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Abstract. In this paper, we investigate and find the number of LU matrices in GLn(Fq)
that are similar to a regular semisimple s in GLn(Fq). Linking our results with M.-T.
Trinh’s study of certain “generalized Steinberg varieties,” we expand on his work. Trinh
has established certain numerical identities coming from a P = W conjecture of Cataldo-
Hausel-Migliorini between affine Springer fibers and these generalized Steinberg varieties.
The results of this paper provide numerical evidence of the relation between Springer fibers
and LU matrices. Using a linear-algebraic approach, we find a direct relation between LU
matrices and Trinh’s spaces. Consequently, we derive a closed formula for a point count of
LU matrices that is a constant factor from the point count of Trinh’s spaces. Furthermore,
we identify a common point count among these sets. From this we propose a conjecture
that generalizes our results.
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1. Introduction

1.1. Background. For a regular semisimple s in GLn(Fq), it has been conjectured by
Bezrukavnikov, Boixeda Alvarez, McBreen, and Yun [BBMY] that there exists some relationship
between affine Springer fibers and the set of elements from G = GLn(Fq) that are similar to
s and admit an LU composition, which we define as Xs. The theory of Springer fibers
is important for number theory and algebraic geometry, and more specifically for the
representation theory of affine Weyl Groups. Affine Springer fibers are related to Hitchin’s
integrable system from his work on the Yang–Mills theory [H]. In addition, B.-C. Ngo used
this relationship to prove the Langlands–Shelstad Fundamental lemma [N].
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Nonabelian Hodge theory relates the Hitchin moduli space and a certain Betti moduli
space [S]. The previously mentioned conjecture by Bezrukavnikov regarding LU matrices
and affine Springer fibers may be considered as a variant of Nonabelian Hodge theory.

This paper relates LU matrices to certain Betti spaces considered by Minh-Tam Trinh [T].
For GLn, Trinh establishes certain numerical identities coming from a P = W conjecture
of Cataldo-Hausel-Migliorini [CHM] between affine Springer fibers and these Betti spaces,
using results of Maulik–Yun [MY]. Therefore, this paper gives numerical evidence of the
relation between affine Springer fibers and LU matrices.

To understand Xs, it is important to consider its point count. In this paper, we find
the number of elements of Xs, and discuss possible implications. To do this, we need to
consider another set. First, let Sn and Brn be the symmetric group and the braid group,
respectively. Let si for 1 ≤ i ≤ n− 1 be the transpositions swapping i and i+ 1. Note that
they are the generators for Sn. Similarly, define σi as the positive twist swapping i and
i+ 1; they are generators for Brn. Finally, for any two flags h, f ∈ G/B, define the relation

h
si
—f to mean f−1h ∈ BsiB, where we interpret si as a permutation matrix in G. Now, we

can define the aforementioned set:

Definition 1.1. Suppose a braid β can be written as σi1σi2 · · ·σik . Define

Y (β) := {h0B, h1B, . . . , hkB ∈ G/B, g ∈ G | h0
si1
—h1

si2
— . . .

sik
—hk, gh0B = hkB}.

These spaces have been studied by Lusztig [L2] and Trinh [T].
Let π be the braid (σ1σ2 . . . σn−1)

n. This is known as the full twist. Most of this paper
is dedicated to the case when β = π.

1.2. Our Results. Here, we give a preview of our main results. Besides the set Xs, another
set of interest is Y (π)s, which is just the subset of Y (π) for when g is s. A large portion
of this paper is directed to this set and its derivatives. In order to relate it to Xs, we must
break down its definition, which turns out to be related to LU decomposition. We then find
the following:

Corollary 1.2. We have
|Y (π)s| = |Xs|.

This is also referred to as Corollary 3.23 in Section 3. It will be an important result for
later purposes. We then introduce the Grothendieck-Springer versions of Xs and Y (π):

Definition 1.3. Consider the maps B−B
id−→ G and G̃

p−→ G where p(g, hB) = g. Define

X̃ := B−B ×
G
G̃ = {(g, hB) ∈ G̃ | g ∈ BB−},

i.e. g has an LU decomposition.

Definition 1.4. Consider the map q from X̃ to T where (g, hB) is mapped to the diagonal

entries of h−1gh ∈ B. For t ∈ T , let X̃(t) be the preimage of t under q.

Definition 1.5. Then, we define

Ỹ (β) := {hB, h0B, h1B, . . . ,hkB ∈ G/B,

g ∈ G | (g, hB) ∈ G̃, h0
si1
—h1

si2
— · · ·

sik
—hk, gh0B = hkB}.

We then define Ỹ (β; t) for a diagonal matrix t as the subset of Ỹ (β) for which the main
diagonal of h−1gh is t.
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We now can obtain the Grothendieck-Springer version of our first theorem. Namely:

Theorem 1.6. For all diagonal matrices t, we have

|Ỹ (π; t)| = |G|
(q − 1)n

|X̃(t)|.

This is our first main result, also referred to as Theorem 3.1. We then reduce the
computation of |Xs| to computing certain bitraces using Deligne-Lusztig theory, resulting
in the following:

Theorem 1.7. For regular semisimples s, we have

|Xs| =
∑

λ∈Irr(Sn)

qc(1)+c(λ)(χλSn
(1))2.

This is also referred to as Theorem 6.1. It then implies the following:

Theorem 1.8. For regular semisimples s, we have

|Ỹ (π; s)| = |G|
(q − 1)n

∑
λ∈Irr(Sn)

qc(1)+c(λ)(χλSn
(1))2.

This is also referred to as Theorem 6.3. The expression on the right side appears in
Minh-Tam Trinh’s work in [T, Theorem 7]. In particular, he finds

|Ỹ (π; 1)| = |G|
(q − 1)n

∑
λ∈Irr(Sn)

qc(1)+c(λ)(χλSn
(1))2.

Note that the version of his theorem presented here uses our notation. This then implies
the following:

Corollary 1.9. For all regular semisimples s, we have

|Ỹ (π; 1)| = |Ỹ (π; s)|.

We then make an important conjecture:

Conjecture 1.10. We have |Ỹ (π; t)| constant in t.

This is also referred to as Conjecture 6.5, and it is powerful because it unites Theorem
1.8 and [T, Theorem 7] in Trinh’s paper, and further generalizes to all cases. It is what our
research will focus on in the future.

