview of our algorithm can be found in
Section 4.5.

4.4 Input Data

Unlike The Mystery Machine , we do not assume that
each component has preexisting logged events that contain
the information specified in the minimal schema. There-
fore, we use span-based traces and split the spans into the
start and end events to acquire our data.
The traces we used for our testing were in JavaScript

Object Notation (JSON). We used JSON parsers to facil-
itate the use of trace data in our program. An example
trace (adapted from a DeathStarBench [8] trace) is shown
in Figure 12. It contains one span.
From data such as this, we assign a nameID to the span

as defined in Definition 4.4.1.
Definition 4.4.1 (nameID (of a span)). We denote the
nameID of a span to be the string formed by concate-
nating the span’s operationName and serviceName. The
serviceName of a span is acquired by finding the servi-
ceName corresponding to the span’s processID. As an
example, the nameID of the span in Figure 12 would
be "UploadUserMentions_user-mention-service",
where the span’s operationName component is
"UploadUserMentions" and the serviceName is
"user-mention-service" (this corresponds to the
span’s processID of "p1" when referenced in the
"processes" dictionary in the JSON).

However, for the reasons discussed in 4.1, we must
use events instead of trace segments; furthermore, the
limitations of our data restrict us to only creating events
for the endpoints of spans. These endpoints’ timings are
determined using the span’s startTime and duration: the
“start” event occurs at the span’s startTime and the “end”
event occurs at the startTime added to the duration.

{
"traceID":"944c8368543f21fb",
"spans":[
{
"traceID":"944c8368543f21fb",
"spanID":"a33138a40cc983cb",
"flags":1,
"operationName":"

UploadUserMentions",
"references":[
{
"refType":"CHILD_OF",
"traceID":"944

c8368543f21fb",
"spanID":"21

bac5cf57ddd3f2"
}

],
"startTime":1557906198307022,
"duration":8309,
"tags":[
{
"key":"internal.span.

format",
"type":"string",
"value":"proto"

}
],
"logs":[

],
"processID":"p1",
"warnings":null

}
],
"processes": {
"p1": {

"serviceName":"user-mention-
service",
}

}
}
}

}

Figure 12. JSON Trace

We identify these events with eventIDs, which we define
in Definition 4.4.2.

Definition 4.4.2 (eventID (of an event)). We create the
eventIDs of the events of a span by appending to the span’s
nameID "_S" and "_E" for “start” and “end” events,
respectively. For instance, the event that denotes with start
of the span in Figure 12 would be assigned the eventID
"UploadUserMentions_user-mention-service_S"
while the event denoting the end of this
span would be similarly assigned the eventID
"UploadUserMentions_user-mention-service_E".

4.5 Our Algorithm

In the implementation of our program, we approach
the ideal trace through the use of The Mystery Machine’s
“big data” approach. Thus, we similarly iterate through
multiple traces of requests through a particular distributed
system to create a GCM.
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Our algorithm consists of three stages: Preprocessing,
Processing, and Postprocessing.
Preprocessing involves iterating through all traces to

record spans, construct their nameIDs (nameIDs are dis-
cussed in Section 4.4), and assign them a reference index;
a span with the 𝑘th new nameID constructed receives a
reference index of 𝑘 − 1. At the end of the Preprocessing
stage, a matrix 𝑆 and an array 𝑄 are constructed to record
successes and simultaneous relationships, respectively.
As each span’s nameID has an individual reference in-

dex and each span produces two events, there are a to-
tal of 2𝑛 events (and therefore eventIDs) produced by
the recorded nameIDs (once again, there are a total of
𝑛 nameIDs). 𝑆 is an adjacency matrix of all events and is
therefore a 2𝑛 × 2𝑛 matrix.
Likewise, 𝑄 is a one-dimensional array. Ordering does

not matter in this array, unlike in 𝑆; therefore, each pair of

events requires only one space. There are
(
2𝑛
2

)
= 𝑛(2𝑛−1)

