
Results on Various Models of
Mistake-Bounded Online Learning

Raymond Feng∗ Andrew Lee† Espen Slettnes‡

December 29, 2021

Abstract

We determine bounds for several variations of the mistake-bound model. The
first half of our paper presents various bounds on the weak reinforcement model and
the delayed, ambiguous reinforcement model. In both models, the adversary gives r
inputs in one round and only indicates a correct answer if all r guesses are correct.
The only difference between the two models is that in the delayed, ambiguous model,
the learner must answer each input before receiving the next input of the round,
while the learner receives all r inputs at once in the modified weak reinforcement
model. We also prove generalizations for multi-class functions.

Then, we prove a lower and upper bound of the maximum factor gap that are
tight up to a factor of r between the modified weak reinforcement model and the
standard model.

Lastly, we also introduce several related models for learning with permutation
patterns: the order model, the relative position model, and the delayed relative
position model. In these models, a learner attempts to learn a permutation from
a set of permutations F by guessing statistics related to sub-permutations. We
similarly define the notions of weak versus strong reinforcement and of delayed,
ambiguous, reinforcement, and determine some sharp bounds by mimicking sorting
algorithms.

∗rfeng2004@gmail.com
†leeandrew1029@gmail.com
‡espen@slett.net

mailto:rfeng2004@gmail.com
mailto:leeandrew1029@gmail.com
mailto:espen@slett.net

1 Introduction

We look at several variations of the mistake-bound model [12]. The standard model [1,
13] (also called the standard strong reinforcement learning model [1]) is the situation of a
learner attempting to classify inputs (in the set X) with labels (in the set Y) based on
a number of possible functions f : X → Y in F . The learning proceeds in rounds, and
each round the adversary gives the learner an input, and the learner must then guess the
corresponding label. After each round, the adversary informs the learner of the correct
answer (and therefore whether the learner was right or wrong). A variation of this model
is the standard weak reinforcement model [1, 2], where the adversary only tells the learner
“YES” if they were correct and “NO” otherwise. This variant is also commonly called the
bandit model [5, 6, 7, 11, 13].

The study of the efficiencies of these learning algorithms, as measured by either the
maximum average number of mistakes or maximum number of mistakes (depending on
whether non-deterministic learning algorithms are allowed) that they make while learning
a function, is relevant to the field of machine learning for services like YouTube’s video
recommendation algorithm, the tailored ad services provided by Google, or the friendship
recommendation process in social media sites like Facebook.

For any learning scenario, we generally let optscenario(F) represent the optimal worst
case number of mistakes that a learning algorithm could achieve [1]. For example, for
weak reinforcement learning/bandit model, standard model/strong reinforcement learning,
or delayed, ambiguous reinforcement learning, the optimal worst case performances of
learning algorithms would be denoted optweak(F) = optbandit(F), optstd(F) = optstrong(F),
and optamb,r(F), respectively. There are some obvious inequalities that follow by definition,
such as optstrong(F) ≤ optweak(F), just from the fact that the learner has strictly more
information in one scenario compared to the other.

In [1], Auer and Long define the delayed, ambiguous reinforcement model and compare
it to a modified version of the standard weak reinforcement model (henceforth called the
modified weak reinforcement model). The delayed, ambiguous reinforcement model is a
situation where the learner receives a fixed number (r) of inputs each round, and each input
is given to the learner after they have answered the previous one. On the other hand, the
learner receives all r inputs at once for each round in the modified weak reinforcement model.
In both situations, at the end of every round of r inputs, the adversary says “YES” if the
learner answered all r inputs correctly and “NO” otherwise. To compare the two situations,
they define CARTr(F) (where F is a set of functions f : X → Y) to be a set of functions
f ′ : Xr → Y r where each f ∈ F has a corresponding f ′ ∈ CARTr(F) such that for
any x1, x2, . . . , xr ∈ X, we have f ′((x1, x2, . . . , xr)) = (f(x1), f(x2), . . . , f(xr)). They use
optweak(CARTr(F)) to analyze the efficiencies of learning algorithms in the modified weak
reinforcement setting. Auer and Long proved that the two situations are not equivalent
for the learner in Theorem 16 of [1], which is the assertion that there is some input set X
and set F of functions from X to {0, 1} such that optamb,2(F) < optweak(CART2(F)).

In Sections 2 and 3, we generalize Theorem 16 from [1] to general r in place of
2; moreover, we give sharp bounds (up to a constant factor) on the exact values of
optweak(CARTr(F)) (in Section 2) and optamb,r(F) (in Section 3) for all sets F which are
a subset of the non-decreasing functions from X to {0, 1}. The results show that it is
possible for there to be an exponential difference in r between the two learning scenarios
as the number of functions |F | increases.

1

In Sections 4 and 5, we extend our bounds from Sections 2 and 3 on optamb,r(F)
and optweak(CARTr(F)) to multi-class functions, where the labels are not limited to just
Y = {0, 1}.

In a paper from Long [13], he determines the maximum factor gap between the
standard model and the standard weak reinforcement model (also called the bandit
model) for multi-class functions. He proved the upper bound optbandit(F) ≤ (1 +
o(1))(|Y | ln |Y |) optstd(F) and constructed infinitely many F for which optbandit(F) ≥
(1 − o(1))(|Y | ln |Y |) optstd(F) as a lower bound. A mistake in the proof of the lower
bound was corrected by Geneson [9].

In Section 6, we generalize this result to determine a lower bound and upper bound
on the maximum factor gap between optweak(CARTr(F)) and optstd(F) for multi-class
functions using probabilistic methods and linear algebra techniques. The proof uses
techniques previously used for experimental design [16, 15] and hashing, derandomization,
and cryptography [4, 14]. The bounds are tight up to a factor of r.

In Section 7, we explore a general result about any learning scenario and a method to
directly relate the number of mistakes that a learner makes in different learning scenarios.
We prove that if the learner is guaranteed to make at most M mistakes in the learning
process in some learning model, then the adversary can always force the learner to make
M mistakes in the first M inputs. We also prove a preliminary bound relating the
standard model with deterministic learning algorithms to the bandit model that allows
non-deterministic learning algorithms and conjecture a stronger bound that is related to
the upper bound on optbandit(F) from [13].

In Section 8, we define new models where the learner is trying to guess a function from
a set of permutations of length n. In the order model, denoted opt(PERMr(F)), each
turn, the adversary chooses r inputs, and the learner attempts to guess the corresponding
sub-permutation. In the relative position model, denoted opt(RPOSr(F)), each turn, the
adversary chooses r inputs and a distinguished element x among them, and the learner
attempts to guess the relative position of x in the corresponding sub-permutation. Finally,
in the delayed relative position model, the adversary instead gives the r elements to be
compared to x one at a time. We first establish general upper bounds similarly to previous
bounds. We then discuss adversary strategies for a few families of permutations that
resemble sorting algorithms.

Finally, in Section 9, we collate some areas of future work based on the results in our
paper.