1.3. Contents. Section 2 contains all of the definitions necessary to understand Section
3. Subsection 2.1 involves the definition of several relevant subsets of G = GLn(Fq), as
well as defining one of the main subjects of this paper: Xs. We make a few remarks about
the relationships between certain sets that will be useful in later sections. Subsection 2.2
serves to define everything related to braids, in particular Y (β) and Ỹ (β). We also define
π, which is also known as the full twist, as in most cases, we will have β = π in this paper.
Finally, in Subsection 2.3, we introduce terminology used in the study of partitions. It is
only through these terms that we can write a formula for Xs, as we later see.

Section 3 presents useful results that directly relate the sizes of multiple sets. The first
theorem relates the sizes of X̃s and Ỹ (π; s), with a key lemma relating a sequence of flags

with LU matrices. We then relate Ỹ (π; s) to Y (π)s, the latter being more understood and
providing a bridge to the next section.
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Section 4 introduces multiple concepts that relate |Y (π)g| to a sum of irreducible characters
evaluated at g. Among these is the Iwahori-Hecke Algebra, whose characters’ evaluations are
well known. This leaves the irreducible characters for G. We propose that χλG(s) = χλSn

(1),
which we prove in the next section.

Section 5 sets out to prove the previously mentioned proposition. We introduce a formula
for χλG(s), and find its exact value by considering maximal tori fixed by the Frobenius
endomorphism.

Section 6 contains the final results. The first is a theorem that finds the point count
of Xs, which involve the partition formulas we previously mentioned. The second theorem
makes the observation that Y (π; s) = Y (π; 1) by matching results of this paper and [T,
Theorem 7]. Along with a computer program written for n = 3, this lends itself to an
interesting conjecture: Y (π; t) is the same for all t ∈ T .

2. Preliminary Definitions

2.1. Defining Xs. Let G = GLn(Fq) be the general linear group. Let B be the set of
upper triangular matrices and B− be the set of lower triangular matrices. Let N be the set
of strictly upper triangular matrices and N− the set of strictly lower triangular matrices.

A matrix admits an LU decomposition if it can be expressed as the product of a strictly
lower triangular matrix and an upper triangular matrix, and this representation is unique
if it exists. This is well known from Bruhat decomposition. The set of matrices that admit
an LU decomposition is B−B.

Definition 2.1. Let s be a diagonal matrix in G := GLn(Fq) with distinct eigenvalues in
Fq. Let Os be all matrices in the same conjugacy class as s. Then, we define

Xs = Os ∩B−B.

Example 2.2. For SL2(Fq), we first find the general form of an LU matrix:[
1 0
b 1

] [
c d
0 c−1

]
=

[
c d
bc bd+ c−1

]
,

where b, c, d ∈ Fq. We now need to make sure this matrix is similar to

s :=

[
e 0
0 e−1

]
,

where e 6= e−1 ∈ Fq are the eigenvalues of s. In other words, we want the characteristic
polynomials to be the same, so x2 − (c+ c−1 + bd)x+ 1 = x2 − (e+ e−1)x+ 1.

Let G̃ := {(g, hB) ∈ G × G/B | h−1gh ∈ B} be the Grothendieck-Springer Resolution.
Let T the set of diagonal matrices in GLn(Fq), which is the same as (F×q )n.

Definition 2.3. Consider the maps B−B
id−→ G and G̃

p−→ G where p(g, hB) = g. Define

X̃ := B−B ×
G
G̃ = {(g, hB) ∈ G̃ | g ∈ BB−},

i.e. g has an LU decomposition.

Definition 2.4. Consider the map q from X̃ to T where (g, hB) is mapped to the diagonal

entries of h−1gh ∈ B. For t ∈ T , let X̃(t) be the preimage of t under q.
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Remark 2.5. Recall that a regular semisimple is a diagonalizable matrix with distinct
eigenvalues. Note that when s is a regular semisimple, |X̃(s)| = |Xs|. This is because there

is a bijection between Os and preimage of s under the map G̃→ T .

2.2. Braids. Let Sn be the symmetric group, and let its generators be si for 1 ≤ i ≤ n− 1,
where si is the transposition swapping i and i+ 1. Let Brn be the braid group, and let its
generators be σi for 1 ≤ i ≤ n− 1, where σi is the positive twist swapping i and i+ 1.

For any two flags h, f ∈ G/B, define the relation h
si
—f to mean f−1h ∈ BsiB, interpreting

si as a permutation matrix in G.

Definition 2.6. The full twist is defined to be the braid π = (σ1σ2 . . . σn−1)
n.

Definition 2.7. Suppose a braid β can be written as σi1σi2 · · ·σik . Define

Y (β) := {h0B, h1B, . . . , hkB ∈ G/B, g ∈ G | h0
si1
—h1

si2
— . . .

sik
—hk, gh0B = hkB}.

Consider also the map τ to G where (h0B, . . . , hkB, g) is mapped to g. Let Y (β)g be the
preimage of g under τ .

Definition 2.8. Then, we define

Ỹ (β) := {hB, h0B, h1B, . . . ,hkB ∈ G/B,

g ∈ G | (g, hB) ∈ G̃, h0
si1
—h1

si2
— · · ·

sik
—hk, gh0B = hkB}.

Definition 2.9. Consider the map ρ from Ỹ (β) to T where (hB, h0B, . . . , hkB, g) is mapped

to the diagonal entries of h−1gh ∈ B. For t ∈ T , let Ỹ (β; t) be the preimage of t under ρ.

Definition 2.10. Consider also the map to G where (hB, h0B, . . . , hkB, g) is mapped to

g. Let Ỹ (β)g be the preimage of g under this map.

For most of this paper, we focus on the case β = π.

Remark 2.11. Note that
Ỹ (β) = Y (β)×

G
G̃

with the maps τ and p from Definition 2.7 and Definition 2.3, respectively. When g is similar
to a regular semisimple, we then have |Ỹ (β)g| = n!|Y (β)g| because there exist exactly n!
flags h for which h−1gh ∈ B, corresponding to the n! ways to permute the eigenvectors of
g.

2.3. Partitions. A partition of a positive integer n is a way to write it as a sum of unordered
positive integers. We can write a partition λ as (λ1, λ2, . . . , λk) where
λ1 ≥ λ2 ≥ · · · ≥ λk ≥ 1.

The content of a partition λ is c(λ) =
∑

i

∑λi
j=1(j − i).

Recall that the irreducible representations of Sn are in bijection with partitions of n. For
a partition λ, let χλSn

denote the corresponding irreducible character of Sn.
Represent λ as a Young Diagram. For (i, j) the square in row i, column j, we let h(i, j)

denote the number of squares (i′, j′) in the Young Diagram λ such that i′ ≥ i, j′ = j or
i′ = i, j′ ≥ j. Then, χλSn

(1) is the dimension of the corresponding irreducible representation,
which is equal to

χλSn
(1) =

n!∏
i,j h(i, j)

,

where the product is over all (i, j) in the Young diagram. Note that this is the Hook Length
Formula.
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3. Size Relations

In this section, we break down a complex part of the definition of Y (β) when β = π;
namely, the following:

h0
si1
—h1

si2
— · · ·

sik
—hk.