such event pairs. Hence, 𝑄 is of length 𝑛(2𝑛 − 1).
The algorithm then enters the Processing stage. Once

again, it iterates through all the traces. Then, it takes each
pair of spans and compares the timestamps of the start
and end events of both spans; this process is outlined in
more detail in Section 4.6. Accordingly, the algorithm
increments 𝑆 and 𝑄 in the appropriate spots using the
reference indices. For instance, 𝑆[𝑖] [ 𝑗] is increased by 1
whenever a new success is found for 𝑒𝑖 → 𝑒 𝑗 , where 𝑒𝑖
and 𝑒 𝑗 are events.
Finally, in the Postprocessing stage, the algorithm ap-

plies the threshold condition to the information in 𝑆 and
𝑄 to construct the GCM from potential happens-before
relationships.

Algorithm 1: Processing Psuedocode
for each trace 𝜏 do

for each pair of spans (𝑋,𝑌 ) such that 𝑋 ,𝑌 ∈ 𝜏
do

if timestamp conditions then
Update 𝑆 and 𝑄 accordingly;

4.6 Pairwise Comparison of Spans

We considered a variety of algorithms to update the
causal model for each event pair. We decided to compare
the timestamps of pairs of spans, for a variety of reasons.
One of the main reasons we chose to do this was because
we wanted to preserve the information about the start and
end events of a span; if we treated the start-end event
pairs outside the context of their spans, we would have to
make more comparisons, thus making our algorithm less
efficient. For instance, consider the start and events of two

spans X and Y: XS, XE, YS, and YE. The following are
examples of scenarios that allow us to reduce the amount
of comparisons required: It is always true that

• XS→XE

• YS→YE

• If XE→YS, we know what all the other relationships
between events of the two spans must be.

Wemade similar optimizations to increase the efficiency
of our code. Refer to our code (Subsection 4.7) for more
information.

4.7 Code

We have stored our code that is made to run on
a single machine at the following GitHub repos-
itory: https://github.com/TanmayGupta23/
Threshold-Based-Inference-Of-Dependencies.
We are currently working on a Hadoop implementation of
our code. See Section 5.3 for the most up-to-date version
of our code.

4.8 Transitive Reduction in Our Implementation

We considered whether or not it would be appropriate
to transitively reduce the reformatted traces in our exten-
sion of The Mystery Machine with the threshold condi-
tions. Due to a phenomenon called transitivity failure,
we determined that we would not transitively reduce the
reformatted traces.
Definition 4.8.1 (Transitivity Failure). Transitivity failure
occurs when a relationship or edge is falsely transitively
implied to pass the threshold due to connected edges that
form the particular relationship or edge. For example, if
edges (𝑙, 𝑚) and (𝑚, 𝑛) pass the threshold but (𝑙, 𝑛) does
not.

For instance, consider a set of four traces with the fol-
lowing happens-before relationships between events A, B,
and C with a threshold condition of

𝑠

𝑇
≥ 0.75.

We display the relationships between events in these traces
in Figure 13.
We see in Figure 13 that the relationship A→ B occurs

with frequency 0.75 across the traces, A→ C occurs with
frequency 0.50, and B → C occurs with frequency 0.75.
Therefore, the relationships A→ B and B→ C both pass
the 75% threshold, but A→ C, which would transitively
implied by A→ B and B→ C, does not.
Note that in both Figure 14, each edge is labeled with

𝑠
𝑇
in this figure.
Note that Figure 14 also represents the threshold-based

GCM of the traces.
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Trace 1

A B C

Trace 2

A B C

Trace 3

B A C

Trace 4

C A B

Figure 13. Transitivity Failure Example

As we can see, the information contained in the refor-
matted Trace 1 that looks like Figure 14 has no indication
that A → C does not pass the threshold, as it appears
identical whether or not the reformatted trace was transi-
tively reduced. For instance, if 𝐴 → 𝐶 did indeed pass
the threshold and we transitively reduced the reformat-
ted Trace 1, it would once again only leave 𝐴 → 𝐵 and
𝐵 → 𝐶, just as in Figure 14.

