
The Effectiveness of Transformer Models for
Analyzing Low-Level Programs

Zifan (Carl) Guo
Mentor: William S. Moses

St. Mark’s School
Southborough, MA 01772
carlguo866@gmail.com

Abstract

Recently, transformer networks have enabled breakthroughs in the field of natural
language processing. This is partially due to the fact that transformer models
can be first trained on a large corpus of unlabeled data prior to fine-tuning on a
downstream task. Unlike natural language, which is somewhat tolerant of minor
differences in word choices or ordering, the structured nature of programming
languages means that program meaning can be completely redefined or be invalid
if even one token is altered. In comparison to high-level languages, low-level lan-
guages are less expressive and more repetitive with more details from the computer
microarchitecture. Whereas recent literature has examined how to effectively use
transformer models on high-level programming semantics, this project explores
the effectiveness of applying transformer models on low-level representations of
programs that can shed light on better optimizing compilers. In this paper, we
show that transformer models can translate C to LLVM-IR with high accuracy,
by training on a parallel corpus of functions extract from 1 million compilable,
open-sourced C programs (AnghaBench) and its corresponding LLVM-IR after
compiling with Clang. We also present another case study that analyzes x86_64
basic blocks for estimating their throughput. We discuss various changes in data
selection, program representation, network architecture, and other modifications
that influence the effectiveness of transformer models on low-level programs.

1 Introduction and Related Work

Historically, programmers could rely on the continuous performance improvements stemming from
Moore’s Law as a way to forgo performance engineering. However, as we enter the post-Moore’s Law
era [9], the development of free performance optimizations from general hardware alone is reaching
a plateau, and programmers must turn elsewhere for performance, such as the use of a compiler to
automatically optimize code. Merouani et al. [23] pointed out that an optimized implementation of
a deep learning neural network, such as XLNet [38], is 1.8× faster than the conventional PyTorch
implemented counterpart. Such a speed boost in deep learning model training can greatly reduce the
number of resources devoted to running the program and, thus, reduce cost, whether it is for scientific
research or for commercial uses.

Consider the code snippet in Figure 1 that normalizes a vector. The loop invariant code motion
(LICM) [24] optimization pass can reduce its computation time from Θ(n2) to Θ(n) by moving the
map function out of the loop. Selecting the right optimization pass can significantly improve the
program’s performance.

This need for optimization and for less time-consuming, better-performing compilers is especially
true with complex, large programs. The larger the program, the lower the possibility that computer

Preprint. Under review.

PRIMES Final Research Paper
January18, 2022

__attributes__((const))
double mag(int n, const double *A){

double sum = 0;
for(int i = 0; i < n; i++){

sum += A[i] * A[i]
}

}
void norm(int n, double *restrict out,

const double *restrict in){
for(int i = 0; i < n; i++){

out[i] = in[i] / mag(n, in);
}

}

void norm(int n, double *restrict out,
const double *restrict in){

double precomputed = mag(n, in);
for(int i = 0; i < n; i++){

out[i] = in[i] / precomputed;
}

}

Figure 1: The left shows the original program to normalize a vector. The norm function would
normally compute in Θ(n2) time without any optimization because the map function computes in
Θ(n) time. However, a compiler with a loop invariant code motion (LICM) [24] would move the map
function outside of the loop and result in the code shown on the right that computes in Θ(n) time.

scientists could manually tune the program for better efficiency. Moreover, the optimization resulting
from manual tuning is specific to the target architecture and cannot provably optimize programs for all
targets. This untransferrable nature posts a barrier in generalizing performance from one to all target
architectures, which is essential when one wants to achieve the similarly optimized performance
on another hardware setup. This obstacle, in turn, fuels the development of automatic compiler
optimization that utilizes machine learning.

While this field of study grows at a fast pace, most of the existing literature relies on the structured
nature of low-level programs within compilers and trains machine learning models based on extracted,
structural information and usually does so in a supervised manner. We, however, attempt to tackle
the compiler optimization problem by leveraging recent breakthroughs in unsupervised machine
learning, namely transformer models. We treat low-level languages, specifically LLVM intermediate
representation (IR) and x86_64 assembly, syntactic token by token, as if they are natural languages,
such as English or Portuguese, or high-level programming language, such as C or Java, on which the
transformer models have found recent success. In one case study, we focus on the translation between
C and LLVM-IR. We built pre-trained models using the Masked Language Modelling objective [8]
and fine-tuned it on parallel corpora of C to unoptimized LLVM-IR datasets, receiving proofs that
the transformer model can successfully translate C functions into LLVM-IR. We find similar results
when we try to translate C to LLVM-IR optimized with -O1 flag. Such success attempts reflect the
ability of transformer models to understand the inner workings of LLVM-IR language syntax, despite
its repetitiveness, and sheds light on the future possibility of applying transformer architecture to
provide better optimization than standard optimization flags. Our work shows that the selection of
the right C compilation dataset is the key to transformers’ performance, and reducing the repetition
within unoptimized LLVM-IR programs and presenting data in prefix notation can help the model
to perform better in translation. In another case study, we attempt to renovate Mendis et al. [22] ’s
hierarchical LSTM model that estimates throughput of x86_64 basic blocks with transformer and
yields results that match state of the art.

1.1 Compilers

Compilers translate source code in a high-level programming language like C or C++ to lower-level
languages. High-level languages are portable, readable, often with high abstraction and elements of
natural language like English. Lower-level languages, being closer to the hardware, lack readability
but are necessary for the hardware to present executable results. Moreover, they are highly optimized
as they are designed specifically for a particular type of targeted hardware. Compilers are critical to
enabling programmers to code at ease without worrying about the lower-level machine code’s lack of
readability and hardware specificity. It connects software to its target software.

Compilers, such as LLVM [20], first produce an intermediate representation (IR) of the source code
before transforming it to lower-level executables to achieve the best of both worlds. It can withhold
complete source code information and is independent of both the source languages and targeted hard-
ware. The intermediate representation allows for more portability in generating better optimization,

2

which is usually implemented with a sequence of different optimizing code transformations that result
in semantically equivalent IRs that run faster.