2 Bounds on optweak(CARTr(F))

In this section, we establish upper and lower bounds on optweak(CARTr(F)) that are
within a constant factor of each other for non-decreasing F , which we define in Section 2.1.
We show that for non-decreasing F , optweak(CARTr(F)) = (1±o(1))r ln(|F |) (Theorem 5).

2.1 Non-decreasing F

In Sections 2 and 3 we mainly consider non-decreasing sets of functions F .

Definition 1. Without loss of generality impose an ordering on the set X, and call its

2

elements {1, 2, . . . , |X|}. Let F = {f1, f2. . . . , f|F |} be a subset of the functions from X
to {0, 1}. We say that F is non-decreasing if every function in F is non-decreasing.

In other words, there are integers 1 ≤ a1 < a2 < · · · < a|F | ≤ |X|+ 1 which are the
minimum numbers such that fi(ai) = 1 (with the convention that a|F | = |X|+ 1 if f|F | is
identically 0) and satisfy the following property for each 1 ≤ i ≤ |F |:

• If x > ai, then fi(x) = 1.

• If x < ai, then fi(x) = 0.

Remark 2. Let F be non-decreasing. For a function f ∈ F and any choice of r
inputs from the set X, there are at most r + 1 possible values of the corresponding
outputs (f(x1), . . . , f(xr)), namely (0, 0, . . . , 0, 0), (0, 0, . . . , 0, 1), . . ., (0, 1, . . . , 1, 1), and
(1, 1, . . . , 1, 1).

2.2 Bounds

The following theorem establishes an upper bound on optweak(CARTr(F)) by illustrating
a possible learner strategy.

Theorem 3. For non-decreasing F (as defined in Section 2.1),

optweak(CARTr(F)) < (r + 1) · ln(|F |) = (1 + o(1))r ln(|F |).

Proof. The learner’s strategy: pick the answer that corresponds to the most functions.
By Remark 2, we know that there are at most r + 1 such answers.

Each time the adversary says “NO,” if the learner previously knew that there were T
possible functions left, the learner is then able to reduce the number of possible functions
left by at least

T

of remaining possible answers to query
≥ T

r + 1
.

Thus, each answer of “NO” means that the number of remaining possibilities is multiplied
by r

r+1
.

Then, the learner will make at most

log r+1
r

(|F |) =
ln(|F |)

ln
(
1 + 1

r

) < ln(|F |)
1
r

1+ 1
r

= (r + 1) · ln(|F |)

mistakes, as desired.

We establish a lower bound on optweak(CARTr(F)) as well by using a possible adversary
strategy.

Theorem 4. For non-decreasing F (as defined in Section 2.1),

optweak(CARTr(F)) ≥ (1− o(1))r ln(|F |).

3

Proof. We outline the following strategy for the adversary: Each round, the adversary
will say “NO”; when they do this, some functions fail to remain consistent with the
answers given by the adversary. Let F ′ ⊆ F be the current set of functions that are
still consistent with the answers that the adversary has given so far. Furthermore, with
F ′ = {g1, g2, . . . , g|F ′|}, define 1 ≤ b1 < b2 < · · · < b|F ′| ≤ |X|+1 as the minimum numbers
such that gi(bi) = 1 (with the convention that b|F ′| = |X|+ 1 if f|F ′| is identically 0).

In each round, the adversary will choose the inputs

xi = b
i·
⌈
|F ′|
r+1

⌉
+1

for 1 ≤ i ≤ r. Then, no matter what the learner says, the adversary says “NO.” This

guarantees that the number of remaining consistent functions decreases by at most
⌈
|F ′|
r+1

⌉
functions per round. Thus, the adversary can continue for at least

(1− o(1)) log r+1
r

(|F |) ≥ (1− o(1)) · ln(|F |)
ln
(
1 + 1

r

) ≥ (1− o(1))r ln(|F |)

turns, using the bound that ln(1 + k) ≤ k for all k ≥ −1. Therefore, the adversary
guarantees that they can say “NO” at least (1− o(1))r ln(|F |) times, as desired.

Combining the above bounds, this implies that for non-decreasing F , we have the
following theorem:

Theorem 5. For non-decreasing F (as defined in Section 2.1),

optweak(CARTr(F)) = (1± o(1))r ln(|F |).

3 Bounds on optamb,r(F)

In this section, we establish upper and lower bounds on optamb,r(F) that are within a
constant factor of each other for non-decreasing F (defined in Section 2.1). We show
that optamb,r(F) = (1− o(1))2r ln(|F |) (Theorem 8). The upper bound in this section is
applicable to all families of functions F , but the lower bound is only applicable for the sets
of functions F as described in Section 2.1, similar to the bounds established in Section 2.

We prove the following theorem, a general upper bound for optamb,r(F), using a learner
strategy that does not make any assumptions about the set F (in particular, F does not
have to be non-decreasing).

Theorem 6. For all X and F (not limited to the conditions for non-decreasing F as
described in Section 2.1),

optamb,r(F) < min(2r ln(|F |), |F |).

Proof. The learner’s strategy to get optamb,r(F) < 2r ln(|F |): for each input that the
adversary gives, pick the answer that corresponds to the most functions which were both
known to be possible before the round started and consistent with all earlier guesses in
the current round.

Each time the adversary says “NO,” we claim that the learner can eliminate at least
1
2r

of the functions that he knew were possible before the round, i.e. if the learner knew

4

that there were T possible functions left before the round started, then he can guarantee
that his answer for all r inputs is consistent with at least T

2r
of those functions (the learner

would then eliminate these functions when the adversary tells him “NO”). To show this,
note that by induction, at least T

2k
of the functions will be consistent with the k answers

he has given so far for each 1 ≤ k ≤ r, by the definition of his strategy.

Therefore, each time the adversary says “NO” the number of remaining possible
functions is multiplied by at most 2r−1

2r
. So, the learner makes at most

log 2r

2r−1
(|F |) =

ln(|F |)
ln
(
1 + 1

2r−1

) < ln(|F |)
1

2r−1

1+ 1
2r−1

= 2r · ln(|F |)

mistakes with this strategy.

The learner’s strategy to get optamb,r(F) ≤ |F | − 1: Each time the adversary says
“NO,” the learner can eliminate at least 1 function. Once the learner has eliminated |F |−1
functions, no more errors will be made.

To establish a lower bound on optamb,r(F), we again need the assumptions about
non-decreasing F to demonstrate an adversary strategy.

Theorem 7. For non-decreasing F (as defined in Section 2.1),

optamb,r(F) ≥ (1− o(1))2r ln(|F |).

Proof. We outline the following strategy for the adversary. In this strategy, the adversary
will say “NO” at the end of each round. For each round, the adversary will choose a
series of input values xi based on the answers given by the learner. In each subround, the
next input xi is determined as follows: suppose that S is the set of all functions that are
consistent with all previous adversary answers from past rounds as well as all the answers
of the learner from the current round.

Since S ⊆ F , we can then set S = {g1, g2, . . . , g|S|} and define 1 ≤ b1 < b2 < · · · <
b|S| ≤ |X|+ 1 as the minimum numbers such that gi(bi) = 1 (with the convention that
b|S| = |X|+ 1 if f|S| is identically 0).