4.9 Our Assumptions

We discuss and list here the assumptions for accurate
functioning of our algorithm.
We take information about each span to create a ref-

erence to it in the distributed system – its nameID. The
creation of a span’s nameID is detailed in Section 4.4. We
assume that this naming method is enough to make all
spans unique in a given trace (see Section 3.1 for an idea
to restrict the scope of this assumption).
Zipkin [9] andDapper [2] both use “multi-server” spans.

This means that the client and the server in an RPC could
share a spanID (they would be part of a single span) [6].
We assume that our traces use a “single-host” model, so
each span belongs to only one service. This type of model
is used by more modern tracing frameworks like Jaeger
[10].
We also assume that the timestamps inputted in the trace

data are global timestamps (i.e. they have been adjusted
for clock skew, which Jaeger does do).
Finally, we share the one of the main assumption on

which The Mystery Machine relies, as detailed in Section

Figure 14. Reformatted Trace 1 with First Order
Transitivity Failure

3: all the trace data has enough variation to accurately
determine the a representation of the true causal depen-
dencies in the GCM.

5 Future Work
5.1 Evaluation

We are currently in the process of evaluating our imple-
mentation of the algorithm. We will likely use test traces
from DeathStarBench, which is representative of common
distributed systems [8].

5.2 Addressing Repeated Events with Backtrace In-
formation

We hope to partially address the problem of repeated
events (discussed in 3.1) by implementing backtrace in-
formation for each span into our algorithm. The spans
in the traces can include the parent information, therefore
allowing us to determine the backtrace of each span. We
could then distinguish spans that currently share nameIDs
by their backtrace.
This potential method would mitigate the issue of re-

peated events at least somewhat by alleviating errors
caused by repeated events under different parent spans
by helping distinguish these spans as such.
However, what if the parent spans are distinct but have

the same operationName and serviceName (these are the
two primary components of our nameIDs as we currently
construct them — this process detailed in Section 4.4)?
Extending the backtrace farther back — that is, perhaps
including the span’s "grandparent" as part of its nameID
— could alleviate errors caused by this. This would be an
instance of extending the backtrace depth of a span.
Nevertheless, there is an accuracy trade-off. If we in-

crease the backtrace depth too much, then the same span
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will not be recognized if those backtraces differ even
slightly.

5.3 Hadoop Implementation

We are currently working on implementing our program
on Hadoop [11], a distributed computing framework, in
order to make our program scalable considering the large
amount of data that distributed tracing generally produces
for processing.
A Hadoop MapReduce framework consists of two pri-

mary components – a mapper (to perform tasks on input
files) and a reducer (to simplify/process the outputs of the
mappers).
In our implementation of Hadoop, a map task will be

created to process each trace file (each trace is in its own
file), and the traces will be stored in JSON format as
shown in Section 4.4. Each map task will take the events
in its trace and output all happens-before and simultane-
ity relationships it finds as per the timestamps. These
relationships will be outputted as <key,value> pairs for
the reducer. The key of each pair will be the relation-
ship as an ordered String (e.g. "A_S -> B_E" for a
happens-before relationship from event A_S to event B_E
in a trace) while the value will be the number of times the
relationship is observed in the trace. We use “->” to indi-
cate happens-before relationships and “=” for simultaneity
events. For simultaneity relationships, we also order the
events on either side of the equals sign alphabetically (this
is to prevent the map tasks from producing the two differ-
ing keys "A_S = B_E" and "B_E = A_S", which express
the same type of relationship).
The reducer will then sum up the values for each distinct

key to get the total number of times each relationship
occurred. From there, this data will post-processed to
create the GCM based on the threshold condition.
Our Hadoop code thus far can be found at https://

github.com/TanmayGupta23/ScoobySystems. Note
that we chose to implement our MapReduce program in
Java.
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