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Abstract

The human body provides unique challenges to study from a dynamical perspective, due to its me-

chanical complexity and the difficulty of obtaining measurements of internal dynamic quantities. Thus,

it is essential to create models that both simplify analysis and account for important anatomical details,

the two of which must necessarily be balanced into a sufficiently accurate-yet-manageable framework. A

number of critical applications require accurate inverse dynamic models of the human body, including

medical treatment and virtual simulation of human motion. A recent general technique was developed

by Dumas et. al. that used a quaternion screw algebra to make computation of inverse dynamic quan-

tities more practical and more efficient. In this paper, we adapt their technique to the case of human

anatomy, integrating these computational improvements within a novel framework for modeling human

musculature.
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1 Introduction

Inverse dynamics is essential to understanding physics in the human body. Using kinematic measurements

from video- and marker-based tracking technologies [6], inverse dynamics allows for the calculation of dy-

namical quantities as well: forces, torques, and tensions experiences by body components. Inverse dynamics

can be used for various medical purposes, such as the design of physical therapy treatments and prosthetics,

or the accurate replication of human locomotion in digital media and for humanoid robots. In the first

case, a proper understanding of forces and torques throughout the human body can lead to an improved

understanding of human health, by comparing the maximum load on certain parts of a patient’s body to

that of a healthy human [8]. In the second case, achieving realistic animation requires inverse dynamics to

ensure that digital replication of human motion is in accordance with the forces and torques implied [5].

The use of analytical inverse dynamic methods over numerical ones is of great interest to various mod-

els. In general, analytical techniques will yield exact solutions while numerical methods can only result in

approximated answers, whose accuracy depends on the number of times an iterative procedure is repeated.

Thus, analytical methods present greater potential in terms of computational efficiency, though at present

analytic solutions also involve more complicated equations that take far longer to solve than those associated

with numerical approaches.

In addition to the drawbacks of numerical methods, the models that are described by such equations

have a number of limitations. In particular, practical models often require non-physical assumptions about

the human body, such as rigid segments and idealized pin joints [4]. In particular, a key condition of many

existing models is that only adjacent segments may influence each other; consequently, the net torques and

forces are confined to a single joint between segments. The traditional method then begins at the center of

pressure and moves towards the joint of interest by considering each new segment one at a time. However,

various components of the body violate this principle, such as biarticular muscles that allow non-adjacent

segments (usually determined by skeletal structure) to act on one another [1]. Consequently, a reworked

model is necessary to capture these nuanced dynamics, in addition to application of analytical methods.

Typically, Newton’s method in Cartesian coordinates is favored over other methods for its ease of imple-

mentation, though integrating Lagrange’s equations of motion in other coordinate systems and the Feath-

erstone algorithm have also been applied for certain purposes—the latter option is often considered too

restrictive for practical use alone, though using Lagrange’s equations is promising as a way to simplify

certain models, usually requiring fewer but more complex equations than the standard Newton–Euler im-

plementation, and applying the Featherstone algorithm to only certain portions of larger models may be

considered [7].

In this paper, we adapt a recent alternative technique applying screw algebra and quaternions to models

of human limbs [3]. With the more natural framework of quaternions, we are able to tackle more realistic

and complex models of the human arm without resorting to numerical methods. In particular, we provide a

natural way to model muscular connections between anatomical components of the arm.

After a brief overview of the quaternion algebra, and an introduction to our quaternion-wrench framework,

we discuss three models of increasing complexity for the human arm and provide implementation details for

each within our framework.

The code to all models can be found at [2].
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2 Quaternions in Inverse Dynamics

2.1 The Quaternion Algebra

Traditional methods of inverse dynamics typically use Euler angles or Cardan angles (also known as pitch,

yaw, and roll) to define orientation in three dimensional space. In this framework, orientation is defined by

a series of three rotations about different axes. With Euler or Cardan angles, each rotation, in addition to

turning the object itself, rotates the axes of subsequent rotations. However, this sequence of rotations may

lead to two axes coinciding, a phenomenon known as gimbal lock. For example, in the case of Cardan angles,

a yaw about the y-axis by 90 degrees causes the z-axis and the x-axis to coincide. Once this occurs, the pitch

and roll occur around the same axis, meaning not all orientations can be reached from this state. However,

to resolve this, we may turn to quaternions, an alternate parametrization of three-dimensional orientations

that avoids singularities such as gimbal lock at the cost of one additional coordinate.