The adversary then chooses xi = bd |S|2 e for the current subround. This guarantees that

at each subround, the number functions consistent with all of the adversary’s previous
answers as well as all of the learner’s answers in the current round reduces by at least⌊
|S|
2

⌋
, i.e. from |S| to at most

⌈
|S|
2

⌉
. Thus, if T functions were consistent with all of the

adversary’s previous answers at the beginning of the current round, then at the end of the
round, at most

⌈
T
2r

⌉
becoming inconsistent with the adversary’s answers (by repeatedly

using the fact that
⌈
dxe
n

⌉
=
⌈
x
n

⌉
for all positive reals x and positive integers n).

This means that the adversary can continue to say “NO” for at least

(1− o(1)) log 2r

2r−1
(|F |) = (1− o(1))

ln(|F |)
ln
(
1 + 1

2r−1

)
≥ (1− o(1))

ln(|F |)
1

2r−1
= (1− o(1))2r ln(|F |)

turns, as desired.

5

Combining the above bounds, this implies that for non-decreasing F , we have the
following theorem:

Theorem 8. For non-decreasing F (as defined in Section 2.1),

optamb,r(F) = (1− o(1))2r ln(|F |).

Theorem 5 and Theorem 8 imply that for large r and large enough |F | where F is
non-decreasing, learners who are given all inputs at the beginning of each round do better
exponentially in r than their counterparts who receive inputs one at a time in each round.

This is surprising and illustrates how a small change in the flow of information could
have massive ramifications on the efficiency of learning algorithms.

4 Bounds on optweak(CARTr(F)) for Multi-class Functions

In this section, we determine an upper and lower bound for optweak(CARTr(F)) on
multi-class functions. The following two theorems prove these bounds using similar
strategies as in Section 2.

Theorem 9. For a subset of functions F of the non-decreasing functions from X to
{0, 1, . . . , k − 1},

optweak(CARTr(F)) ≤
(
r + k − 1

k − 1

)
ln(|F |).

Proof. As in Theorem 3, the learner’s strategy will be to pick the answer that corresponds
to the most functions. There are at most

(
r+k−1
k−1

)
possible answers to a query, so each

answer of “NO” multiplies the number of remaining functions by at most
(r+k−1

k−1)−1
(r+k−1

k−1)
.

Thus, learner will make at most

log (r+k−1
k−1)

(r+k−1
k−1)−1

(|F |) =
ln(|F |)

ln

(
1 + 1

(r+k−1
k−1)−1

) ≤ ln(|F |)
1

(r+k−1
k−1)−1

1+ 1

(r+k−1
k−1)−1

=

(
r + k − 1

k − 1

)
ln(|F |)

mistakes, proving that

optweak(CARTr(F)) ≤
(
r + k − 1

k − 1

)
ln(|F |).

Theorem 10. For a subset of functions F of the non-decreasing functions from X to
{0, 1, . . . , k − 1},

optweak(CARTr(F)) ≥ 1

2k−2
(1− o(1))r ln(|F |).

Proof. Let Si(f) for 1 ≤ i ≤ k − 1 be the value in X such that f(x) ≤ i for x ≤ Si(f)
and f(x) > i for x > Si(f).

Then, let F ′ be the largest subset of F that can be ordered into f1, f2, . . . , f|F ′| such
that all sequences Si(f1), Si(f2), . . . Si(f|F ′|) for 1 ≤ i ≤ k − 1 are monotonic. Consider

6

ordering the functions in |F | by increasing order of S1(f). Then, we want to find the
largest subsequence of functions in the ordering such that all other sequences of Si(f)
are monotonic as well. By Lemma 3.1 of Bounding Sequence Extremal Functions with

Formations [10], |F ′| ≥ |F |
1

2k−2 .

For 1 ≤ i ≤ r, there exists a xi ∈ X such that f
i·
⌈
|F ′|
r+1

⌉(xi) 6= f
i·
⌈
|F ′|
r+1

⌉
+1

(xi). The

adversary can choose these xi with any additional x-values which can be chosen at random
if there are repeat xi. This splits the |F ′| functions about evenly into r + 1 sections.

Because of the monotonicity of Si, the learner cannot choose a combination of r
values that satisfy two functions in different sections. Thus, the learner can guarantee to

eliminate at most
⌈
|F ′|
r+1

⌉
functions. This situation is identical to the one in Theorem 4.

Thus,

optweak(CARTr(F)) ≥ (1− o(1))r ln(|F ′|) ≥ 1

2k−2
(1− o(1))r ln(|F |).

5 Bounds on optamb,r(F) for Multi-class Functions

In this section, we determine an upper and lower bound for optamb,r(F) on multi-class
functions. The following two theorems prove these bounds using similar strategies as in
Section 3.

Theorem 11. For all X and F (not limited to F being a set of non-decreasing functions)

optamb,r(F) < min(kr ln(|F |), |F |).

Proof. The learner’s strategy is that for each input that the adversary gives, the should
pick the answer that corresponds to the most functions which were both known to be
possible before the round started and consistent with all earlier guesses in the current
round.

With this strategy the learner can guarantee to eliminate at least 1
kr

of the possible
functions each round. Then, each time the adversary says “NO”, the number of remaining
possible functions is multiplied by at most kr−1

kr
. Thus, the learner makes at most

log kr

kr−1
(|F |) =

ln(|F |)
ln
(
1 + 1

kr−1

) ≤ ln(|F |)
1

kr−1

1+ 1
kr−1

= kr · ln(|F |)

mistakes, establishing the bound

optamb,r(F) < kr ln(|F |).

Remark 12. Similar to Theorem 6, this theorem does not make any assumption about
the functions in F and so represents a general learner strategy for any F .

Theorem 13. For a subset of functions F of the non-decreasing functions from X to
{0, 1, . . . , k − 1},

optamb,r(F) ≥ (1− o(1))2r−k+2 ln(|F |).

7

Proof. As in subsection 10, we find the largest subset F ′ of F that can be ordered into
f1, f2, . . . , f|F ′| such that all sequences Si(f1), Si(f2), . . . Si(f|F ′|) for 1 ≤ i ≤ k − 1 are
monotonic. The strategy for the adversary is that for each input, we look at the set of
functions that are possible before the round started, consistent with all earlier guesses
in the current round, and in F ′. We label these functions g1, g2, . . . , gn such that all
sequences Si(g1), Si(g2), . . . , Si(gn) are monotonic. Then, the adversary should pick an x
such that gbn2 c(x) 6= gbn2 c+1(x). This guarantees that each subround reduces the number

of functions consistent with all of the previous answers from n to
⌈
n
2

⌉
. This is the exact

same situation as in Theorem 7, giving us the bound

optamb,r(F) ≥ (1− o(1))2r ln(|F ′|) ≥ (1− o(1))2r−k+2 ln(|F |).