1.2 Compiler Optimization

The problem of compiler optimization has existed in the field of computer science for decades.
Although a myriad of problems exists in the process of optimization, Ashouri et al. [2] identified two
main issues for better optimization: optimization selection and phase-ordering. The former focuses
on what content of optimization to adopt. The latter surrounds the order of applying the chosen
optimizations. The latter exists because sometimes a particular optimization pass A would transform
the code in a way that might "hinders the effect of some optimizations that otherwise could have been
performed by the following pass B"[2]. On the other hand, having a particular transformation before
another might lead to better performance of the latter.

Existing compilers contain numerous preconstructed code transformation passes; for example, Clang,
the LLVM frontend for C and C++, has more than 150 transformations, such as the loop invariant code
motion (LICM) mentioned earlier, loop tiling, and inlining. The sheer number of code transformation
passes also makes the task of constructing heuristics difficult. The problem of optimization lies in
choosing a sequence of right code transformations from the repertoire in the right order. Many of such
code optimizations are dependent on the programming language or architecture, and aggressively
applying these code transformations might result in worse performance than unoptimized ones [2].
Therefore, it is crucial to select the right sequence and, hence, the need to apply machine learning.
Merouani et al. [23] concluded that the state-of-the-art compilers had shown success in solving the
first problem, but work needs to be done to tackle the second problem successfully.

Many of the existing compilers provide standardly named optimization flags, such as -O1, -O2, -O3, or
-Os, that are arbitrarily handpicked by compiler designers to apply a particular set of transformations
in a particular order. They offer a set of simple choices for the developers that trade-off compilation
time with run time, while a higher level is generic more optimized for most programs. It is up to
users themselves to determine which flag would result in a more optimized compilation for their
particular programs. Even though they might provide sufficient functionality for generic users, they
are clearly not the best in terms of targeted optimization for their programs. Numerous attempts have
been made to generate more specified, better-performing code transformations outside of the scope
of preconstructed ones, but this project would only work with the existing ones and aim to learn from
them to achieve a result that performs better than the standard ones.

1.3 Compiler Optimization with Machine Learning

There have been several attempts of compilation optimization using machine learning to tackle each
of the two essential problems mentioned above. Ashouri et al. [2] split the related work on compiler
optimization with machine learning based on how the model characterizes the programs. Some
previous attempts select specific static features of the source code or in the compilation process
as proxies for the whole programs when training. Some select source-code features, such as the
name of the current function, the values of compiler parameters, or the pass ordering in the current
run of the compiler, using tools like[11]’s Milepost GCC. The benefit of static feature extraction is
that collecting such features doesn’t require the code to be executed, which makes the process less
resource-intensive and accessible.

Other existing attempts use a more dynamic approach to characterize code through performance
counters that provide information on how well the code runs. Cavazos et al. [5] built a machine
learning model to predict the set of code optimization sequences based on performance counters,
despite that such characterization is usually architecture-dependent. Traditionally, those optimization
models using performance counters performed a lot better than those using source-code features, but
one needs to run the program multiple times to collect such data.

To achieve a middle ground, some models adopt graph-based features. Park et al. [26] built a novel
model for speedup prediction based on the graph-based characterization of the intermediate through
control flow graphs (CFG). Doing so maintains a high level of expressiveness as performance counter
features but remains "static" like the source-code features. Tools like LLVM’s Opt exist to easily
extract control flow graphs from a function or a program [2]. Such characterization can still be
limited, as they only select parts of a program to feed into the machine learning model for training.

3

One of the prominent works on code optimization prediction is COBAYN, a Bayesian Network
model built by Ashouri et al. [3], looking at static, dynamic, or hybrid features. However, the model
is supervised and usually only works to select optimization heuristics, which still lacks portability.
Unsupervised works mainly surround genetic algorithms such as Neuro Evolution of Augmenting
Topologies (NEAT). Kulkarni et al. used such an algorithm to address both the optimization selection
[34] and the phrase ordering problem [17]. Also, Huang et al. [15] developed the AutoPhase model
to optimize the phase ordering for HLS compilers with deep reinforcement learning.

With a relatively simpler objective of speedup prediction, Merouani et al. [23] applied deep learning to
build a cost model implemented in the Tirasimu compiler, trying to tackle phase-ordering. Merouani
et al. [23] addresses two problems in previous cost models: that it only applies to basic assembly
blocks instead of full programs and that it is heavily engineered. However, the model only assesses a
few code transformations revolving around loops, such as loop fusion or tiling. Mendis et al. [22]
developed an effective hierarchical LSTM model, Ithemal, for a similarly narrow question, estimation
of throughput given x86_64 assembly basic blocks.

Previous deep learning works that predict compiler sequences seem to be sparse, and most of the
attempts aimed to solve a part of the problems and have their limitations. Our projects aim to look at
the optimized intermediate representation on a language level, i.e., all of the available static features,
which serves as a more holistic approach than the current literature. Our work shows the potential
and serves as a first step towards utilizing transformer models to tackle both problems, optimization
selection and phase-ordering, at once.

1.4 Unsupervised Machine Translation

Meanwhile, the field of natural language processing (NLP) has gained heat in the past few years.
Recent developments in NLP include the transformer model by Vaswani et al. [35] that performed
exceptionally well in language translation tasks, such as translating sentences from Portuguese to
English. Specifically, the transformer model revolutionizes the traditional Recurrent Neural Network
(RNN) model that clusters layers of feedforward neural network with previous outputs as inputs for
the next layer. RNN is known to be slow to train and suffers from the vanishing gradients problem in
long data sequences. Attempts such as LSTM [14] try to solve vanishing gradients but still remain
slow because the process is still strictly sequential. transformer model yields better results and
updates on these networks by training sequences in parallel through the concept of attention that
calculates the relevance of each word in a sentence to each other to itself, which, most importantly,
can be done while disregarding their distances in the input or output sequence.