We begin by investigating what h
si
—h′ means exactly, by translating it into basic matrix

multiplication. From there, we obtain a product of n(n− 1) matrices, which end up having
a product that is reminiscent of properties of a matrix that admits an LU decomposition.
Indeed, it turns out that the product admits an UL decomposition. Seeing this, we look
further and find a bijection between the n(n− 1) matrices and NN−.

This then allows us to relate Ỹ (β; t) with X(t) for any t ∈ T . In particular, we will later
define Y (β)×̃B, and find multiple bijections using auxiliary sets to relate point counts. At
the end of the section, we find that

|Xs| = |Y (π)s|
in Corollary 3.23, which is relevant to later sections.

The following theorem is one of the main results in this section. It is more “general” in a
sense; while this paper focuses on regular semisimples for now, this theorem holds true for
all t ∈ T .

Theorem 3.1. For all t ∈ T , we have

|X̃(t)| · |G|
(q − 1)n

= |Y (π; t)|.

Definition 3.2. Define

Y (β)×̃B := {h0B, h1B, . . . ,hkB ∈ G/B, η ∈ h0B,

g ∈ G | h0
si1
—h1

si2
— · · ·

sik
—hk, gh0B = hkB}.

We introduce Y (β)×̃B to relate Ỹ (π; t) to X̃(t). The addition of η allows us to more

easily see a relationship between the relation h0
si1
—h1

si2
— · · ·

sik
—hk and LU matrices when β = π

by “allowing” right matrix multiplication.
We next define Y ′, and make an important proposition regarding Y (π)×̃B and Y ′.

Definition 3.3. Define

Y ′ := {u ∈ N, ū ∈ N−, h0B ∈ G/B, g ∈ G, η ∈ h0B | ηuūB = gηB}.

Proposition 3.4. There exists a bijection between Y (π)×̃B and Y ′. We call one specific
map Ω, which is outlined later.

With its definition, Y ′ looks closely related to LU matrices. We will show that this is
indeed the case with the following proposition.

Proposition 3.5. There exists a bijection between Y ′ and (N−×B)×G×N . In particular,
the map we want is

(u, ū, h0B, g, η)→ (ū, b := ū−1u−1η−1gηu, η, u).

Proof. The map we gave above is injective and well defined since

ηuūB = gηB ⇒ ū−1u−1η−1gη ∈ B ⇒ ū−1u−1η−1gηu ∈ B.
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It suffices to provide an injective map in the other direction. Note that given any (ū, b, η, u) ∈
(N− ×B)×G×N , we have

(u, ū, h0B, ηuūbu
−1η−1, η) ∈ Y ′

where h0B is such that η ∈ h0B. This is because

ηuūB = (ηuūbu−1η−1)ηB.

This is once again injective. Therefore, we have found the bijection as desired. �

Corollary 3.6. Since we know N− × B = B−B, we can also say Y ′ is in bijection with
(B−B)×G×N . In that case, the map would be

(u, ū, h0B, g, η)→ (u−1η−1gηu, η, u)

and u−1η−1gηu ∈ B−B.

Now, we describe the relation

h0
si1
—h1

si2
— · · ·

sik
—hk.

Let ei,j be the matrix with a 1 at position (i, j) and zero everywhere else.

Lemma 3.7. If h
si
—h′, then for each element η ∈ hB, there exists a unique a ∈ Fq for

which η(si + aei,i) ∈ h′B.

Proof. We first prove that such an a is unique. Note that (si + aei,i)
−1 = si − aei+1,i+1.

This is clear since

(si + aei,i)(si − aei+1,i+1) = s2i + aei,isi − siaei+1,i+1 − a2ei,iei+1,i+1

= In + aei,i+1 − aei,i+1 − 0 = In

where In is the n-by-n identity matrix. Suppose that for a 6= b, we have η(si + aei,i) ∈ h′B
and η(si + bei,i) ∈ h′B. Then, note that

(η(si + aei,i))
−1η(si + bei,i) = (si + aei,i)

−1η−1η(si + bei,i) = (si + aei,i)
−1(si + bei,i)

= (si − aei+1,i+1)(si + bei,i)

= s2i + sibei,i − aei+1,i+1si − abei+1,i+1ei,i

= In + bei+1,i − aei+1,i = In + (b− a)ei+1,i.

In particular, In + (b− a)ei+1,i 6∈ B, contradiction. Thus, we have proven that a is unique
if it exists.

Now, we show that a exists. Note that

h
si
—h′ ⇔ η−1h

si
—η−1h′ ⇔ In

si
—η−1h′.

We then would like to prove that if In
si
—f for some f , then fB = (si + aei,i)B for some

a ∈ Fq. First, note that fB ∈ BsiB, so it suffices to prove that each element of Bsi is in
(si + aei,i)B for some a ∈ Fq, or even simpler, that for each b ∈ B, we have

(si + aei,i)
−1bsi ∈ B

for some a. Let bx,y be the entry at position (x, y) of b. Note that

(si + aei,i)
−1bsi = (si − aei+1,i+1)bsi = si(In − aei,i+1)bsi.
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Choose a =
bi,i+1

bi+1,i+1
. This guarantees that (In−aei,i+1)b is 0 at the position (i, i+1). Then,

si(In − aei,i+1)bsi swaps the ith and i + 1th row of (In − aei,i+1)b, and then the ith and
i+1th column. Since we guaranteed that the entry at the the position (i, i+1) was 0 before
the swaps, it follows that si(In − aei,i+1)bsi ∈ B. Below is an example for a 4-by-4 matrix
when i = 2:

(In − aei,i+1)b =


1 0 0 0

0 1
−b2,3
b3,3

0

0 0 1 0
0 0 0 1



b1,1 b1,2 b1,3 b1,4
0 b2,2 b2,3 b2,4
0 0 b3,3 b3,4
0 0 0 b4,4



=


b1,1 b1,2 b1,3 b1,4
0 b2,2 0 b2,4 − b3,4b2,3

b3,3

0 0 b3,3 b3,4
0 0 0 b4,4

 .