Definition 2.1 (Quaternions). The algebra H of quaternions is the four-dimensional vector space of elements

a+ bi+ cj + dk, with a, b, c, d ∈ R, endowed with the following (noncommutative) multiplication:

i2 = j2 = k2 = ijk = −1.

The norm of a quaternion q = a+bi+cj+dk is defined as ‖q‖ =
√
a2 + b2 + c2 + d2. Its conjugate is defined

as q∗ = a− bi− cj − dk.

Of primary interest will be quaternions of norm 1, due to the connection with 3-dimensional rotation

they possess. Unit quaternions are able to be changed to the form

q = cos

(
θ

2

)
+ sin

(
θ

2

)
(xi+ yj + zk) ,

where 〈x, y, z〉 is a unit vector. The importance of this format becomes apparent when considering quater-

nion multiplication, where conjugating an orientation or position vector in R3 (considered as the subset

span{i, j, k} ⊂ H) by a unit quaternion applies a counterclockwise rotation of θ about the axis determined

by vector 〈x, y, z〉.

Definition 2.2 (Quaternion Rotation). Given a unit quaternion q = cos
(
θ
2

)
+sin

(
θ
2

)
(xi+ yj + zk), we define

the map Rq : R3 → R3 as Rq(v) = qvq∗, where R3 is identified with span{i, j, k} ⊂ H. This map defines a

rotation of v by an angle θ about the axis determined by vector 〈x, y, z〉.

Quaternions present a number of unique advantages over other representations of orientation in three

dimensional space, such as Euler and Cardan angles. The latter are typically favored for their using only three

coordinates and seeming more natural conceptually. However, quaternions avoid the issue of gimbal lock, in

which a degree of freedom is lost, preventing all orientations from being properly represented. Additionally,

transformations between any two orientations can be achieved by a single rotation about some axis (being

the cross product of the two orientation vectors), or a single quaternion, whereas Euler and Cardan angles

may require up to three rotations, assuming gimbal lock has not already prevented such a transformation

from being possible. Lastly, quaternion multiplication is of great use for the purposes of computational
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efficiency [3], and as will be seen in the following section, leads to natural and easily implemented equations

of motion.

2.2 Equations of Motion

The inverse dynamics of the human body are naturally accommodated by quaternions, given the large number

of joints and distinct orientations of components. Each joint may be tracked through only its rotations, with

its degrees of freedom determined by the degrees of freedom of the joint’s unit quaternion, and the length

of connecting segments. Moreover, quaternions can be used to easily find the linear and angular velocity

and acceleration of objects as well as the attitude matrix for the inertia tensor. Following the discussion in

[3], we use the equations relating the forces and torques at the ends of segments to each other and those

converting attitude quaternions to attitude matrices.

Fix a segment i in our system. We let qs be the scalar or first component of the attitude quaternion of

segment i while qv is similarly set as its vector component, or its latter three values. Let E3×3 be the 3

dimensional identity matrix. For a vector v = 〈x1, x2, x3〉, we let its skew-symmetric matrix ṽ be

ṽ =

 0 −x3 x2

x3 0 −x1
−x2 x1 0

 ,
or equivalently

ṽ =
[
v×~i v×~j v× ~k

]
.

In this setting, the attitude matrix corresponding to the attitude quaternion of segment i is as in [3]:

Ri =
[
‖q‖2E3×3 + 2qvq

T
v + 2qsq̃v

]
i
. (1)

We define ci to be the vector from the proximal (adjacent to segment i + 1) end of the i-th segment to

its center of mass, and di to be the vector from the proximal end of the i-th segment to its distal (adjacent

to segment i − 1) end—in other words, the vector describing the orientation and length of the segment

itself. Let Ii be the inertia tensor of the i-th segment in the inertial coordinate system (ICS), found through

multiplication by its corresponding attitude matrix found from (1) to the previously known principal inertia

tensor of the same segment, and here, the kinematic quantities involved are denoted as found in the physics

literature: F for force, M for moment, m for mass, a for linear acceleration, α for angular acceleration,