Multiple attempts advanced state of the art for NLP tasks since the publication of the original
transformer paper, including the BERT model [8] for monolingual pretraining and later the Cross-
lingual Language Pretraining Model (XLM) [18]. BERT establishes Masked Language Modeling
(MLM) as an effective pre-train objective. XLM upgrades the BERT model to better perform
translation between multiple languages with training objectives like Back-Translation, first established
by Lample et al. [19]. It also adds the Byte-Pair Encoding (BPE) [33] to increase the shared vocabulary
between languages that BERT lacks. The input data can only bring a fixed vocabulary, but translation
should be an open-vocabulary problem in real life. BPE splits words into sub-words so the program
can better deal with these potential rare and unknown words that do not previously exist in the
vocabulary, bettering the performance of BERT on cross-lingual translation [19].

1.5 Unsupervised Machine Translation on Code

While transformer models show consistent, positive results regarding natural languages, researchers
also applied transformer models to translate between programming languages in the recent two
years. Kanade et al. [16] developed a BERT model to obtain contextual embedding of Python source
code, training with five classification tasks. Feng et al. [10] presented CodeBERT, a pre-trained
model aiming to capture the semantic similarity between natural and programming languages. They
showed that pretraining could improve the performance of downstream tasks like code searches and
documentation generation. The most prominent and relevant work is Roziere et al. [30] ’s TransCoder,
an unsupervised model that translates C++, Java, and Python 3 to each other based on open-sourced
GitHub monolingual source code data accessed through Google BigQuery1.

1https://console.cloud.google.com/marketplace/details/github/github-repos

4

After TransCoder’s initial success, Roziere et al. [31] developed DOBF [31] and self training
TransCoder (TransCoder-St) [32]. The former is a novel deobfuscation pretraining objective (DOBF)
specifically designed for programming languages to replace the popular MLM objective. It asks to
recover obfuscated variable and function names, such as VAR1 or FUNC1, based on their actual
meaning. Since codes, unlike natural languages, are more structured, "if a given variable appears
multiple times in a function," the transformer model applied on programming languages might be
able to cheat when training for MLM because it can "simply copy its name from one of the other
occurrences" [31]. As a result, MLM does not work very well with repetitive codes, and DOBF
can provide a more informative pre-trained model because it is a more difficult task than MLM and
bypasses this common error that the machine learning model can perform during MLM. TransCoder-
ST [32] identifies the importance of parallel data corpus to unsupervised machine translation. Due
to the inherent difficulty of collecting parallel data between C++, Java, and Python, TransCoder
[30] settles for monolingual data and fine-tuning on the back-translation objective, which involves
training on noisy inputs. TransCoder-ST builds a parallel data corpus by taking an already trained
TransCoder to generate predicted translation and leveraging an automated unit-test tool to filter out
invalid prediction, then continues to fine-tune the model with this parallel data corpus. Both the
DOBF pretraining objective and the generated parallel data corpus for self-training improve upon the
state-of-the-art first established by TransCoder.

Since the development of well-designed benchmarks on machine learning for programming languages,
such as CodeXGLUE [21], many more attempts exist to apply Transformers to perform various
downstream tasks that analyze code and sometimes involve natural language to programming language
interactions, including but not limited to code completion, code translation, code generation, and code
summarization. Phan et al. [27] developed CoTexT to apply the popular T5 model, or Text-to-Text
Transfer Transformer, [29] on code, allowing the model to perform multiple downstream tasks with
one model. Ahmed and Devanbu [1] highlighted that different implementations of the same code in
multiple programming languages can particularly preserve identifiers naming patterns well, which
can serve as an anchor point for training and amplifying performance. GitHub Copilot2, powered by
OpenAI Codex, can provide accurate suggestions to complete lines or whole functions based on the
documentation comment and other contexts.

2 Model

To translate C to unoptimized LLVM-IR, we follow the model structure and code implementation
established in TransCoder [30]: a sequence-to-sequence (seq2seq) transformer model with attention
that consists of an encoder and decoder 3. The TransCoder model follows the three principles first set
out by XLM [18] for cross-lingual natural language translation: initialization, language modeling,
and back-translation. We follow the first two steps accordingly but adapt the Machine Translation
objective rather than back translation, pretraining with the MLM objective on all the C and LLVM
data and training with denoising auto-encoding and back-translation objectives only on the standalone,
static function.

2.1 Preprocessing

Then, to process into the ML pipeline, we use separate tokenizers for C and LLVM-IR similar to
Roziere et al. [30] because different languages use keywords for drastically different meanings. For
example, ";" indicates the end of one line in C but indicates the start of a comment in LLVM-IR.
Facebook researchers originally implemented the C tokenizer using a Python binding of Clang,
but later switched to Tree-sitter4 in their newly updated CodeGen GitHub repository5. The two
tokenizers function slightly differently, but both accomplish the desired task properly; for example,
for the hashtag function definition #define, Clang would tokenize it into two tokens # and define
respectively, while Tree-sitter keeps it as one token. We chose to use the Clang C tokenizer because
of its internal logic’s similarity to the LLVM-IR tokenizer that we implemented, which utilize similar

2https://copilot.github.com/
3https://github.com/facebookresearch/TransCoder
4https://tree-sitter.github.io/tree-sitter/
5https://github.com/facebookresearch/CodeGen

5

libraries. We extended the LLVM library using PyBind11 6 to access the LLLexer as our LLVM
tokenizer. It provides the token types, and we can parse out the string representation of the tokens
correspondingly. We then learn BPE codes on these tokens concatenated together, using fastBPE7,
and split them into subword units.

2.2 Cross Programming Language Pretraining

Lample et al. [19] concluded the importance of pretraining in unsupervised machine translation by
mapping similar sequences with similar meanings together regardless of the languages. Roziere et al.
[30] identified the cross-lingual nature of the pretraining model comes from the number of common
tokens (anchor points), such as shared keywords like define, variable names, and digits. We believe
that the task of translating from C to LLVM inherently presents worse cross-lingual representation
than a translation between two high-level languages, such as C++ and Java. This difference is because
of the higher syntactical and structural difference between C and LLVM, similar to the logic that an
English-French model would have more "cross-linguality" than an English-Chinese model because
of the similar alphabet [30]. There should be enough anchor points to consider the C-LLVM model
as cross-lingual, but unexplored specifics still exist to form a conclusion with higher certainty.