And then we have

si(In − aei,i+1)si =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1



b1,1 b1,2 b1,3 b1,4
0 b2,2 0 b2,4 − b3,4b2,3

b3,3

0 0 b3,3 b3,4
0 0 0 b4,4




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1



=


b1,1 b1,3 b1,2 b1,4
0 b3,3 0 b3,4
0 0 b2,2 b2,4 − b3,4b2,3

b3,3

0 0 0 b4,4

 ,

which is an upper triangular matrix as desired. Therefore, we have proven the existence
and uniqueness of a and we are done.

�

From here on, we focus only on the case when β = π, when the braid is the full twist.
Consider a single element (h0, h1 . . . , hn(n−1), η, g) from Y (π)×̃B. Suppose ηA1A2 · · ·Ak ∈
hkB where Ak = sik + akeik,ik for 1 ≤ k ≤ n(n− 1). Note specifically that sik = sk where
we take indices mod n − 1 appropriately. We refer to sik as sk now since we are dealing
specifically with β = π.

Next, let k = x(n−1)+y for integers x and 1 ≤ y ≤ n−1. Define Bk = In+akex+1,x+y+1,
where In is the identity matrix, and x+ y+ 1 is taken mod n (row/column 0 is assumed to
be row/column n).

We have defined Bk to make the product in the following lemma easier to analyze. In
particular, while Ak has a “permutation” component to it, Bk has an identity matrix. In
addition, B1, B2,. . . , Bn(n−1) has a nice pattern, shown for n = 3:1 a1 0

0 1 0
0 0 1

 ,

1 0 a2
0 1 0
0 0 1

 ,

1 0 0
0 1 a3
0 0 1

 ,

 1 0 0
a4 1 0
0 0 1

 ,
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0 1 0
a5 0 1

 ,

1 0 0
0 1 0
0 a6 1

 .

Consider how the position of the ak moves as we go from k = 1 to n(n−1). When we begin
on a row, we start at the position to the right of the 1 (wrapping around for the last row).
Then, we move right until all the positions without a 1 have been visited. We then move
on to the next row. This description of Bk is helpful for later lemmas.

Lemma 3.8. We have

A1A2 · · ·An(n−1) = B1B2 · · ·Bn(n−1).

Proof. We claim that we can express Bk = σkAkωk where σk and ωk are permutation
matrices. In particular, we claim σk = s1s2 . . . sk−1 and ωk = sksk−1 . . . s1, where k is
taken mod n − 1 appropriately. Since ωk−1σk = I for all 2 ≤ k ≤ n(n − 1), σ1 = I, and
ωn(n−1) = I, it follows trivially from our claim that

B1B2 · · ·Bn(n−1) = (σ1A1ω1)(σ2A2ω2) · · · (σn(n−1)An(n−1)ωn(n−1))
= σ1A1A2 · · ·An(n−1)ωn(n−1) = A1A2 · · ·An(n−1).

Thus, it suffices to prove our claim. It may be useful to also think of Bk as σkAkskσ
−1
k .

Note that Aksk = Aksy = I + ake(y,y+1), and that we are then conjugating with σk to
obtain Bk, which is just applying the permutation σk to both the rows and the columns.
Note that s1s2 . . . sx(n−1) maps each m to m+ x (mod n). Next,

sx(n−1)+1 . . . sx(n−1)+y−1 = s1s2 . . . sy−1

maps each 1 ≤ m ≤ y − 1 to m+ 1, y to 1 and fixes everything else. Therefore,

σk(y) = s1s2 . . . sx(n−1)(s1s2 . . . sy−1(y)) = s1s2 . . . sx(n−1)(1) = x+ 1

σk(y + 1) = s1s2 . . . sx(n−1)(s1s2 . . . sy−1(y + 1)) = s1s2 . . . sx(n−1)(y + 1)

= x+ y + 1(mod n).

It follows that position (y, y + 1) is mapped to position (x+ 1, x+ y + 1), and so

σkAkskσ
−1
k = σk(I + akey,y+1)σ

−1
k = I + akex+1,x+y+1 = Bk,

as desired. Below is an example for n = 4, k = 8:

Aksk =


1 0 0 0
0 a8 1 0
0 1 0 0
0 0 0 1




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 =


1 0 0 0
0 1 a8 0
0 0 1 0
0 0 0 1

 .

Then, σkAkskσ
−1
k is

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0





0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1




1 0 0 0
0 1 a8 0
0 0 1 0
0 0 0 1




0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1


−1


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0


−1
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=


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0




1 0 a8 0
0 1 0 0
0 0 1 0
0 0 0 1




0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0


−1

=


1 0 0 0
0 1 0 0
a8 0 1 0
0 0 0 1

 = Bk

as desired.
�

Lemma 3.9. We have
B1B2 · · ·Bn(n−1) ∈ NN−.

Proof. In this proof, we rely on the fact that the matrices whose bottom right square
submatrices all have determinant 1 are precisely elements of NN−. This is a well known
fact.

We do this via induction on the size of the matrix, which is n-by-n. The case n = 1 is
clear.

Suppose we have proven this claim for n = m. We now prove it for n = m + 1. First,
let Ck = Bk − I. Namely, Ck = akex+1,x+y+1 is a matrix with at most one nonzero entry.
Then, we can express the product as

B1B2 · · ·Bm(m+1) = (I + C1)(I + C2) · · · (I + Cm(m+1)).

Note that in the expansion of (I + C1)(I + C2) · · · (I + Cm(m+1)), we have the sum of
Ci1Ci2 · · ·Cid where 1 ≤ i1 < i2 < · · · < id ≤ m(m + 1). Furthermore, note that
Ci1Ci2 · · ·Cid is a matrix with at most one nonzero entry.

We claim that all nonzero products of this form involving C1, C2,. . ., Cm or C2m,
C3m−1,. . . , Cm(m+1)−m+1 are not in the bottom right m-by-m submatrix. To clarify, we
mean all nonzero products Ci1Ci2 · · ·Cid for which there exists 1 ≤ j ≤ d such that

ij ∈ {1, 2, . . . ,m, 2m, 3m− 1, . . . ,m(m+ 1)−m+ 1}.
This claim finishes the inductive step since the bottom right m-by-m matrix is not affected
by those Ck. Note that C1, C2,. . ., Cm are in the top row and C2m, C3m−1,. . . , Cm(m+1)−m+1

are in the first column. Thus, the bottom right m-by-m matrix is then the product of
matrices that are the same as the matrices we obtain for n = m, which then implies that
the determinants are 1 for each of the bottom right square submatrices. The matrix itself
trivially has determinant 1 since Bk has determinant 1 for all k. Below, the case for m = 2
is shown:1 a1 0

0 1 0
0 0 1

 1 0 a2

0 1 0
0 0 1

 1 0 0
0 1 a3
0 0 1

 1 0 0
a4 1 0
0 0 1

 1 0 0
0 1 0
a5 0 1

 1 0 0
0 1 0
0 a6 1


=

a1a4 + a5 (a1a3 + a2) + 1 a1 + a6 (a1a3 + a2) a1a3 + a2

a3a5 + a4 a3a6 + 1 a3
a5 a6 1

 ,
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 1 0 0
0 1 a3
0 0 1

 1 0 0
0 1 0
0 a6 1

 =

 1 0 0
0 a3a6 + 1 a3
0 a6 1

 .