ω for angular velocity, and g for gravitational acceleration. The equation for the net force and moment of

adjacent joints on the proximal end of segment i is as in [3]:[−→
F i−→
M i

]
=

[
miE3×3 03×3

mic̃i Ii

][−→a i −−→g
−→α i

]
+

[
03×1

−→ω i × Ii
−→ω i

]
+

[
E3×3 03×3

d̃i E3×3

][−→
F i−1−→
M i−1

]
. (2)

Generally, the inverse dynamic method begins at the extremal segment, segment 1, farthest from the

joint of interest. The distal end of segment 1 is typically the location of the known external force F0 and

moment M0, such as from a held weight, when considering human limbs. Using attitude matrices calculated

from (1) on previously known inertia tensors, combined with known values of kinematic quantities, we may

move along the segments with equation (2) to obtain the desired joint torques and forces.
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Figure 3.1.1: Two segment model of arm

3 Models

In this section we discuss the human arm as it experiences various forces and torques. We study models

of increasing complexity in musculature and structure, applying equations with the previously discussed

quaternion framework to obtain desired values. Here we focus on the torques and forces exerted on the

shoulder and arm components from the action of lifting an object in the hand. The initial model includes

two segments of no volume without any simulation of muscular force, while subsequent models add on, in

turn, the biceps and triceps, and the hand. The same techniques and frameworks presented in this paper

may be extended to other systems, as described in the discussion following these models.

3.1 A Static Arm with No Musculature Holding a Weight

The initial model (See Figure 3.1.1) treats the arm as two segments connected by a joint and does not

consider movement of any kind. The code for this may be found at [2]. No musculature is considered at

present, though we provide a framework into which muscles may be easily incorporated through the addition

of pairs of forces originating from the endpoints of muscles.

The shoulder and end of the forearm (which is considered the hand and holds a point weight of known

mass) are both in fixed positions at (0, 0, 0) and (x1, y1, z1), respectively. Thus, there is a single degree of

freedom: the rotation of the arm about the vector
−−−→
D3D1, which determines along with the predetermined

lengths of the segments the position of D2, the elbow. We define the rotation of the arm by the angle θinput

around
−−−→
D3D1, defining the θinput = 0 orientation as the one with such that the elbow D2 has minimal z

coordinate value in the ICS—the edge cases of a directly upwards or downwards arm, should they even need

to be considered, may be dealt with in this model by simply introducing a secondary condition of minimal

x or y value.

We set the principal axes of each segment such that the x-axis connects its proximal end to its distal end,

and such that the unit z vector in each SCS has maximal Cartesian z value in the ICS. Since our segments

are stationary, these axes and thus the attitude quaternion for each segment are fixed.
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Since the segments are one dimensional, we may treat the center of mass as a ratio of the overall length

of the vector. This may be changed in more complex models that consider variable structure and volume.

As there is not yet a segment corresponding to the hand, we treat it as the distal end of the first segment

at (x1, y1, z1).

The code corresponding to this model (found at [2]) solves for the moment and force applied to the

proximal end of each segment, or the shoulder and elbow, caused by forces and torques from the weight of

the arm itself and an object held at D1, the model’s approximation for the hand.

The process begins with using the law of cosines to solve for the angles of the triangle formed by the

endpoints of the two segments, found through the location of the hand at (x, y, z) and shoulder at the origin

in combination with the lengths of the two segments, also known beforehand:

cos(θ) =
x2 + y2 + z2 − ‖

−→
d 1‖2 − ‖

−→
d 2‖2

2‖
−→
d 1‖‖

−→
d 2‖

.

From here the location of the elbow, or D2, begins at the zero degree location and the position of each arm

segment is set by rotation by the input angle quaternion, whose axis is
−−−→
D3D1 and therefore only affects

D2, leaving the positions of the shoulder and hand, as well as the segments’ lengths and connection, intact.