6 Bounds Comparing optweak(CARTr(F)) to optstd(F)

In another paper by Long [13], he compares the standard and bandit model for multi-class
functions, and determines a bound on the maximum factor gap between them. There was
an error in Long’s proof of the lower bound, but Geneson fixes this error in [9]. In this
section, we take a generalization of this idea and determine a lower bound of the maximum
factor gap between optweak(CARTr(F)) and optstd(F) using similar techniques as in Long’s
and Geneson’s work. The proof uses techniques previously used for experimental design
[16, 15] and hashing, derandomization, and cryptography [14, 4]. We also adapt the upper
bound in [13] to show that our lower bound is tight when r is fixed.

Lemma 14. For any subset S ⊂ {1, . . . , p− 1}n, there are elements u = (u1, . . . , ur) ∈
({1, . . . , p− 1}n)r such that for all z = (z1, . . . , zr) ∈ {1, . . . , p− 1}r,

|{x ∈ S : ∀1 ≤ i ≤ r, x · ui ≡ zi (mod p)}| ≤ |S|
pr

+ 2
√
|S|.

Proof. Suppose S is any subset of {1, . . . , p−1}n, and let u be chosen uniformly at random
from ({1, . . . , p− 1}n)r. For each z ∈ {1, . . . , p− 1}r, let Tz be the set of x ∈ S for which

x · ui = zi for all i. By the linearity of expectation, we have E(|Tz|) = |S|
pr

for all z.

Consider an arbitrary z ∈ {1, . . . , p− 1}r. For each s ∈ S, define the indicator random
variable Xs,z such that Xs,z = 1 if s · ui = zi for all i, and Xs,z = 0 otherwise. If s, t ∈ S
are not multiples of each other (mod p), then Cov(Xs,z, Xt,z) = 0. If s and t are multiples
of each other, then Cov(Xs,z, Xt,z) = E(Xs,zXt,z)− E(Xs,z)E(Xt,z).

If z contains any nonzero zi, then E(Xs,zXt,z) = 0, giving Cov(Xs,z, Xt,z) = − 1
p2r

.
Thus,

Var(|Tz|) = Var

(∑
s∈S

Xs,z

)
=
∑
s∈S

Var(Xs,z) +
∑
s 6=t

Cov(Xs,z, Xt,z)

≤
∑
s∈S

Var(Xs,z) = |S|
(

1

pr
− 1

p2r

)
<
|S|
pr
.

By Chebyshev’s inequality, P
(
|Tz| ≥ |S|

pr
+ 2
√
|S|
)
≤ 1

4pr
.

8

Otherwise, E(Xs,zXt,z) = 1
pr

, giving Cov(Xs,z, Xt,z) = 1
pr
− 1

p2r
< 1

pr
. Note that there

are at most (p− 2)|S| ordered pairs (s, t) for which s and t are multiples of each other
(mod p) with s 6= t. Thus,

Var(|Tz|) = Var

(∑
s∈S

Xs,z

)
=
∑
s∈S

Var(Xs,z) +
∑
s 6=t

Cov(Xs,z, Xt,z)

≤
∑
s∈S

Var(Xs,z) +
(p− 2)|S|

pr
<
|S|
pr

+
(p− 2)|S|

pr
<
|S|
pr−1

.

By Chebyshev’s inequality, P
(
|Tz| ≥ |S|

pr
+ 2
√
|S|
)
≤ 1

4pr−1 .

By the union bound,

P
(
∀z : |Tz| ≤

|S|
pr

+ 2
√
|S|
)
≥ 1− pr − 1

4pr
− 1

4pr−1
=

3pr − p+ 1

4pr
≥ 1

2
.

Thus, the conditions are satisfied with probability greater than 1
2

when u is chosen
randomly, so there must always exist a u satisfying the conditions.

Theorem 15. For all M > 2r and infinitely many k, there exists a set F of functions
from a set X to a set Y with |Y | = k such that optstd(F) = M and

optweak(CARTr(F)) ≥ (1− o(1)) (|Y |r ln |Y |) (optstd(F)− 2r).

Proof. Fix n ≥ 3 and p ≥ 5. For all a ∈ {0, . . . , p− 1}n, we define fa : {0, . . . , p− 1}n →
{0, . . . , p−1} so that fa(x) = a·x (mod p) and define FL(p, n) = {fa : a ∈ {0, . . . , p−1}n}.
It is known that optstd(FL(p, n)) = n for all primes p and n > 0 [18, 2, 3, 13].

We now determine a bound on optweak(CARTr(FL(p, n))). Let S = {1, . . . , p− 1}n, so
|S| = (p− 1)n. Let R1 = {fa : a ∈ S} ⊂ FL(p, n). In each round t > 1, the adversary will
create a list Rt of members of {fa : a ∈ S} that are consistent with its previous answers.
It will always answer “NO” and choose (x1, . . . , xr) that minimizes

max
(y1,...,yr)

|Rt ∩ {f : ∀1 ≤ i ≤ r, f(xi) = yi}| .

By Lemma 14, we have

Rt+1 ≥ |Rt| −
|RT |
pr
− 2
√
|Rt| ≥ |Rt| −

|Rt|
pr
− 2|Rt|
pr
√

ln p
=

(
1−

1 + 2√
ln p

pr

)
|Rt|

as long as |Rt| ≥ p2r ln p. Thus, we have |Rt| ≥
(

1−
1+ 2√

ln p

pr

)t−1
(p − 1)n. Therefore,

whenever

(
1−

1+ 2√
ln p

pr

)t−1
(p−1)n ≥ p2r ln p, the adversary can guarantee t wrong guesses.

This is true for t = (1− o(1))(n− 2r)pr ln p, which gives us the desired result.

Remark 16. Since we have the trivial inequality optamb,r(F) ≥ optweak(CARTr(F))
because the learner has strictly more information in the scenario on the RHS, then for
the sets F constructed above, we also have

optamb,r(F) ≥ (1− o(1)) (|Y |r ln |Y |) (optstd(F)− 2r).

9

Now, we establish a similar upper bound relating optweak(CARTr(F)) and optstd(F).

Lemma 17. For all sets F of functions f : X → Y , we have optstd(CARTr(F)) =
optstd(F).

Proof. First, recall that CARTr(F) is a set of functions f : Xr → Y r. Note that when
the adversary always uses r copies of the same input and asks the same questions as they
would in the standard model with F , then the learner is guaranteed to make at least as
many mistakes with CARTr(F) as they would with F . Therefore, optstd(CARTr(F)) ≥
optstd(F).

On the other hand, consider every time that the learner makes a mistake while learning
CARTr(F) under the standard model. This means that there is some input x ∈ X for
which the learner answers incorrectly and subsequently receives the correct answer for (in
addition to the correct answers for the r−1 remaining inputs for the round). If the learner
ignores the rest of the information and only takes into account the new information about
x, then this is equivalent to making a mistake about the input x in the standard model
with F . Therefore, there is a way for the learner to reduce learning with CARTr(F) to
learning with F under the standard model, implying that optstd(CARTr(F)) ≤ optstd(F).

The lemma is then proven by putting these two bounds together.

Now, in [13], Long proved the upper bound

optweak(F) ≤ (1 + o(1))(|Y | ln |Y |) optstd(F).

We will use Lemma 17 to adapt this to the modified weak reinforcement model.