For the specific pretraining objective, we use the masked language model (MLM) objective [8]
following Roziere et al. [30]. Namely, it takes in a text sequence at each iteration, masks out
some tokens, and asks the model to predict the missing tokens based on their context. While the
deobfuscation pretraining objective, DOBF [31], has been proven to be a more effective pretraining
model, we chose not to use DOBF. The original study only implemented DOBF on Java and Python,
not C++, because an open-sourced obfuscator for C++ does not exist to generate the obfuscated
data the DOBF pretraining requires. We did not have enough time or resources to implement one
ourselves at this point and chose not to use it for C programs. Moreover, since LLVM-IR does not
generate variables with meaning names but rather %0, %1, %2s, pretraining DOBF on LLVM-IR seems
impossible.

2.3 Denoising auto-encoding

While the encoder exactly matches the architecture of the pre-trained XLM model, the decoder needs
extra parameters on the source attentions, which are randomly initialized following Lample and
Conneau [18]. As the decoder has never trained to decode a sequence before, the model trains the
encoder and decoder with the Denoising Auto-Encoding (DAE) objective, which asks the model to
predict the sequence of tokens based on a corrupted version of it after adding noise established in
Lample et al. [19]. The noise is generated by randomly masking, removing, and shuffling tokens
in the input sequences. This step trains the encoder to be robust against noise so that it can better
perform the latter back-translation objective [30].

2.4 Machine Translation

With the pretraining MLM and denoising auto-encoding objectives, the model would be able to
generate translation based on the input, but it might be of low performance and be dependent on the
inherent and unchangeable "cross-linguality" between languages based on the number of common
anchor points [30]. TransCoder [30] and XLM [18] are trained on the back-translation objective to
mitigate the problem, which translates the sequence in the source language to the target language
and translates it back to the source language, on which the loss function is performed. However,
as TransCoder-ST [32] identifies, back-translation is a mediocre solution to the problem that they
lack parallel data and have to rely on monolingual data because back-translation is less direct than
machine translation and creates more noise along the way. If parallel data is available, one should
choose machine translation. In the case of translating from C to LLVM-IR, we can easily access such
parallel corpus as long as the C program is able to compile.

Machine Translation and Denoising Auto-Encoding train in parallel until they converge.

6https://github.com/pybind/pybind11
7https://github.com/glample/fastBPE

6

2.5 Preprocessing Modifications

We first clean up the C data before compiling to generate LLVM-IR with clang -E, which writes
out all the hashtag functions and library dependencies in C. We also made several attempts to clean
out unnecessary parts of the LLVM data that can facilitate better training while ensuring that it
would not tamper with the compilation results. This removed information includes target data layout,
target hardware architecture, comments, alignments, global attribute groups, and metadata. In some
statements, such as load, or getelementptr inbounds, the type of the data always appears twice,
once as itself and another as the pointer to it. In this case, we removed one of the two appearances
and made sure our detokenizer could restore it back.

We remove all comments as they are filtered out in the process of compilation and would not provide
meaningful information for translation.

At the same time, because we want to eventually compile the translated hypotheses but only train
on the level of functions instead of the whole file, some information is inevitably lost in the process
and cannot be recovered. While some we can restore back an unexpressive global variable definition
or function declaration to reach the bare minimum for the program to compile, the definition of any
struct is permanently lost and would hinder the program’s compilation. We can simply replace the
references of a non-recursive struct with their definitions without losing meaning. For a struct
like %struct.S5 = type { i16, i32, i24 }, we can replace all occurrences of %struct.S5
with { i16, i32, i24 }. While it adds complexity to the model than translating directly into
%struct.S5 because it needs to make the extra inference, it seems to be a worthwhile sacrifice to
make sure the machine learning predictions compile.

Furthermore, for each C representation of a string, LLVM-IR would automatically generate a global
string constant with names such as @.str.1 or @.str.2. The string information would be lost when
we only extract functions to train. We have tried to mitigate this problem by replacing unexpressive,
automatically generated string variable names with the exact content of the string.

For example, the string definition of the following:

@.str.1 = private unnamed_addr constant [8 x i8] c"\0Ahello\0A\00"

will be changed into a definition like this:

@".str.1:\0Ahello\0A\00" = private unnamed_addr constant [8 x i8] c"\0Ahello\0A\00"

However, as long as we know the length of the string, we could also fill in random character tokens
to make the programs compile, which seems to be a more effective solution because it gives the
model an easier task to learn. For other global constants, the call expressions themselves have enough
information to reconstruct at least a declaration, which is a bare minimum for the program to compile.

Moreover, the complex type variables in LLVM are difficult for the model to learn. For in-
stance, an array in LLVM-IR is defined like @ptr = [3 x i32] [i32 1, i32 2, i32 3],
which is a hard syntax for the machine to learn because it has to consider the scope of
the array and where the [] ends. In a more extreme example, a struct with the type
{ [4 x i8], i32, i8, { i8, i32 }, i64 } is even harder to comprehend. Griffith and Kalita
[12] showed that transformer models would do better in solving arithmetic problems when the arith-
metic expressions, as the data, are in prefix notation instead of the conventional infix notation. We
made similar attempts that remove structures of [] or {} and write out the types in prefix notation,
converting the above struct into STRUCT 5 ARR 3 4 x i8 i32 i8 STRUCT 2 i8 i32 i64. By
recording the length of the struct, the detokenizer can faithfully restore them back to evaluate the
model’s performance. Representing data in prefix notation is proven to be easier for the transformer
model to understand.