Afterwards, we may construct the attitude quaternions for each segment by starting with the previous

segment (or
−−−→
D3D1 in the case of the first segment) and multiplying it by the appropriate magnitude and

quaternion with axis determined by the cross product of the previous and current segment and the previously

calculated angle—in short, we set up the segments by finding each in terms of transformations applied to

the previous, beginning with the proximal segment. Below, we let
−→
d ix,

−→
d iy,

−→
d iz be the respective x, y, and

z-coordinates of vector
−→
d i, ×H denotes quaternion multiplication, and U(−→v ) =

−→v
‖−→v ‖ :

qi = U


 sin−1

( −→
d iz

‖
−→
d i‖

)
〈
−→
d ix,

−→
d iy, 0〉 ×

−→
d i

×H


tan−1

(−→
d iy
−→
d ix

)
0

0

1



 .

With the attitude quaternions, we now find the attitude matrix for each segment using (1) and convert

each inertia tensor in the SCS to its ICS equivalent with said matrix. Then, we apply a simplified version

of (2) to find the net force and torque at D2, the elbow, where −−−→m0g is the weight of the held object as a

vector 〈0, 0,−m0g〉: [−→
F 1−→
M1

]
=

[−−−→m0g

~0

]
,[−→

F 2−→
M2

]
=

[
m1E3×3 03×3

m1c̃1 I1

][
−−→g
−→
0

]
+

[
E3×3 03×3

d̃1 E3×3

][−→
F 1−→
M1

]
,[−→

F 3−→
M3

]
=

[
m2E3×3 03×3

m2c̃2 I2

][
−−→g
−→
0

]
+

[
E3×3 03×3

d̃2 E3×3

][−→
F 2−→
M2

]
.

(3)

Since there is no movement in this model, the dynamic wrench is ignored entirely and the angular and linear

acceleration in the first term on the right hand side are both zero. Note that this makes the inertia tensor

irrelevant, though for the sake of preparation for adding motion we implement it in the algorithm.
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Figure 3.1.2: The triceps and biceps (red) are added and exert forces such that the moment on the elbow is
coplanar with the segments and muscles.

3.2 A Static Arm with a Biceps and Triceps Holding a Weight

The following iteration of the model (3.1.2) introduces the first musculature in the form of a biceps and

triceps. The code for this may be found at [2]. The first muscle is described by a tension force with

endpoints at the shoulder D3 (considered the bicep’s proximal end) and some point (considered its distal

end) along the forearm, or segment 1, whose position is described by a fraction of the segment vector
−→
d 1.

We let this ratio be 0.9, though any other reasonable ratio suffices as well. Similarly, we model the triceps

as a tension with endpoints at the shoulder and 1.1 along the length of the forearm, meaning this distal end

is behind the upper arm. These two ratios, among other values, are stored in the muscends array, with four

rows and one column per muscle (two here). Each column comes in the format distal segment ratio,

proximal segment ratio, distal segment index, proximal segment index, referred to from here on as

rd(j), rp(j), nd(j), np(j), respectively, for a muscle indexed j. So, our array for this model is
rd(1) rd(2)

rp(1) rp(2)

nd(1) nd(2)

np(1) np(2)

 =


0.9 1.1

1 1

1 1

2 2

 .

Additionally, we create unit vectors −→u 1,
−→u 2 representing the direction (distal to proximal) of the biceps and

triceps, respectively.

The code is based off of the original program in the first model. After the forces and moments are

found at a given joint without any muscle involvement (this step being identical to the first model), the

muscle tensions are calculated to minimize the moment about the elbow and added force on the upper arm.

Consequently, only one of the triceps or biceps will exert a force—these two muscles create torques on the

elbow in exactly opposite directions because they and the arm segments are all coplanar, with the muscles
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on opposite sides of the pivot point. The moment at the elbow should have no component perpendicular to

the muscles or arm segments once the muscles are used.

Thus the code finds the vector normal to the plane formed with the muscle direction vectors as a basis

and then the projection of the elbow’s moment vector onto this first vector. We let
−→
Ri be the portion of

the moment at joint i that can be removed by muscle exertion. With our current musculature only
−→
R2 is of

interest, as the rest of the joint moments are unaffected:

−→
R2 = −

(−→
M2 · (−→u 2 ×−→u 1)

‖−→u 2 ×−→u 1‖2

)
(−→u 2 ×−→u 1).