Remark 3.10. In the above diagrams, the bolded symbols are C1, C2,. . ., Cm and C2m,
C3m−1,. . . , Cm(m+1)−m+1 for m = 2. Note that the product B1B2 · · ·Bm(m+1) only contains
bolded symbols in the first column and row. In particular, the bottom right m-by-m matrix
only depends on the Bi that are not bolded, which returns to the case n = m, as claimed;
note how the bottom right m-by-m matrices, which are underlined, are the same in the
second and third lines.

Now, we prove the claim. Note that C1, C2,. . . , Cm are all matrices with a single entry on
the top row. Also note that any product involving at least one of them will start with one of
them at the very left. This means, according to matrix multiplication rules, the product can
only have an entry in the top row, so they will not have an effect on the bottom m-by-m.
That is, in block matrices,∗ ∗ ∗0 0 0

0 0 0

∗ ∗ ∗∗ ∗ ∗
∗ ∗ ∗

 =

∗ ∗ ∗0 0 0
0 0 0

 .

Below is an explicit example:

C1C3C5 =

0 a1 0
0 0 0
0 0 0

 0 0 0
0 0 a3
0 0 0

 0 0 0
0 0 0
a5 0 0

 =

a1a3a5 0 0
0 0 0
0 0 0

 .

In particular, the partial products from the left always have the nonzero entry in the top
row.

We apply similar logic for C2m, C3m−1,. . . , Cm(m+1)−m+1, which are matrices with the
single entry on the first column. We claim that among any nonzero product involving at
least one of these, it must be the last matrix. Consider the following:∗ 0 0

∗ 0 0
∗ 0 0

0 0 0
∗ ∗ ∗
∗ ∗ ∗

 =

0 0 0
0 0 0
0 0 0

 .

In particular, any matrix multiplied to the right of C2m, C3m−1,. . . , or Cm(m+1)−m+1

must have a nonzero entry in the top row in order to have a nonzero product by matrix
multiplication rules. However, those matrices are the first m matrices, so it is not possible
for them to be multiplied to the right of C2m, C3m−1,. . . , Cm(m+1)−m+1. Thus, if C2m,
C3m−1,. . . , Cm(m+1)−m+1 are involved in a nonzero product, they must be the last matrices.
This then implies that any nonzero product they have is contained in the first column, which
does not affect the bottom m-by-m and our claim is proven.

Therefore, all the determinants of the bottom square submatrices are 1, and it follows
that B1B2 · · ·Bn(n−1) can always be written as the product of a strictly upper triangular
matrix and a strictly lower triangular matrix. �

We will refer to a matrix that can be written as the product of a strictly upper triangular
matrix and strictly lower triangular matrix interchangeably as a UL matrix or an element
of NN−.
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Lemma 3.11. There exists a bijection between the set of tuples (a1, a2, . . . , an(n−1)) and

NN−. In other words, there is also a bijection between the set of tuples (A1, A2, . . . , An(n−1))

and NN−.

Proof. Indeed, both have cardinality qn(n−1), so it remains to show that there is an injective
map from one to the other.

Consider (A1A2 · · ·An−1)(An · · ·A2n−2) · · · (A(n−1)(n−1)+1 · · ·An(n−1)). Note this grouping
of the matrices creates a product of n matrices, each with a similar form; namely, the top
row for Ax(n−1)+1Ax(n−1)+2 · · ·A(x+1)(n−1) is

[
ax(n−1)+1 ax(n−1)+2 · · · a(x+1)(n−1) 1

]
,

and the rest is just 1’s diagonally starting from the position (2, 1), as shown in the following
example:

Example 3.12. Shown below is A1A2A3 for n = 4:
a1 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1




1 0 0 0
0 a2 1 0
0 1 0 0
0 0 0 1




1 0 0 0
0 1 0 0
0 0 a3 1
0 0 1 0

 =


a1 a2 a3 1
1 0 0 0
0 1 0 0
0 0 1 0

 .

Let these n matrices be M1, M2,. . . , Mn. Then, I claim M1M2 · · ·Mj for 0 ≤ j ≤ n has
a 1 in the first entry of the j + 1th row (or not if j = n), and a diagonal of 1’s from there.
Every other entry in the j + 1th row or below is a zero. In particular, it has the following
form: (

∗ ∗
In−j 0

)
where there are j rows of ∗’s. Here is an example for j = 2 when n = 4:

a1 a2 a3 1
1 0 0 0
0 1 0 0
0 0 1 0



a4 a5 a6 1
1 0 0 0
0 1 0 0
0 0 1 0

 =


a1a4 + a2 a1a5 + a3 a1a6 + 1 a1

a4 a5 a6 1
1 0 0 0
0 1 0 0

 .

Remark 3.13. In the above diagram, the bolded section represents the top j rows, and
the underlined section represents In−j .

Now, onto the induction. The cases j = 0 (which is just the identity matrix In) and
j = 1 are clear. Now, suppose our claim is true for j = m for m ≤ n− 1. We now prove it
is true for j = m+ 1. Note that Mm+1 has two parts: the top row, and the rest. Note that
M1M2 · · ·Mm multiplied by the top row just fills in the top m+1 rows, so it is irrelevant to
our induction hypothesis. This is because only the first column of M1M2 · · ·Mm can form
nonzero products, and only the top m+ 1 entries can be nonzero there.

Now we focus on the second part: the diagonal of 1’s starting at (2, 1), or
0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0


in Example 3.12.
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This basically just shifts the columns of M1M2 · · ·Mm to the left, as shown below:
a1 a2 a3 1
1 0 0 0
0 1 0 0
0 0 1 0




0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0

 =


a2 a3 1 0
0 0 0 0
1 0 0 0
0 1 0 0

 .

This then creates the diagonal pattern starting from the m + 2th row as desired, and our
claim is proven. By induction, our claim is true for all 0 ≤ j ≤ n.