3 Experiment

3.1 Training Details

Following Roziere et al. [30] ’s TransCoder, we train our model with a transformer of 6 layers, 8
attention heads, with a single encoder and a single decoder for all programming languages. At

7

training time, we use batches of around 3500 tokens. We use the GELU [13] as an activation function.
We add in a 10% dropout rate and a 10% attention dropout rate. We optimize TransCoder with the
Adam optimizer and a learning rate of 10−4. We train them on an NVIDIA GeForce RTX 3090 GPU
or an A100 TENSOR CORE GPU. It is worth noting that we have fewer computing resources than
the researchers producing the work to which this paper is referencing. Such limitations can also make
sure that our work on compiler optimization can be realistic and applicable to the vast majority of
developers without robust GPUs.

3.2 Training Data

We have considered multiple data sources for our training data, including CSmith [37], Project
CodeNet [28], GitHub Google BigQuery 8, and AnghaBench [7].

CSmith by Yang et al. [37] is a randomized test-case generation tool for C programs, built initially to
discover unknown compiler bugs. Regarding the state-of-art when it was published in 2011, it could
generate random programs that are comparatively more expressive, containing complex code using
many C language features. We first attempted our model on CSmith but received poor results due to
its randomness, repetitiveness, and complexity, lacking proximity to humanly written code. It only
utilizes relatively simple data structures and operations, which might not represent all the C programs.
It only utilizes relatively simple data structures and operations, which might not represent all the C
programs. The functions are usually too long, and machine learning models work better with shorter
sequences.

Project CodeNet provides a set of benchmarks scrawled from two online judge websites, AIZU
Online Judge9 and AtCoder10. These websites contain a finite set of questions for which coding
enthusiasts could submit solutions, and these solutions span different languages. Project CodeNet’s
strength is an established set of parallel data spanning different languages, but unfortunately, we only
need the C files. As it turned out, the solutions people submit, especially for simpler questions, can
be highly similar and does not generalize well to the LLVM language as a whole. On the C level,
different syntax exists to implement the exact same function, such as the difference between writing a
for loop in one line and in multiple lines, or the difference between writing a while loop and a for
loop. However, such a visible difference on the C level disappears on the LLVM-IR level, as long
as the C codes attempt to achieve the same functionalities. Our model struggled when training on
CodeNet data.

Google BigQuery provides a public crawl to all available GitHub open-sourced repositories; such a
scrawl can generate 3 million C files alone. However, because we have next to no knowledge on the
libraries dependencies the C files need, only a limited amount of those files can be compiled with
natural Clang and used for our projects. We eventually decided not to use this dataset for training
due to the difficulty of training.

AnghaBench is a benchmark of more than 1 million C functions, with the required minimal C code
to compile them. Built by crawling C files on GitHub, the authors extracted individual functions
and applied type-inference to reconstruct the missing definitions required to compile them, such as
declarations of auxiliary functions, type definitions, etc. AnghaBench has, by far, the most amount
of usable data, which can help saturate the model. Having only one extracted function in each file
facilitates the model’s training, and our model found success on this benchmark dataset.

While we pre-train on all the source code available, we train with DAE and back-translation objection
on only the static functions in C and their corresponding LLVM-IR.

3.3 Evaluation

We evaluate our results on three metrics, the training accuracy generated by the loss function,
perfect reference matches, the industry convention BLEU [25] score. Reference match refers to the
percentage of translation that perfectly matches the ground truth, while the BLEU score is a widely
accepted evaluation metric for natural language translation, with 0 as completely different and 1 as
exactly the same.

8https://console.cloud.google.com/marketplace/details/github/github- repos
9https://onlinejudge.u-aizu.ac.jp/home

10https://atcoder.jp/

8

AnghaBench Dataset Prefix Prefix & Global -O1 Original
Testing Accuracy 98.69 99.29 97.87 99.03
Reference Match 22.62 37.82 38.73 13.33
BLEU 78.19 81.91 77.03 69.21

Table 1: Results of unsupervised machine translation on the AnghaBench test set. The first
column, labeled "Prefix", illustrates the training result after converting data representation to prefix
notations. The second column shows the result after performing prefix notation and converting global
variables and structs into their respective definitions. The third column shows the result of training
on LLVM-IR optimized with -O1 flag. The fourth shows the training result with no preprocessing
modifications to the original LLVM-IR.

Csmith CodeNet
Testing Accuracy 90.73 93.66
BLEU 43.39 51.01

Table 2: Results of unsupervised machine translation on the Csmith and CodeNet test set. The
training on both datasets adopts the best possible preprocessing modifications, but due to the nature
of the datasets, the training on AnghaBench significantly outperforms that on Csmith or CodeNet.

TransCoder has to rely on back-translation, evaluating a BLEU score between the original C code
and predicted C code after translating twice. However, back-translation might make BLEU score
uninformative, because the model can translate into some LLVM-IR gibberish but translate back
to proper C. Because generating parallel matching data for C and LLVM-IR isn’t as hard, the
direct machine translation approach used by our project makes the evaluation of BLEU score more
informative. Directly testing whether the programs can compile is another good metric, but the
numerous preprocessing modifications we employed made such a detokenization process difficult, an
area that is left for our future work.

3.4 Results

The current results are reported in the following tables. We report the results on our AnghaBench test
set, with various preprocessing modifications, in Table ??, and give an example of such unsupervised
translation from C to LLVM-IR tested on AnghaBench in Figure 2. We report the results of training
on Csmith and CodeNet data in Table 2. We observe that the transformer model performs significantly
better on the AnghaBench dataset than on Csmith and CodeNet, due to the dataset’s expansiveness
and humanly readable syntax. Applying prefix notation transformation, removing redundant language
syntax, and writing out global variable and struct definitions within the function also help the model
to perform better.

mysig_t mysignal (int sig , mysig_t act) {
return (signal (sig , act)) ;

}

define dso_local i32 @mysignal (i32 %0 , i32 %1) #0 {
%3 = alloca i32
%4 = alloca i32
store i32 %0 , i32 * %3
store i32 %1 , i32 * %4
%5 = load i32 , i32 * %3
%6 = load i32 , i32 * %4
%7 = call i32 @signal (i32 %5 , i32 %6)
ret i32 %7
}

Figure 2: Example of LLVM-IR prediction with the transformer model. The right is a verbatim
match to the excepted compiler output.