This projection is the moment that can be mitigated by the triceps and biceps combined, and we can now

find the exact force needed for such a result. We now introduce the equation for
−→
R2, in a form which can be

easily generalized later. Let nm be the number of muscles in the model, and µi the force exerted by muscle i.

Then, summing the moment created by each force acting on the segment, found through the cross product

of the lever arm and the force vector, we have:

−→
R2 =

∑
1≤i≤nm,
nd(i)=2

((
(1− rd(i))

−→
d nd(i)

)
×
(
µi
−→u i
))
. (4)

If
−→
R2 is in the same direction as the the cross product of the muscle direction vectors, then the moment on

the elbow from the action of holding the object is causing flexion, meaning the triceps needs to be active

to maintain a static position maintain a static position. In this case the magnitude of the muscular force,

denoted µ, is

µ2 =

∥∥∥−→R2

∥∥∥∥∥∥−→d nd(2) · (1− rd(2))×−→u 2

∥∥∥ .
Otherwise, when the arm is naturally extending without muscle interference, the biceps is used and the force

is of magnitude

µ1 =

∥∥∥−→R2

∥∥∥∥∥∥−→d nd(1) · (1− rd(1))×−→u 1

∥∥∥ .
In both cases, the other muscle’s magnitude, µ1 or µ2 in the respective cases, will be 0 to minimize added

force.

From here it is simply a matter of creating new muscle wrenches that are added to the calculation of

(3). Rather than creating wrenches for each muscle, we note that (disregarding biarticular muscles for now)

the first affected joint for each muscle will be the proximal end of the distal segment it connects to, namely

Dnd(j)+1 for muscle j. Then it is simpler to instead create muscle wrenches indexed along the segments as

opposed to muscles, while iterating along the nm muscle indices:[−→
F i−→
M i

]
m

=
∑

1≤j≤nm,
nd(j)+1=i

[ −→u j · µj−→
d nd(j) · (1− rd(j))×

−→u j · µj

]
. (5)
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Figure 3.3.1: Indexing modified to fit the structure of a directed tree modeling the arm structure—this tree
can be changed to fit any structure with no loops. The current model uses the left tree while the right tree
is a possible tree for the addition of fingers, though the fingers would likely need to be split along knuckles
and joints for accuracy. Calculation of wrenches now begins with the highest hierarchy value h, iterating

downwards after exhausting all vertices of a given h.

Note that each nd(j) + 1 is not necessarily unique. The final step is to redo (3), with the modification of

adding the muscle wrench:[−→
F 1−→
M1

]
=

[−−−→m0g

~0

]
,[−→

F i+1−→
M i+1

]
=

[
miE3×3 03×3

mic̃i Ii

][−→g
−→
0

]
+

[
E3×3 03×3

d̃i E3×3

][−→
F i−→
M i

]
+

[−→
F i+1−→
M i+1

]
m

,

for i from 1 to N (though in this model only i = 2 has a relevant muscle wrench).

3.3 A Static Arm with Simple Upper Arm Musculature and a Hand

This time, we introduce a hand (without fingers yet) to the previously established model with a biceps and

triceps. This is done with the addition of a third segment at the distal end of the forearm. Adding this

hand creates a number of issues relating to inverse kinematic assumptions made by previous models, which

we address in the following section.

3.3.1 Inverse Kinematics

Before describing major changes to the model due to the addition of the hand, it is important to note that

the indexing system of the joints along the arm was changed significantly in preparation of the addition of

fingers in the following models, which are not compatible with the sequential calculation of wrenches currently

employed (3.3.1). First, due to segments only being added to the end of the arm, to avoid reindexing in

later models the indices of existing joints and segments were partially flipped: the first segment is now the

upper arm and indices increase from proximal to distal ends, instead. To handle the fingers, which would

all contribute to the same wrench at the hand, the order of calculation was changed from linearly along

indices to being defined by a tree. Each index i is assigned a single other index pi towards which it points

in a directed graph such that the resulting graph is a directed tree, ending in everything converging on the
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Figure 3.3.2: The third iteration of the model adds a hand as a third segment. Of note are the new input
vectors ~hx, ~hz determining the orientation of the x, z axes of the hand, and the point (x, y, z), where the

object is held, which is no longer the same as the last distal end.