Theorem 18. For any set F of functions from some set X to {0, 1, . . . , k − 1} and for
any r ≥ 1,

optweak(CARTr(F)) ≤ (1 + o(1)) (|Y |rr ln |Y |) optstd(F).

Proof. Substituting CARTr(F) for F (and therefore setting Y r in place of Y) in the upper
bound from [13] and using Lemma 17, we get

optweak(CARTr(F)) ≤ (1 + o(1))(|Y |r ln (|Y |r)) optstd(CARTr(F))

= (1 + o(1))(|Y |rr ln |Y |) optstd(F),

as desired.

Remark 19. With r fixed, Theorems 15 and 18 demonstrate that the upper bound in
Theorem 18 is sharp up to a constant factor.

7 Relating Different Learning Scenarios

Let opt(F) be the worst-case number of mistakes that the learner will make in some
learning scenario (e.g. weak reinforcement learning, strong reinforcement learning, or
delayed, ambiguous reinforcement learning). The three aforementioned choices would have
opt(F) = optweak(F), opt(F) = optstrong(F), and opt(F) = optamb,r(F), respectively.

In this section, we first prove Theorem 23, which states that there is a way for the
adversary to formulate their questions such that the learner is guaranteed to perform with

10

at least the worst-case number opt(F) of mistakes, and that all these mistakes happen
in the first opt(F) questions. This theorem is very general and applies to all learning
scenarios.

Definition 20 (Streetegy). A streetegy is a k-nary tree which represents a possible
adversary’s strategy as follows: each node represents an input from X that the adversary
can ask the learner. The root is the first input that the adversary gives the learner, and
each node has k = |Y | children: one for each possible element of Y that the learner could
answer. Each edge from parent to child is also marked by an ordered pair (L,A) where
L,A ∈ Y . If the learner answers L, then the adversary will answer A (and the learner has
made a mistake if L 6= A), and continue with the strategy by following the edge. The
streetegy is truncated below node N if all nodes N ′ in the subtree under N have an edge
coming out of it with L = A (this means that it is possible for the learner to answer
correctly for all nodes under N , so the learner may be able to avoid any future mistakes).
Finally, the streetegy’s edges must be consistent; i.e. for every path along the streetegy,
all pairs (L,A) from the edges along that path can be represented by a single function
from the family F .

Definition 21 (Optimal Streetegy). An optimal streetegy is a streetegy such that all
leaves represent states where the learner has made at least opt(F) mistakes.

Definition 22 (Depth). The depth of a streetegy is the maximum length of a path in
the streetegy that an optimal learner could possibly follow.

It is clear by definition that all optimal streetegies have depth at least opt(F), since
the paths must be at least length opt(F) to have that many mistakes.

Theorem 23. There exists an optimal streetegy for the adversary with depth exactly
optstrong(F).

Proof. Suppose for sake of contradiction that there was not. Consider some optimal
streetegy with minimal depth (which exists by the Well Ordering Principle), and consider
any path (that an optimal learner could possibly follow) from the root to a leaf with
length larger than opt(F) (since by assumption, the minimal depth is strictly greater
than opt(F)). Since the optimal learner makes at most opt(F) mistakes, an optimal
learner is guaranteed to have at least one correct answer along this path. This means
that there is at least one node N along this path such that one of the edges protruding
from it satisfies L = A; let this edge point to node N ′. Replace the subtree rooted at N
(including N) with the subtree rooted at N ′ (including N ′). This does not violate the
validity (consistency of edges) or the optimality of the streetegy. It also decreases the
length of the optimal learner’s possible path by 1. If we repeat this for all possible paths
of length larger than opt(F), we will have constructed a new streetegy with strictly lesser
depth, contradiction.

Inspired by this commonality between different learning scenarios, we establish a bound
relating the number of mistakes made in two different situations using a novel technique
and provide a stronger conjecture which we believe is true.

In what follows, let opt1(F) be the worst case number of errors using strong reinforcement
learning, where the learner receives the correct answer after each round of learning (so it
is another name for optstrong(F) from [1] and optstd(F) from [13]), and let opt2(F) be the

11

worst case expected number of errors using weak reinforcement learning with a possibly
non-deterministic learning algorithm, where the learner only receives an indication of
whether their guess was correct or not after each round of learning (this corresponds to
B-ErrrH(T) in [7]).

Proposition 24. For all families of functions F : X → {1, 2, . . . , k}, the following
inequality relating opt1(F) and opt2(F) holds:

opt2(F) ≤ (k + |X| − 1) opt1(F).

Proof. Let S be an optimal strategy which guarantees at most opt1(F) mistakes in the
learning process with strong reinforcement learning. We construct a strategy S ′ for the
scenario of weak reinforcement learning which guarantees at most (k + |X| − 1) opt1(F)
mistakes, average. The strategy works in phases: each phase mimics the process of S
making one mistake, and receiving the correct answer.

For the first phase, S ′ would guess whatever S would when given no information; if an
input is repeated, then it will then guess randomly among the remaining k − 1 possible
answers. Clearly, there will be at most k+ |X|− 1 mistakes, on average, before the learner
guesses an answer correctly which was not what S would have guessed. This is then used
a the first “mistake” of S, and ends the phase.

For the next phase, S ′ would guess what S would when given the information from
the first “mistake.” Continuing in this manner, since we know that there are at most
opt1(F) phases by definition of S, and that each phase has at most k + |X| − 1 mistakes
on average, this implies that

opt2(F) ≤ (k + |X| − 1) opt1(F),

as desired.

Remark 25. This way of relating the number of mistakes in different learning situations
revolves around adapting the strategies of one situation to another. This involves similar
thinking to the way that more general results like Theorem 23 are proven (i.e. thinking
about tree-like structures and how the learner can mimic movement on the tree for one
scenario in a different learning environment). We believe this method of proof can be
made to work for our conjecture below.

In fact, we believe that the following stronger statement is true, which eliminates |X|
from the RHS:

Conjecture 26. For all families of functions F : X → {1, 2, . . . , k}, the following
inequality relating opt1(F) and opt2(F) holds:

opt2(F) ≤ (k − 1) opt1(F).

For the k = 2 case, we have equality, which is expected. We believe that a variant
of the above proof of the weaker proposition could work for this conjecture. This result
would be related to the established result from [13] that

optbandit(F) ≤ (1 + o(1))(k ln k) optstd(F),

the difference being that the LHS of this bound is for deterministic algorithms while we
allow non-deterministic algorithms in the LHS of our conjecture (and measure worst case
expected number of mistakes in opt2(F)).

12

8 New Models for Permutation Functions

We define and explore new models where the family of possible functions F is a set of
permutations of length n and where the leaner tries to guess information about the relative
orders of inputs.

8.1 The Order Model

We define a new variant model called the order model.

Definition 27. In the order model, for a set F of permutations of n numbers, the learner
tries to guess a permutation function f ∈ F. On each turn, the adversary chooses r inputs
to f (in other words a set S ⊆ [n], |S| = r). The learner guesses the sub-permutation of f
corresponding to the outputs.