9

Spearman Corr. Pearson Corr. Validation Accuracy
(<25% margin of error)

Proj. layer Only 90.04 94.95 55.27
Proj. layer & Embedding 89.35 63.73 51.04
Proj. layerlabel2id 95.29 91.95 76.06
Proj. layer & Embeddinglabel2id 95.74 93.69 75.19
Replicated Ithemal 96.0 91.8 88.39

Table 3: Results of applying transformer model to estimate the throughput of x86_64 basic
blocks The transformer model yields results worse or matching the original Ithemal model. Among
the different ablations of transformer models, fine-tuning with projection layer and label2id dictionary
performs the best, with a validation accuracy of 76.06%, but the difference is almost indistinguishable
with the model that fine-tunes on both the projection layer and embedding and mapping throughputs
with label2id, with a validation accuracy of 75.10%.

mov rdx, qword ptr [rbx+0x50]
xor mov mov
ecx, ecx
esi, 0x01178629 rdi, rbp

110.0

Figure 3: The above figure is an example of the data points in the BHive dataset. The left illustrates
one x86_64 basic block, and the right shows its corresponding throughput as a numerical value.

4 Throughput Estimation of x86_64 Assembly Basic Block

In another separate case study, we have also attempted to renovate Mendis et al. [22] ’s Ithemal,
which utilizes a hierarchical LSTM model, with transformer models. Accurate throughput estimation
is an essential tool to inform the computer how to choose the proper optimization passes.

4.1 Setup

We have trained our transformer model on the BHive [6] benchmark dataset, with 320,000+ x86_64
basic blocks mapped to throughput when running on the Intel Haswell microarchitecture. An example
of the data can be found in Figure 3. We followed the preprocessing structure outlined in Ithemal,
adopting a DynamoRIO [4] tokenizer. DynamoRIO recovers hidden information in the Intel syntax;
for example, the tokenizer will recover mul ecx into mul eax ecx, edx eax. Unlike the LLVM-
IR tokenizer that recognizes brackets as separate tokens, DynamoRIO can remove unnecessary
syntaxes, such as brackets and memory displacements. Furthermore, unlike because assemblies do
not contain any English elements, the vocab for assemblies is small (less than 2000 tokens), so there
is no need to perform BPE on the assembly basic blocks.

4.2 Results

We pre-trained the model with Masked Language Modelling and fine-tuned it with MSE loss for
regression on the same dataset. We report the results in Table 3. After pretraining on all available, we
provide ablation studies between training only on the prediction layer or both the prediction layer
and the language embedding and between mapping to the throughput’s raw values or mapping to
a dictionary of labels (label2id) that can greatly shorten the range of possible values. We evaluate
our results on three metrics, Spearman correlation (rank correlation), Pearson correlation (linear
correlation), and percentage of accurate predictions within ± 25% of margin of error.

While statically, the transformer model performs worse or matching to the original Ithemal model
[22], it performs better in another unique way. The majority of the BHive [6] data points fall under
value between 20.0 and 1000.0, but the maximum can go up to 1,600,450, and the model frequently
treats them as outliers. While both Ithemal and transformer struggle with large values, we observe
that Ithemal can be more exact for the small data points but is really far off for these big outliers,
and transformer model seems to model the big data points better but be less exact for all data points.
Examples of such a difference is shown in Table 4.

10

(a) Proj. layer with lab2id

Predicted Actual
53.0 49.0
345.0 301.0

1779.0 1697.0
3287.5 3087.5

61.0 59.0
2481.25 2295.0

(b) Proj. layer & Embedding with
lab2id

Predicted Actual
56.0 49.0
277.0 301.0

1479.0 1697.0
3107.0 3087.5

61.0 59.0
2415.0 2295.0

(c) Reproduced Ithemal

Predicted Actual
33.02 33.00
99.13 98.00

309.76 304.00
139.45 1400.00
70.00 399.00

644.00 2295.00

Table 4: Examples of throughput prediction made by the transformer model and Ithemal.
The left table shows the examples of the transformer model fine-tuning only the projection layer,
with label2id dictionary. The middle table shows the examples of transformer fine-tuning on both
projection layer and embedding space, with label2id dictionary. The right table illustrates the results
of the reproduction of the original Ithemal model.

5 Discussion

This project serves as the first attempt of transformer models to be applied to low-level programming
languages and opens the literature for future work to use transformer models for automatic compiler
optimization tasks. While our model finds success training on the AnghaBench dataset, whether such
a dataset contains a certain bias is unclear. We tested our model on a section of the AnghaBench
dataset, so future work to evaluate the same model using other sources of C programs might shed
light on whether the C to LLVM-IR model we built can generalize to the entire LLVM-IR language.

For translations between high-level languages, transformer models can often find exact matches of
keywords on a token-to-token level and are syntactically similar to each other. However, C has a lot
more abstraction than LLVM-IR, and LLVM-IR often has to represent one line of C code in multiple
lines. The model can be overwhelmed by the quantity of rather unimportant lines to pinpoint the
informative lines. Especially when AnghaBench contains mostly short functions, which facilitates
the model’s training, future work should especially examine whether the machine learning model
can generate long, complicated functions with multiple branches. Attempts to directly apply long,
complicated functions through Csmith did not seem to work out well.

We did not need to worry about library dependencies in the AnghaBench dataset, but in programs
that do, such function definitions will show in LLVM-IR but not in C. It would add bias to library
dependencies over the body of the functions themselves.

Another area for possible future work is to evaluate the translation of C to LLVM-IR without the
use of BPE. While BPE can help to limit the vocab, the vocab of LLVM-IR is already limited, and
its only English-based components are in strings and function names. Similar to the DynamoRIO
tokenizer, a tokenizer with a fixed vocabulary might make more sense for LLVM-IR.

While the transformation of C to LLVM-IR can already be achieved with rule-based compilers, the
reverse, converting LLVM-IR to humanly readable C, lacks implementations. Julia Computing has
"resurrected" the LLVM C backend (llvm-cbe)11, it generates generate C++ API calls to recreate the
LLVM-IR basic blocks instead of recovering the control flow. Although our primitive explorations
remain unsuccessful, future work on the transformer models can shed light on bettering such a
reserved transformation.