upper arm (indexed 1), which itself is assigned the index n+ 1 (still the shoulder) to point to. Each index’s

distance from the shoulder, in edges, is assigned to it as its hierarchy number hi, forming a hierarchy in which

the segments will always contribute to only the wrench of the segment their index points to. Thus, rather

than iterating along indices for most purposes, we can now iterate along the assigned hierarchy number

from highest to lowest. (The order in which results are calculated from segments of the same hierarchy

number does not matter, as they cannot influence each other and the various wrenches are commutative

under addition).

The first improvement to the model is the formalization of the weights (of which there is currently

only one) to be implemented in a similar structure to muscles—they now have their own wrench type and

the segment number, ratio defining position along said segment, and mass are all organized in matrices.

The model used throughout this paper still only has one weight, but this implementation allows for easy

addition and tracking of new weights along the arm. Similar to the definition of the muscends array, we

now create a functional notation to describe the weightsegs matrix, which has a column vector for each

muscle containing, from top to bottom, the index of the proximal end of the segment the weight directly

affects, followed by the ratio along said segment, from the distal end, that the weight force is applied. Let

w1(j), w2(j) be the former and latter values, respectively, for muscle indexed j. Currently the only weight

is at the hand, with w1(1) = 3, w2(1) = 0.75.

The addition of the hand gives a more natural way to begin the calculation of segment and endpoint

locations. We let vectors
−→
h x,
−→
h z describe the directions of the x- and z- axes of the hand in its SCS.

As with before we have x, y, z be the coordinates of the held object. From here we can calculate the

position of the wrist and end of hand, D2 and D3 respectively:

D2 =

xy
z

− (w2(1) · l3)
−→
h x,

D3 =

xy
z

+ ((1− w2(1)) · l3)
−→
h x.
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Figure 3.3.3: The two trivial cases for the positioning of the elbow. When the distance between D4 and D2

is too large, no solutions exist, while if the distance is exactly the sum of the lengths of the upper arm and
forearm we have only one.

Figure 3.3.4: The first subcase, which itself contains two subcases. In these two cases, we cannot extend
D2D3 to find a point on the dashed circle (representing the locus of possible elbow points) to find the one
that minimizes wrist bending (which in the following case is the unique point on the circle closest to the
line), so we impose other restrictions, described below. The green line is the axis the circle is centered on

and perpendicular to, while the red point and line segments are the parts of the arm affected by the
position of the elbow—note that the hand is already fixed by user input, while the shoulder is fixed at the

origin. Refer to figure 3.3.2 for a more detailed explanation of the model’s structure as a whole.

With these two points, we proceed with the calculation of the rest of the points of the arm, the process of

which is altered significantly by the hand.

The most critical assumption which now fails is that earlier iterations of code largely confine the model

to a single plane, the 3-d orientation of which could be conveniently modified with only θinput and its

corresponding quaternion, without changing the position of the point of contact with the held object. The

new segment adds multiple degrees of freedom to the possible orientations of segments that reach the held

object. As opposed to requiring further user input, which would increase exponentially with segments added,

the code takes in segment lengths, the position of the held object, and the orientation of the hand (defined

by vectors for its x- and z- axes) as inputs, then determines the position of the elbow that minimizes bending

at the wrist, measured by the angle of the shorter arc coplanar to the extension of the hand segment and

the extension of the forearm line segment based on the proposed elbow position.

Note that the locus of possible elbow points is always empty, a point, or a circle, based on the value of

the distance of D2 from the origin in relation to the sum of the forearm and upper arm lengths l1 + l2 (3.3.3).