Under weak reinforcement, the adversary informs the learner if they made a mistake,
and under strong reinforcement, the adversary gives the correct sub-permutation to
the learner. We denote the worst-case amount of mistakes for the learner with weak
reinforcement as optweak(PERMr(F)) and with strong reinforcement as optstrong(PERMr(F)).
Note that optstrong(PERMr(F)) ≤ optweak(PERMr(F)), and that if r = 2, strong and
weak reinforcement are identical, so equality holds.

We first find an upper bound by presenting a strategy for the learner, analogous to
Theorem 6 for the order model.

Theorem 28. For n > 1, opt(PERMr(F)) < r! ln |F |.

Proof. For each input that the adversary gives, the learner can pick the answer that
corresponds to the most possible permutations. After each incorrect guess, at least 1

r!
of

the previously possible permutations get eliminated. Therefore, the number of incorrect
guesses, and consequently the number of mistakes, is at most

ln r!
r!−1
|F | < r! ln |F |.

We now find a bound on opt(PERM2(Sn)).

Definition 29. For n ≥ 1, let vn := blog2 nc be the largest integer such that 2vn ≤ n. We

define p(n) :=
∑

1≤m≤n

vm to be the cumulative sum of vn.

Lemma 30. For n ≥ 1, p(n) = (n+ 1)vn − 2(2vn − 1).

Proof. We show this by induction. The base case n = 1 holds.

If n is not a power of two, vn−1 = vn, so

p(n) = p(n− 1) + vn = (nvn − 2(2vn − 1)) + vn = (n+ 1)vn − 2(2vn − 1),

as desired.

Otherwise, n = 2n is a power of two, so vn−1 = vn − 1 and

p(2vn) = p(2vn − 1) + vn = (2vn(vn − 1)− 2(2vn−1 − 1)) + vn = (2vn + 1)vn − 2(2vn − 1),

as desired.

13

Using these properties, we now present two strategies for the adversary that both
achieve a lower bound of p(n).

Theorem 31. The adversary can achieve opt(PERM2(Sn)) ≥ p(n) under the order model.

Proof. The first strategy resembles quicksort. The adversary chooses all pairs of inputs
(i, j) for i > j in lexicographically decreasing order, and whatever the learner says, the
adversary always responds “NO” if it is possible. We use strong induction to show the
desired bound. The base case of n = 0 holds.

After guessing the permutations for all pairs of the form (n, j), the learner knows what
f(n) is and which of the other n− 1 numbers have smaller values. After this point, the
learner cannot make a mistake on a comparison between a smaller number and a larger
number. Thus, the learner will at most be able to guarantee

(n−1)+opt(PERM2(Sf(n)−1))+opt(PERM2(Sn−f(n))) ≥ (n−1)+p(f(n)−1)+p(n−f(n))

mistakes in total. Because p(n) is convex, this is minimized at f(n) =
⌈
n
2

⌉
. Plugging this

in gives

(n− 1) + p(f(n)− 1) + p(n− f(n)) = (n− 1) + p
(⌈n

2

⌉
− 1
)

+ p
(
n−

⌈n
2

⌉)
= (n− 1) + p

(⌊
n− 1

2

⌋)
+ p
(⌊n

2

⌋)
.

If n is not a power of two, vbn−1
2 c = vbn2 c = vn − 1, so this becomes

(n− 1) + p(f(n)− 1) + p(n− f(n)) = (n− 1)

+

((⌊
n− 1

2

⌋
+ 1

)
(vn − 1)− 2(2vn−1 − 1)

)
+
((⌊n

2

⌋
+ 1
)

(vn − 1)− 2(2vn−1 − 1)
)

= (n− 1) + (n+ 1)(vn − 1)− 2(2vn − 2)

= (n− 1)− (n+ 1) + (n+ 1)vn − 2(2vn − 1) + 2

= (n+ 1)vn − 2(2vn − 1)

= p(n),

as desired. Otherwise, n = 2vn is a power of two, so vbn−1
2 c + 1 = vbn2 c = vn − 1 and this

becomes

(n− 1) + p(f(n)− 1) + p(n− f(n)) = (2vn − 1) + p
(
2vn−1 − 1

)
+ p
(
2vn−1

)
= (2vn − 1)

+ 2vn−1(vn − 2)− 2(2vn−2 − 1)

+ (2vn−1 + 1)(vn − 1)− 2(2vn−1 − 1)

= 2vnvn + vn − 4 · 2vn−1 + 2

= (2vn + 1)vn − 2(2vn − 1)

= p(n),

as desired.

14

A second strategy resembles the insertion sort. The adversary withholds any inquiries
about f(i) until the order of the smaller inputs j < i is known. We use induction to show
the desired bound. The base case of n = 0 holds.

For n > 0, by the inductive hypothesis, the adversary can force the learner to make at
least p(n − 1) mistakes without learning anything about f(n). Assume without loss of
generality that f(1), . . . , f(n− 1) are in increasing order.

The adversary then prolongs the learner from finding the position of f(n) by making
the learner do a binary search. Specifically, if at some point the learner’s bounds on f(n)
are a < f(n) ≤ b, the adversary asks about (n,m) where m is a+b

2
rounded to the nearest

integer. In this way, the adversary ensures that the number of possible values for f(n) is
at least

⌊
b−a
2

⌋
after the learner’s guess. Since the number of possible values starts at n,

the learner will at most be able to guarantee vn mistakes to find the value of f(n). Thus,

opt(PERM2(Sn)) ≥ opt(PERM2(Sn−1)) + vn ≥ p(n− 1) + vn = p(n)

as desired.

We can also get a bound for r > 2 with a strategy that resembles merge sort.

Theorem 32. For general r, the adversary can achieve

opt(PERMr(Sn)) ≥ (1− o(1))(r − 1)!n logr n.

Proof. We use strong induction on n.

First, the adversary divides [n] into
⌊
n
r

⌋
sets Si each of size r (ignoring any remaining

elements). For each i, the adversary repeatedly asks for ordering of Si, saying “NO” each
time until the order is known by the learner. This takes a total of

⌊
n
r

⌋
(r!− 1) mistakes.

Then, the adversary forms sets Cj from the relative jth elements of each set, and uses
the induction hypothesis on n; note that knowing any of Cj’s orders does not eliminate
possibilities for the orders of other Cj. This gives a recursion of the form

opt(RPOSr(Sn)) ≥ (1−o(1))n(r−1)!+r opt(PERMr(Sbnr c)) = (1−o(1))(r−1)!n logr(n),

as desired.

8.2 The Relative Position Model

We define a third variant called the relative position model.

Definition 33. In the relative position model, for a set F of permutations of n numbers,
the learner tries to guess a permutation function f ∈ F. On each turn, the adversary
chooses a set S of r inputs to f and an element x /∈ S, and asks about the pair (x, S). The
learner guesses the position of x in the subpermutation of f corresponding to {x} ∪ S.