We currently parse the language on a token level and use these static source-code features to
characterize the language. Meanwhile, Park et al. [26] has shown success in using a control flow
graph to represent the programs in their supervised machine learning model. Following a similar
logic, graph neural networks [36] are an interesting framework for compiler optimization that is
worth looking into.

11https://github.com/JuliaComputingOSS/llvm-cbe

11

6 Conclusion

In this paper, following successful efforts of applying transformer models on natural languages and
programming languages, we explore the effectiveness of transformer on low-level compiler programs,
specifically LLVM-IR and x86_64 basic blocks. Our study shows that such an unsupervised approach
to low-level programs holds water and can successfully translate C to LLVM-IR while matching the
state of the art for estimating basic blocks’ throughput. Selecting the proper dataset and modifying
the tokenization of the low-level languages can improve the performance of the model, but some
constraints to the performance still remain and need further exploration.

References
[1] Toufique Ahmed and Premkumar Devanbu. Multilingual training for software engineering.

arXiv preprint arXiv:2112.02043, 2021.

[2] Amir H. Ashouri, William Killian, John Cavazos, Gianluca Palermo, and Cristina Silvano. A
survey on compiler autotuning using machine learning. ACM Computing Surveys, 51(5):1–42,
Jan 2019. ISSN 1557-7341. doi: 10.1145/3197978. URL http://dx.doi.org/10.1145/
3197978.

[3] Amir Hossein Ashouri, Giovanni Mariani, Gianluca Palermo, Eunjung Park, John Cavazos, and
Cristina Silvano. Cobayn: Compiler autotuning framework using bayesian networks. ACM
Trans. Archit. Code Optim., 13(2), June 2016. ISSN 1544-3566. doi: 10.1145/2928270. URL
https://doi.org/10.1145/2928270.

[4] Derek Bruening, Qin Zhao, and Saman Amarasinghe. Transparent dynamic instrumentation. In
Proceedings of the 8th ACM SIGPLAN/SIGOPS conference on Virtual Execution Environments,
pages 133–144, 2012.

[5] John Cavazos, Grigori Fursin, Felix Agakov, Edwin Bonilla, Michael F.P. O’Boyle, and Olivier
Temam. Rapidly selecting good compiler optimizations using performance counters. In
International Symposium on Code Generation and Optimization (CGO’07), pages 185–197,
2007. doi: 10.1109/CGO.2007.32.

[6] Yishen Chen, Ajay Brahmakshatriya, Charith Mendis, Alex Renda, Eric Atkinson, Ondřej
Sỳkora, Saman Amarasinghe, and Michael Carbin. Bhive: A benchmark suite and measurement
framework for validating x86-64 basic block performance models. In 2019 IEEE International
Symposium on Workload Characterization (IISWC), pages 167–177. IEEE, 2019.

[7] Anderson Faustino da Silva, Bruno Conde Kind, José Wesley de Souza Magalhães, Jerôn-
imo Nunes Rocha, Breno Campos Ferreira Guimaraes, and Fernando Magno Quinão Pereira.
Anghabench: A suite with one million compilable c benchmarks for code-size reduction. In
2021 IEEE/ACM International Symposium on Code Generation and Optimization (CGO), pages
378–390. IEEE, 2021.

[8] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understanding, 2018.

[9] Hadi Esmaeilzadeh, Emily Blem, Renee St. Amant, Karthikeyan Sankaralingam, and Doug
Burger. Dark silicon and the end of multicore scaling. SIGARCH Comput. Archit. News, 39
(3):365–376, June 2011. ISSN 0163-5964. doi: 10.1145/2024723.2000108. URL https:
//doi.org/10.1145/2024723.2000108.

[10] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong, Linjun
Shou, Bing Qin, Ting Liu, Daxin Jiang, and Ming Zhou. Codebert: A pre-trained model for
programming and natural languages, 2020.

[11] Grigori Fursin, Yuriy Kashnikov, Abdul Wahid Memon, Zbigniew Chamski, Olivier Temam,
Mircea Namolaru, Elad Yom-Tov, Bilha Mendelson, Ayal Zaks, Eric Courtois, et al. Mile-
post gcc: Machine learning enabled self-tuning compiler. International journal of parallel
programming, 39(3):296–327, 2011.

[12] Kaden Griffith and Jugal Kalita. Solving arithmetic word problems automatically using trans-
former and unambiguous representations. In 2019 International Conference on Computational
Science and Computational Intelligence (CSCI), pages 526–532. IEEE, 2019.

12

http://dx.doi.org/10.1145/3197978
http://dx.doi.org/10.1145/3197978
https://doi.org/10.1145/2928270
https://doi.org/10.1145/2024723.2000108
https://doi.org/10.1145/2024723.2000108

[13] Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus), 2020.

[14] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9:
1735–80, 12 1997. doi: 10.1162/neco.1997.9.8.1735.

[15] Qijing Huang, Ameer Haj-Ali, William Moses, John Xiang, Ion Stoica, Krste Asanovic, and
John Wawrzynek. Autophase: Juggling hls phase orderings in random forests with deep
reinforcement learning, 2020.

[16] Aditya Kanade, Petros Maniatis, Gogul Balakrishnan, and Kensen Shi. Learning and evaluating
contextual embedding of source code. In Proceedings of the 37th International Conference on
Machine Learning, ICML 2020, 12-18 July 2020, Proceedings of Machine Learning Research.
PMLR, 2020.

[17] Sameer Kulkarni and John Cavazos. Mitigating the compiler optimization phase-ordering
problem using machine learning. SIGPLAN Not., 47(10):147–162, October 2012. ISSN
0362-1340. doi: 10.1145/2398857.2384628. URL https://doi.org/10.1145/2398857.
2384628.

[18] Guillaume Lample and Alexis Conneau. Cross-lingual language model pretraining, 2019.