As a corollary, the jth row must be[
a(n−1)j+1 a(n−1)j+1 · · · a(n−1)(j+1) 1

]
,

which is the top row of Mj . This is a simple consequence of matrix multiplication; namely,
consider the product

(M1M2 · · ·Mj−1) ·Mj

for 1 ≤ j ≤ n. The jth row of (M1M2 · · ·Mj−1) is
[
1 0 0 · · · 0

]
. The product of this

1-by-n vector and Mj is simply the top row of Mj . It follows that the jth row of the product
(M1M2 · · ·Mj−1) ·Mj is the top row of Mj as desired.

In this way, we can go from each UL matrix back to a n(n−1)-tuple, since we can start by
observing the bottom row of M1M2 · · ·Mn, from which we can determine Mn. Once we have
Mn, we divide by it to obtain M1M2 · · ·Mn−1, observe the n − 1th row, and repeat. This
process gives us all the numbers in the tuple from our UL matrix, which implies this process
is injective. It follows that there exists a bijection between the tuple (a1, a2, . . . , an(n−1))
and the UL matrices, and we are done. Here is an example of this process being run for
n = 3: 1 1 5

0 1 4
0 0 1

1 0 0
2 1 0
5 3 1

 =

28 16 5
22 13 4
5 3 1


⇒ a5 = 5, a6 = 328 16 5

22 13 4
5 3 1

5 3 1
1 0 0
0 1 0

−1 =

5 3 1
4 2 1
1 0 0


⇒ a3 = 4, a4 = 25 3 1

4 2 1
1 0 0

4 2 1
1 0 0
0 1 0

−1 =

1 1 1
1 0 0
0 1 0


⇒ a1 = 1, a2 = 1.

�

In other words, each sequence of flags h0, h1, . . . hn(n−1) and η represents

hn(n−1)B = ηuūB for a unique pair u ∈ N and ū ∈ N−. We can now prove Proposition 3.4.

Proof of Proposition 3.4. By Lemma 3.7, there first exists a bijection between the set of
tuples (η, h0B, h1B, . . . hn(n−1)B) for which η ∈ h0B and

h0
s1
—h1

s2
— · · ·

sn(n−1)
— hn(n−1)
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and the set of tuples (η,A1, A2, . . . , An(n−1)), where we use similar notation as before. By
Lemma 3.11, there exists a bijection between set of tuples (η,A1, A2, . . . , An(n−1)) with the

set of tuples (η, u, ū) where u ∈ N and ū ∈ N−. In particular, this second bijection requires
uū = A1A2 · · ·An(n−1).

Now, consider Y (π)×̃B and Y ′. For each

(h0B, h1B, . . . hn(n−1)B, η, g) ∈ Y (π)×̃B,

we can map one-to-one to a tuple (g, η, A1, A2, . . . , An(n−1)) for which

ηA1A2 · · ·An(n−1)B = gηB.

We can further map this using a bijection to a tuple (u, ū, h0B, g, η) for which ηuūB = gηB
and h0B is such that η ∈ h0B. Note this last tuple is an element of Y ′. It follows that we
have found a bijection between Y (π)×̃B and Y ′. We then let Ω be the composition of these
two maps we just used.

�

We now define the “Springer” versions of Y (β)×̃B and Y ′. This is necessary to find a

relationship to X̃(t), which involves the Grothendieck–Springer resolution as well.

Definition 3.14. Define

Ỹ (β)×̃B := {hB, h0B, h1B, . . . ,hkB ∈ G/B, η ∈ h0B,

g ∈ G | (g, hB) ∈ G̃, h0
si1
—h1

si1
— · · ·

sik
—hk, gh0B = hkB}.

Definition 3.15. Consider the map p from Ỹ (β)×̃B to T where (hB, h0B, . . . , hkB, η, g)

is mapped to the diagonal entries of h−1gh ∈ B. For t ∈ T , let Ỹ (β; t)×̃B be the preimage
of t under p.

Definition 3.16. Define

Ỹ ′ := {u ∈ N, ū ∈ N−,hB ∈ G/B, h0B ∈ G/B,

g ∈ G, η ∈ h0B | (g, hB) ∈ G̃, ηuūB = gηB}.

Definition 3.17. Consider the map p′ from Ỹ ′ to T where (u, ū, h0B, h0B, g, η) is mapped

to the diagonal entries of h−1gh ∈ B. For t ∈ T , let Ỹ ′(t) be the preimage of t under p′.

Note that Ỹ (π)×̃B and Ỹ ′ are still in bijection with each other. We thus define a new
map between them.

Definition 3.18. Define Ω̃ to be the bijective map that naturally arises from Ω taking
Ỹ (π)×̃B to Ỹ ′. It is clear that Ỹ (π; t)×̃B is mapped to Ỹ ′(t) under Ω̃.

As noted before, Ỹ ′(t) is related to LU matrices, and thus, should be related to X̃(t). We
find this exact relation in the following lemma. We then use a series of bijections to obtain
our main result: Theorem 3.1.

Lemma 3.19. There exists a bijection θt from Ỹ ′(t) to X̃(t)×G×N given by

(u, ū, hB, h0B, g, η)→ (u−1η−1gηu, u−1η−1hB, η, u).
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Proof. We can check that θt is well defined and injective, so let us show that

(u−1η−1gηu, u−1η−1hB, η, u) ∈ X̃(t)×G×N.
By Corollary 3.6, we know u−1η−1gηu ∈ B−B. Furthermore, we have

(u−1η−1gηu)u−1η−1hB = u−1η−1ghB = u−1η−1hB,

so (u−1η−1gηu, u−1η−1hB) ∈ G̃. Finally,

(u−1η−1h)−1(u−1η−1gηu)(u−1η−1h) = h−1gh ∈ B,
so the values on the main diagonal are indeed t. Thus, θt is indeed injective map from Ỹ ′(t)
to X̃(t).

Now, it suffices to find an injective map θ′t in the other direction. Consider

(g′, hB, η, u)→ (u, ū, ηuhB, h0B, ηug
′u−1η, η)

where g′ ∈ B−B, h0B is such that η ∈ h0B, and ū is the unique element of N− in the LU
decomposition of g′ (Definition 2.1). Thus, this map is injective. Now, we prove that

(u, ū, ηuhB, h0B, ηug
′u−1η−1, η) ∈ Ỹ ′(t).

Note that
(ηug′u−1η−1)ηB = ηug′B = ηuū(ū−1g′)B = ηuūB,

since ū−1g′ ∈ B. Next, we have

(ηuh)−1(ηug′u−1η−1)(ηuh) = h−1g′h ∈ B,
so the values on the main diagonal are indeed t. Thus, θt is indeed injective map from X̃(t)

to Ỹ ′(t).
Therefore, θt is actually a bijection and we are done. �

Theorem 3.20. There exists a bijection between X̃(t)×G×N and Ỹ (π; t)×̃B.