Under weak reinforcement, the adversary informs the learner if they made a mistake,
and under strong reinforcement, the adversary gives the correct position to the learner.
We denote the worst-case amount of mistakes for the learner with weak reinforcement
as optweak(RPOSr(F)) and with strong reinforcement as optstrong(RPOSr(F)). Note that
optstrong(RPOSr(F)) ≤ optweak(RPOSr(F)), and that if r = 1, both sides of the equation
are equal to opt(PERM2(Sn)) = opt(Sn).

15

We again imitate Theorem 6 for the relative position model to obtain an upper bound.

Theorem 34. If F ⊆ Sn, opt(RPOSr(F)) < (r + 1) ln |F |.

Proof. For each input that the adversary gives, the learner can pick the answer that
corresponds to the most possible permutations. After each incorrect guess, at least
1
r+1

of the previously possible permutations get eliminated. Therefore, the number of
incorrect guesses, and consequently the number of mistakes, is at most log r+1

r
(|F |) <

(r + 1) ln |F |.

We generalize the insertion sort proof of Theorem 31 to obtain the following result:

Theorem 35. The adversary can achieve

opt(RPOSr(Sn)) ≥ (1− o(1))rn lnn.

under the relative position model.

Proof. We present a strategy that resembles the insertion sort by strong induction on n.
The adversary withholds any inquiries about f(i) until the order of the smaller inputs
j < i is known. We use induction to show the desired bound. The base case of n = 0
holds.

For n > 0, by the inductive hypothesis, the adversary can force the learner to make at
least p(n) mistakes without learning anything about f(n + 1). Assume without loss of
generality that f(1), . . . , f(n) are in increasing order. Let Fi be the function on [n] that
maps m to 1 if m ≥ i and 0 otherwise. Note that these functions are non-decreasing.

The problem is equivalent to the learner guessing Ff(n+1), where the adversary queries
r values at a time. Thus by Theorem 4, the adversary can force the learner to make at
least optweak(CARTr(F)) = (1− o(1))r lnn mistakes, as desired.

In a similar fashion, we can prove a similar result for pattern-avoiding permutations:

Theorem 36. If Sπ is the set of π-avoiding permutations of length n,

opt(RPOSr(Sπ)) ≥ (1− o(1))rn ln(|π| − 1),

where |π| denotes the length of the permutation pattern.

Proof. The adversary withholds any inquiries about f(i) until the order of the smaller
inputs j < i is known. We use induction to show the desired bound. The base case of
n ≤ k holds.

For n > 0, by the inductive hypothesis, the adversary can force the learner to
make at least p(n) mistakes without learning anything extra about f(n + 1). Let N
be the set of possible values of f(n + 1). Any number less than π(k) or more than
n− k + 1 + π(k) must be in N as it would not be able to form the permutation pattern
π, so |N | ≥ π(k) + k − 1− π(k) = k − 1. Let the elements of N in increasing order be
s1, . . . , sk−1.

Let Fi be the function on [k − 1] that maps m to 1 if m ≥ si and 0 otherwise. Note
that these functions are non-decreasing.

16

The problem is equivalent to the learner guessing Ff(n+1), where the adversary queries
r values at a time. Thus by Theorem 4, the adversary can force the learner to make at
least

optweak(CARTr(F)) = (1− o(1))r ln |N | ≥ (1− o(1))r ln(k − 1)

mistakes, as desired.

When π = Ik, the identity permutation, the size of F is (k− 1)O(n) [17, 8]. Combining
Theorem 36 with 34 gives

Corollary 37. For F the family of Ik-avoiding permutations, opt(RPOSr(F)) = Θ(rn ln k).

8.3 The Delayed Relative Position Model

We define delayed reinforcement for the relative position model:

Definition 38. In the delayed relative position model, for a set F of permutations of
n numbers, the learner tries to guess a permutation function f ∈ F. On each turn, the
adversary picks an input x and proceeds to give the r elements of a set S one by one
(with the requirement that x /∈ S). After each of the adversary’s inquiries, the learner
guesses either “HIGHER” or “LOWER”. After each round, the learner’s final guess for
the relative position of x in S is one plus the number of times they said “HIGHER.”

Under weak reinforcement, the adversary informs the learner if their final guess is
incorrect, and under strong reinforcement, the adversary gives the correct position to
the learner. We denote the worst-case amount of mistakes for the learner with weak
reinforcement as optwrpos,r(F) and with strong reinforcement as optsrpos,r(F). Note that
optsrpos,r(F) ≤ optwrpos,r(F), and that if r = 1, both sides of the equation are equal to
opt(PERM2(Sn)) = opt(Sn).

We state the analogs of the relative position model results for the delayed version:

Theorem 39. Given a set of permutations F ⊆ Sn and a positive integer r, these analogs
of the results in Section 8.2 hold:

• Analog of Theorem 34: optwrpos,r(F) < 2r ln |F |.

• Analog of Theorem 35: The adversary can achieve

optwrpos,r(F) ≥ (1− o(1))2rn lnn.

under the relative position model.

• Analog of Theorem 36: If Sπ is the set of π-avoiding permutations of length n,

opt(RPOSr(Sπ)) ≥ (1− o(1))2rn ln(|π| − 1),

where |π| denotes the length of the permutation pattern.

• Analog of Corollary 37: opt(RPOSr(F)) = Θ(2rn ln k), where F is the family of
Ik-avoiding permutations.

The proofs of these results are nearly identical to those of the previous section, with
(r + 1) usually replaced by 2r and cited results from Section 2 replaced with analogous
results from Section 3, so in the interest of concision we omit them here.

17

9 Future Work

In this final section, we outline some possible areas for future work based on the results in
our paper.

In Sections 2 and 3, we mainly focused on non-decreasing F (as defined in Section 2.1)
for the bounds. What bounds can be obtained for general sets of functions F?

In Sections 4 and 5, we determined some bounds for the models on non-decreasing
multi-class functions. Are there tighter bounds? What bounds can be obtained for general
sets of functions?

In Section 6, we determined a lower and upper bound on the maximum factor gap
between the modified weak reinforcement model and the standard model. Can we establish
a stricter upper bound by using the strategy found in Long’s paper [13]? Can similar
lower and upper bounds on the maximum factor gap between the delayed, ambiguous
model and the standard model be established?

In Section 7, we proved Lemma 24, which stated that

opt2(F) ≤ (k + |X| − 1) opt1(F).

As in Conjecture 26, we believe that

opt2(F) ≤ (k − 1) opt1(F)

is true. Furthermore, what bounds can we establish between other pairs of learning
scenarios (such as the delayed, ambiguous reinforcement learning scenario)?

In Section 8, Theorem 32, we described an adversary strategy for the order model that
gives a bound of

opt(PERMr(Sn)) ≥ (1− o(1))(r − 1)!n logr n,

whereas Theorem 28 gives an upper bound of

opt(PERMr(Sn)) < r! lnn! = (1− o(1))r!n lnn.

We conjecture that the latter bound is tight, i.e. that opt(PERMr(Sn)) = (1−o(1))r!n lnn.

Acknowledgments

We thank our mentor, Professor Jesse Geneson of San José State University, who inspired
us to pursue this topic and has guided us throughout the project. We are grateful
for his valuable insights and advice on this paper. We would also like to thank the
MIT PRIMES-USA program and everyone involved in providing us with this research
opportunity.