[19] Guillaume Lample, Myle Ott, Alexis Conneau, Ludovic Denoyer, and Marc’Aurelio Ranzato.
Phrase-based & neural unsupervised machine translation. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Processing (EMNLP), 2018.

[20] Chris Lattner and Vikram Adve. Llvm: A compilation framework for lifelong program analysis
transformation. In Proceedings of the International Symposium on Code Generation and
Optimization: Feedback-Directed and Runtime Optimization, CGO ’04, page 75, USA, 2004.
IEEE Computer Society. ISBN 0769521029.

[21] Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy, Ambrosio Blanco, Colin
Clement, Dawn Drain, Daxin Jiang, Duyu Tang, et al. Codexglue: A machine learning
benchmark dataset for code understanding and generation. arXiv preprint arXiv:2102.04664,
2021.

[22] Charith Mendis, Alex Renda, Saman Amarasinghe, and Michael Carbin. Ithemal: Accurate,
portable and fast basic block throughput estimation using deep neural networks. In International
Conference on machine learning, pages 4505–4515. PMLR, 2019.

[23] Massinissa Merouani, Mohamed-Hicham Leghettas, Riyadh Baghdadi, Taha Arbaoui, and
Karima Benatchba. A Deep Learning Based Cost Model for Automatic Code Optimization in
Tiramisu. PhD thesis, 10 2020.

[24] Steven S. Muchnick. Advanced Compiler Design and Implementation. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 1998. ISBN 1558603204.

[25] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: A method for automatic
evaluation of machine translation. In Proceedings of the 40th Annual Meeting on Association for
Computational Linguistics, ACL ’02, page 311–318, USA, 2002. Association for Computational
Linguistics. doi: 10.3115/1073083.1073135. URL https://doi.org/10.3115/1073083.
1073135.

[26] Eunjung Park, John Cavazos, and Marco A. Alvarez. Using graph-based program characteriza-
tion for predictive modeling. In Proceedings of the Tenth International Symposium on Code
Generation and Optimization, CGO ’12, page 196–206, New York, NY, USA, 2012. Association
for Computing Machinery. ISBN 9781450312066. doi: 10.1145/2259016.2259042. URL
https://doi.org/10.1145/2259016.2259042.

[27] Long Phan, Hieu Tran, Daniel Le, Hieu Nguyen, James Anibal, Alec Peltekian, and Yanfang Ye.
Cotext: Multi-task learning with code-text transformer. arXiv preprint arXiv:2105.08645, 2021.

[28] Ruchir Puri, David S Kung, Geert Janssen, Wei Zhang, Giacomo Domeniconi, Vladmir Zolotov,
Julian Dolby, Jie Chen, Mihir Choudhury, Lindsey Decker, et al. Project codenet: A large-scale
ai for code dataset for learning a diversity of coding tasks. arXiv preprint arXiv:2105.12655,
2021.

[29] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified
text-to-text transformer. arXiv preprint arXiv:1910.10683, 2019.

13

https://doi.org/10.1145/2398857.2384628
https://doi.org/10.1145/2398857.2384628
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.1145/2259016.2259042

[30] Baptiste Roziere, Marie-Anne Lachaux, Lowik Chanussot, and Guillaume Lample. Unsu-
pervised translation of programming languages. Advances in Neural Information Processing
Systems, 33, 2020.

[31] Baptiste Roziere, Marie-Anne Lachaux, Marc Szafraniec, and Guillaume Lample. Dobf: A
deobfuscation pre-training objective for programming languages, 2021.

[32] Baptiste Roziere, Jie M Zhang, Francois Charton, Mark Harman, Gabriel Synnaeve, and
Guillaume Lample. Leveraging automated unit tests for unsupervised code translation. arXiv
preprint arXiv:2110.06773, 2021.

[33] Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of rare
words with subword units. In Proceedings of the 54th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pages 1715–1725, Berlin, Germany,
August 2016. Association for Computational Linguistics. doi: 10.18653/v1/P16-1162. URL
https://www.aclweb.org/anthology/P16-1162.

[34] Douglas Simon, John Cavazos, Christian Wimmer, and Sameer Kulkarni. Automatic construc-
tion of inlining heuristics using machine learning. In Proceedings of the 2013 IEEE/ACM
International Symposium on Code Generation and Optimization (CGO), CGO ’13, page 1–12,
USA, 2013. IEEE Computer Society. ISBN 9781467355247. doi: 10.1109/CGO.2013.6495004.
URL https://doi.org/10.1109/CGO.2013.6495004.

[35] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need, 2017.

[36] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu Philip. A
comprehensive survey on graph neural networks. IEEE transactions on neural networks and
learning systems, 32(1):4–24, 2020.

[37] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. Finding and understanding bugs in c
compilers. SIGPLAN Not., 46(6):283–294, June 2011. ISSN 0362-1340. doi: 10.1145/1993316.
1993532. URL https://doi.org/10.1145/1993316.1993532.

[38] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R Salakhutdinov, and
Quoc V Le. Xlnet: Generalized autoregressive pretraining for language understanding.
In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Gar-
nett, editors, Advances in Neural Information Processing Systems, volume 32. Curran
Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper/2019/file/
dc6a7e655d7e5840e66733e9ee67cc69-Paper.pdf.

14

https://www.aclweb.org/anthology/P16-1162
https://doi.org/10.1109/CGO.2013.6495004
https://doi.org/10.1145/1993316.1993532
https://proceedings.neurips.cc/paper/2019/file/dc6a7e655d7e5840e66733e9ee67cc69-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/dc6a7e655d7e5840e66733e9ee67cc69-Paper.pdf

	Introduction and Related Work
	Compilers
	Compiler Optimization
	Compiler Optimization with Machine Learning
	Unsupervised Machine Translation
	Unsupervised Machine Translation on Code

	Model
	Preprocessing
	Cross Programming Language Pretraining
	Denoising auto-encoding
	Machine Translation
	Preprocessing Modifications

	Experiment
	Training Details
	Training Data
	Evaluation
	Results

	Throughput Estimation of x86_64 Assembly Basic Block
	Setup
	Results

	Discussion
	Conclusion