Proof. Combine the bijection Ω̃ as defined in Definition 3.18 and the bijection θt from
Lemma 3.19. �

Proof of Theorem 3.1. By definition,

|Ỹ (π; t)| = |Ỹ (π; t)×̃B|
|B|

.

By Definition 3.18,

|Ỹ (π; t)×̃B| = |Ω̃(Ỹ (π; t)×̃B)|
|B|

=
|Ỹ ′(t)|
|B|

.

Finally, by Lemma 3.19,

|Ỹ ′(t)|
|B|

=
|θt(Ỹ ′(t))|
|B|

=
|X̃(t)||G||N |

|B|
= |X̃(t)| |G|

(q − 1)n
.

Thus,

|Ỹ (π; t)| = |Ỹ (π; t)×̃B|
|B|

=
|Ω̃(Ỹ (π; t)×̃B)|

|B|
=
|Ỹ ′(t)|
|B|

=
|θt(Ỹ ′(t))|
|B|

=
|X̃(t)||G||N |

|B|
= |X̃(t)| |G|

(q − 1)n

and we are done. �
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We have now found a relationship between X̃(t) and Ỹ (π; t) by proving Theorem 3.1.

However, Ỹ (π; t) is not as well understood as Y (π)t. Therefore, our next goal is to find

the relationship between the sizes of Ỹ (π; t) and Y (π)t, specifically when t is a regular

semisimple s. We do this via an auxiliary set Ỹ (π; s)×̃T defined below.

Definition 3.21. For a regular semisimple s, define

Ỹ (π; s)×̃T := {(hB, h0B, h1B, . . . , hn(n−1)B, g) ∈ Ỹ (π; s), η ∈ G | η−1gη = s}.

The following lemma sets the desired relationship in stone.

Lemma 3.22. For a regular semisimple s, we have a bijection between Ỹ (π; s)×̃T and
Y (π)s ×G.

Proof. For each (h0B, h1B, . . . , hn(n−1)B, s, h
′) ∈ Y (π)s ×G, consider the map to

(h′B, h′h0B, h
′h1B, . . . , h

′hn(n−1)B, h
′sh′−1, h′) ∈ Ỹ (π; s)×̃T.

This is well defined and is injective. Consider also the map

(hB, h0B, h1B, . . . , hn(n−1)B, g, η) ∈ Ỹ (π; s)×̃T

⇓
(η−1h0B, η

−1h1B, . . . , η
−1hn(n−1)B, s, η).

It is not hard to see that this map is injective and that

(η−1h0B, η
−1h1B, . . . , η

−1hn(n−1)B, s, η) ∈ Y (π)s ×G.

Therefore, the two maps we discussed were both bijections and we are done. �

We now have all the bijections necessary to obtain this next important result.

Corollary 3.23. For a regular semisimple s, we have

|Xs| = |Y (π)s|.

Proof. Lemma 3.22 implies that

|Ỹ (π; s)×̃T | = |G||Y (π)s|.

Note that |Ỹ (π; s)×̃T | = |T ||Ỹ (π; s)|, because for any g similar to s, there are exactly |T |
values of η for which η−1gη = s. Thus, we have

|Ỹ (π; s)| = |Ỹ (π; s)×̃T |
|T |

=
|G|

(q − 1)n
|Y (π)s|.

By Theorem 3.1, it follows that we have

|X̃(s)| = |Y (π)s|.

Furthermore, by Remark 2.5, we have

|Xs| = |X̃(s)| = |Y (π)s|,

as desired.
�

Over the next sections, we focus on the point count of Y (π)s, which then gives us |Xs|.
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4. Additional Definitions

In this section, we introduce terminology commonly used with Y (π)s, as well as citing
a few results from related papers. While the previous section was more related to linear
algebra, this section bridges us over to representation theory and group theory. By delving
into a different field, we can find other ways to express |Y (π)s| that may be easier to
calculate. In particular, we find that

|Y (π)s| =
∑

λ∈Irr(Sn)

χλG(s)χλHecke(Tπ).

It turns out that χλHecke(Tπ) is already well known, so it then suffices to find χλG(g). We
propose that

χλG(s) = χλSn
(1)

at the end of the section. Now, let us begin with definitions.
Let R1 be the set of functions from G/B to C. Note that R1 is a vector space over C. Let

lg for g ∈ G be the group action of g on R1. In other words, for any f ∈ R1 and xB ∈ G/B,
we have

lg(f)(xB) = f(g−1xB).

Let
R1(g) := tr(lg) = |{xB ∈ G/B | gxB = xB}|.

Let H be the Iwahori–Hecke algebra for Sn with C coefficients.

Theorem 4.1 ([GP, Theorem 8.1.7]). Irreducible representations of H are in bijection with
irreducible representations of Sn (which are in bijection with partitions of n).

For T ∈ H, let rT : R1 → R1 be such that for any f ∈ R1, we have

rT (f) = f ∗ T.
In other words, for any xB ∈ G/B, we have

rT (f) =
1

|B|
∑

g∈G,hB∈G/B
ghB=xB

f(g)T (h).

For g ∈ G and T ∈ H, let

tr(g, T | R1) := tr(lg ◦ rT ) = tr(rT ◦ lg).
Let χλG be the irreducible unipotent character of G corresponding to λ. Let χλHecke be the

irreducible character of the Iwahori–Hecke algebra corresponding to λ.
By Iwahori’s Theorem ([GP, Corollary 8.4.7]) and the double centralizer theorem, we

have:

Theorem 4.2. For all g ∈ G, T ∈ H, we have the equality

tr(g, T | R1) =
∑

λ∈Irr(Sn)

χλG(g)χλHecke(T ).

Definition 4.3. Let 1BsiB ∈ H for 1 ≤ i ≤ n− 1 be such that for all g ∈ G, 1BsiB(g) = 1
if g ∈ BsiB and 1BsiB(g) = 0 otherwise. For β ∈ Br+n , if β = σi1σi2 · · ·σik , define

Tβ := 1Bsi1B ∗ 1Bsi2B ∗ · · · ∗ 1BsikB.

Remark 4.4. It is well known that Tβ does not depend on our choice of σi1 , σi2 , . . . , σik .
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Note that by [HR, Equation 2.2], we have

(4.5) tr(g, Tπ | R1) = |Y (π)g|.
By [GP, Theorem 9.4.3], we have

(4.6) χλHecke(Tπ) = qc(1)+c(λ)(χλSn
(1)).