18

References

[1] Peter Auer and Philip M. Long. “Structural Results About On-line Learning Models
With and Without Queries”. In: Machine Learning 36 (3 Sept. 1999), pp. 147–181.
doi: 10.1023/A:1007614417594.

[2] Peter Auer, Philip M. Long, Wofgang Maass, and Gerhard J. Woeginger. “On the
complexity of function learning”. In: Machine Learning 18 (2 Feb. 1995), pp. 187–230.
issn: 1573-0565. doi: 10.1007/BF00993410.

[3] Avrim Blum. “On-Line Algorithms in Machine Learning”. In: Online Algorithms:
The State of the Art. Ed. by Amos Fiat and Gerhard J. Woeginger. Berlin, Heidelberg:
Springer Berlin Heidelberg, 1998, pp. 306–325. isbn: 978-3-540-68311-7. doi: 10.
1007/BFb0029575. url: https://doi.org/10.1007/BFb0029575.

[4] J. Lawrence Carter and Mark N. Wegman. “Universal Classes of Hash Functions
(Extended Abstract)”. In: Proceedings of the Ninth Annual ACM Symposium
on Theory of Computing. STOC ’77. Boulder, Colorado, USA: Association for
Computing Machinery, 1977, pp. 106–112. isbn: 9781450374095. doi: 10.1145/
800105.803400. url: https://doi.org/10.1145/800105.803400.

[5] K. Crammer and C. Gentile. “Multiclass classification with bandit feedback using
adaptive regularization”. In: Machine Learning 90 (2012), pp. 347–383.

[6] Varsha Dani, Thomas Hayes, and Sham Kakade. “Stochastic Linear Optimization
under Bandit Feedback.” In: Jan. 2008, pp. 355–366.

[7] Amit Daniely and Tom Helbertal. “The price of bandit information in multiclass
online classification”. In: CoRR abs/1302.1043 (2013). arXiv: 1302.1043. url:
http://arxiv.org/abs/1302.1043.

[8] Jacob Fox. “Stanley-Wilf limits are typically exponential”. In: (2013). arXiv: 1310.
8378 [math.CO].

[9] Jesse Geneson. “A note on the price of bandit feedback for mistake-bounded online
learning”. In: CoRR abs/2101.06891 (2021). arXiv: 2101.06891. url: https:

//arxiv.org/abs/2101.06891.

[10] Jesse Geneson, Rohil Prasad, and Jonathan Tidor. “Bounding Sequence Extremal
Functions with Formations”. In: The Electronic Journal of Combinatorics 21 (3
2014). doi: 10.37236/3663. url: https://www.combinatorics.org/ojs/index.
php/eljc/article/view/v21i3p24.

[11] Elad Hazan and Satyen Kale. “NEWTRON: An efficient bandit algorithm for online
multiclass prediction”. English (US). In: Advances in Neural Information Processing
Systems (Dec. 2011). 25th Annual Conference on Neural Information Processing
Systems 2011, NIPS 2011 ; Conference date: 12-12-2011 Through 14-12-2011,
pp. 891–899.

[12] Nick Littlestone. “Learning Quickly When Irrelevant Attributes Abound: A New
Linear-Threshold Algorithm”. In: Machine Learning 2 (4 Apr. 1988), pp. 285–318.
issn: 1573-0565. doi: 10.1023/A:1022869011914.

19

https://doi.org/10.1023/A:1007614417594
https://doi.org/10.1007/BF00993410
https://doi.org/10.1007/BFb0029575
https://doi.org/10.1007/BFb0029575
https://doi.org/10.1007/BFb0029575
https://doi.org/10.1145/800105.803400
https://doi.org/10.1145/800105.803400
https://doi.org/10.1145/800105.803400
https://arxiv.org/abs/1302.1043
http://arxiv.org/abs/1302.1043
https://arxiv.org/abs/1310.8378
https://arxiv.org/abs/1310.8378
https://arxiv.org/abs/2101.06891
https://arxiv.org/abs/2101.06891
https://arxiv.org/abs/2101.06891
https://doi.org/10.37236/3663
https://www.combinatorics.org/ojs/index.php/eljc/article/view/v21i3p24
https://www.combinatorics.org/ojs/index.php/eljc/article/view/v21i3p24
https://doi.org/10.1023/A:1022869011914

[13] Philip M. Long. “New bounds on the price of bandit feedback for mistake-bounded
online multiclass learning”. In: Theoretical Computer Science 808 (2020). Special
Issue on Algorithmic Learning Theory, pp. 159–163. issn: 0304-3975. doi: https:
//doi.org/10.1016/j.tcs.2019.11.017. url: https://www.sciencedirect.
com/science/article/pii/S0304397519307297.

[14] Michael Luby and Avi Wigderson. “Pairwise Independence and Derandomization”.
In: Found. Trends Theor. Comput. Sci. 1.4 (Aug. 2006), pp. 237–301. issn: 1551-305X.
doi: 10.1561/0400000009. url: https://doi.org/10.1561/0400000009.

[15] C. R. Rao. “Factorial Experiments Derivable from Combinatorial Arrangements of
Arrays”. In: Supplement to the Journal of the Royal Statistical Society 9.1 (1947),
pp. 128–139. doi: 10.2307/2983576.

[16] C. R. Rao. “Hypercubes of strength “d” leading to confounded designs in factorial
experiments”. In: Bulletin of the Calcutta Mathematical Society (38 1946), pp. 67–68.
issn: 0008-0659.

[17] Amitai Regev. “Asymptotic values for degrees associated with strips of young
diagrams”. In: Advances in Mathematics 41.2 (1981), pp. 115–136. issn: 0001-8708.
doi: https://doi.org/10.1016/0001-8708(81)90012-8. url: https://www.
sciencedirect.com/science/article/pii/0001870881900128.

[18] H. Shvaytser. “Linear manifolds are learnable from positive examples”. Unpublished
manuscript. 1988.

20

https://doi.org/https://doi.org/10.1016/j.tcs.2019.11.017
https://doi.org/https://doi.org/10.1016/j.tcs.2019.11.017
https://www.sciencedirect.com/science/article/pii/S0304397519307297
https://www.sciencedirect.com/science/article/pii/S0304397519307297
https://doi.org/10.1561/0400000009
https://doi.org/10.1561/0400000009
https://doi.org/10.2307/2983576
https://doi.org/https://doi.org/10.1016/0001-8708(81)90012-8
https://www.sciencedirect.com/science/article/pii/0001870881900128
https://www.sciencedirect.com/science/article/pii/0001870881900128

	Introduction
	Bounds on optweak(CARTr(F))
	Non-decreasing F
	Bounds

	Bounds on optamb,r(F)
	Bounds on optweak(CARTr(F)) for Multi-class Functions
	Bounds on optamb,r(F) for Multi-class Functions
	Bounds Comparing optweak(CARTr(F)) to optstd(F)
	Relating Different Learning Scenarios
	New Models for Permutation Functions
	The Order Model
	The Relative Position Model
	The Delayed Relative Position Model

	Future Work
	References