Proposition 4.7. For any regular semisimple s, we have

χλG(s) = χλSn
(1).

We prove this in the next section.

5. Evaluating a Character

In this section, we use the theory of maximal tori to find a formula for χλG(s) and then
evaluate it.

Let Fq be the algebraic closure of Fq and let G = GLn(Fq). Let T ⊂ G be the set of
diagonal matrices. Let Fr be the Frobenius endomorphism. For any H ⊂ G, let

HFr = {g ∈ H | Fr(g) = g} = {g ∈ H | g ∈ G}.
Note that T is a maximal torus, and for any element g ∈ G, g−1Tg is also a maximal torus.
For any regular semisimple s in T, note that the only maximal torus that s lies in is T.

Note by the Lang-Steinberg Theorem, we can find g ∈ G for which g−1Fr(g) = w for
each w ∈ Sn (where we interpret w as a permutation matrix). Set Tw = gTg−1 and
Tw = (gTg−1)Fr. Let the identity permutation be w = 1.

Let RTw,1 denote the virtual Deligne–Lusztig character corresponding to the torus Tw

and the trivial character. We find an expression for χλG involving RTw,1.

Definition 5.1. Define the almost character Rλ as

Rλ :=
1

|Sn|
∑
w∈Sn

χλSn
(w)RTw,1.

Remark 5.2. By [L1, Section 4.4], it is known that for G = GLn(Fq), we have χλG = Rλ.

Now, we find what RTw,1 is so that we can calculate χλG.

Lemma 5.3. RTw,1(s) = 0 if w 6= 1. Otherwise, RTw,1(s) = n!.

Proof. By [C, Proposition 7.5.3],

RTw,1(s) =
1

|T |
∑

g∈G,g−1sg∈Tw

1.

Suppose for w 6= 1, there exists g ∈ G for which g−1sg ∈ Tw. Then, gTwg
−1 is a maximal

torus that contains s. This then implies that gTwg
−1 = T1. By construction, there exists

g′ ∈ G such that g′−1Fr(g′) = w and Tw = g′T1g
′−1. Thus, g−1T1g = g′T1g

′−1, or
T1 = gg′T1(gg

′)−1, which means gg′ is in the centralizer of T1. Thus, gg′ ∈ Sn ×T1, say
gg′ = w′t for w′ ∈ Sn and t ∈ T1. Note then that

(gg′)−1Fr(gg′) = g′−1g−1Fr(g)Fr(g′) = w,

yet
(gg′)−1Fr(gg′) = t−1w′−1Fr(w′)Fr(t) = t−1Fr(t) ∈ T.
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This then implies that w ∈ T, which is impossible. Thus, Rw(s) = 0 when w 6= 1.
On the other hand, when w = 1, g can be any element from the centralizer of T1, which

is Sn × T1. This has n!|T1| = n!|T | elements, so

RT1,1(s) =
1

|T |
∑

g∈G,g−1sg∈T1

1 = n!

as desired. �

Finally, we can find χλG(s).

Proof of Proposition 4.7. By Lemma 5.3, Definition 5.1, and Remark 5.2,

χλG(s) = Rλ(s) =
1

|Sn|
∑
w∈Sn

χλSn
(w)RTw,1(s) =

1

n!
χλSn

(1)n! = χλSn
(1).

�

6. Main Results

In this section, we present several theorems that follow from our work above, as well as
a conjecture.

Theorem 6.1. For any regular semisimple s, we have

|Xs| =
∑

λ∈Irr(Sn)

qc(1)+c(λ)(χλSn
(1))2.

Proof. We have |Xs| = |Y (π)s| by Corollary 3.23, and Equation 4.5 tells us that

tr(s, Tπ | R1) = |Y (π)s| = |Xs|.

Next, by Theorem 4.2,

|Xs| = tr(s, Tπ | R1) =
∑

λ∈Irr(Sn)

χλG(s)χλHecke(Tπ).

Equation 4.6 and Proposition 4.7 then give

|Xs| =
∑

λ∈Irr(Sn)

χλG(s)χλHecke(Tπ) =
∑

λ∈Irr(Sn)

χλSn
(1) · qc(1)+c(λ)χλSn

(1)

=
∑

λ∈Irr(Sn)

qc(1)+c(λ)(χλSn
(1))2

and we are done. �

Here, we show that the formula does indeed hold for n = 2 by returning to 2.2.

Example 6.2. For SL2(Fq), we first find the general form of an LU matrix:[
1 0
b 1

] [
c d
0 c−1

]
=

[
c d
bc bd+ c−1

]
where b, c, d ∈ Fq. We now need to make sure this matrix is similar to

s :=

[
e 0
0 e−1

]



20 ANDREW GU

where e 6= e−1 ∈ Fq are the eigenvalues of s. In other words, we want the characteristic
polynomials to be the same, so x2 − (c + c−1 + bd)x + 1 = x2 − (e + e−1)x + 1. When
c = e, e−1, there are 2q − 1 solutions for the pair (b, d), since bd = 0. Otherwise, bd is
fixed and nonzero, giving q − 1 pairs for bd. It follows from Definition 2.1 that |Xs(Fq)| =
2(2q − 1) + (q − 3)(q − 1) = q2 + 1, which matches with the formula we found for |Xs|.

Theorem 6.3. For any regular semisimple s, we have

|Ỹ (π; s)| = |G|
(q − 1)n

∑
λ∈Irr(Sn)

qc(1)+c(λ)(χλSn
(1))2.

Proof. By Theorem 3.1, Remark 2.5, and Theorem 6.1, we have

|Ỹ (π; s)| = |G|
(q − 1)n

|X̃(s)| = |G|
(q − 1)n

|Xs| =
|G|

(q − 1)n

∑
λ∈Irr(Sn)

qc(1)+c(λ)(χλSn
(1))2.

�

Theorem 6.4. For any regular semisimple s, we have

|Ỹ (π; s)| = |Ỹ (π; 1)|.

Proof. Minh-Tam Trinh has proven in [T, Theorem 7] that

|Ỹ (π; 1)| = |G|
(q − 1)n

∑
λ∈Irr(Sn)

qc(1)+c(λ)(χλSn
(1))2.

This is the same as |Ỹ (π; s)|. �

Considering the theorem above, we might conjecture the following:

Conjecture 6.5. The point count |Ỹ (π; t)| is the same regardless of t.

Indeed, this has been confirmed by computations using Python for n = 3. Given all this
circumstantial evidence, this conjecture is something highly worth investigating.
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