We determine which is the case for a given input, and proceed from there. If no points exist, the model

has no solution, while having a single point means we only have one choice for the elbow—the interesting

portion occurs when l1 + l2 < ‖D2‖. In this last case, there are two subcases. When considering the plane

of the circle and the line formed by extension of the hand segment, we have two cases: the line intersects

the plane at the center of the circle or is parallel to it (these two count as the same subcase due the code to

handle them being identical), or the line intersects the plane at some point besides the circle’s center.
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Figure 3.3.5: When there exists a point on the circle of possible elbow points with minimal distance from
the extension of the hand segment (shown in blue), we set this to be the elbow point to minimize wrist

bending.

In the first subcase (3.3.4), we choose a position such that the forearm is coplanar with the x- and z-axes

of the hand (inputted by the user, with the x-axis along the length of the segment), of which there are two,

modelling the tendency for the forearm’s x- and z- axes to be coplanar with the direction of the fingers and

palm. Between the two, there will always be one position of the elbow that results in an backwards rotation

of the hand relative to the forearm and one that results in a forwards one; as before, based on the observed

tendencies of the human arm we choose the position that results in this forward bend.

The other subcase (3.3.5) is easier to deal with, as the position of the elbow with minimal bending is

unique; we find the point on the circle closest to the point of intersection between the line and plane, which

can be done by adding an appropriately scaled vector pointing from the center of the circle towards the

intersection point to the center of the circle.

3.3.2 Inverse Dynamics

The inverse dynamics of this model have changed from previous iterations due to the re-indexing, weight

formalization, and change in location of the held object to along the hand. The wrenches of points with

no connections, i.e. the fingers, are
−→
0 by default. However, it is probable that forces or moments will be

explicitly coded to act on those points on a case by case basis, likely normal force from holding an object.

As mentioned in the previous section, the structure of the hand is now more accurately reflected in the

order of calculation of wrenches. The code begins with segcons, a user inputted vector which contains at

index i the index of the segment that the i-th connects to on its proximal end—these connections are the

same for joints. The i-th element of this vector will be referred to as si. Vector treehier contains the

aforementioned hierarchy value for each joint at its respective index, denoted hi for joint i.

We now have, where nw is the number of weights,

[−→
F i−→
M i

]
w

=
∑

1≤j≤nw,
w1(j)=i


0

0
−−→mig

(
−→
d i · w2(j))×−−→mig

 ,
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for the weight wrenches, while the muscle wrench calculation remains unchanged (5). Meanwhile, the joint

wrench equations are modified to be[−→
F i−→
M i

]
=

[−→
F i−→
M i

]
w

+

[−→
F i−→
M i

]
m

+

[
miE3×3 03×3

mic̃i Ii

][
−−→g
−→
0

]
+

∑
1≤j≤n,
pj=i

([
E3×3 03×3

d̃i E3×3

][−→
F j−→
M j

])
,

with wrenches of joints that do not have any connections in the distal direction being
−→
0 unless otherwise

noted, as in the case of specific input forces or moments.

4 Discussion and Directions of Future Research

We now discuss several areas of improvement that may be addressed in models in the near future.

4.1 Improved Anatomy

Here we consider accuracy in representation of segments, as well as possible implementations of more complex

systems of musculature, including biarticular muscles.

A known issue with the existing model is the accuracy of the attitude quaternions of the segments, more

specifically that of the forearm in relation to the upper arm. The algorithm currently confines the axes of

the SCS for these two segments such that the x and y of each are planar with the segments themselves,

which frequently does not occur. However, this may be addressed with a solution similar to the one applied

to the wrist, where certain criteria such as the angle between segments’ SCS axes in the ICS are used to

determine the natural rotation of the forearm in relation to the hand, and that of the upper arm in relation

to the forearm.

The addition of more muscles is another area of interest. As mentioned previously in 4, the general

equation solving for muscle exertion is

−→
Rj =

∑
1≤i≤nm,
nd(i)=j

((
(1− rd(i))

−→
d nd(i)

)
×
(
µi
−→u i
))
,

though in the case of more muscles, case-specific constraints may be needed, such as reducing force on the

wrist for medical treatment purposes.

As for biarticular muscles, the model does not consider the proximal end of muscles beyond for the

purpose of the direction of the tension force, therefore they may be treated the same way as a normal

muscle.

This model for muscles also gives a natural way to study forced movement of limbs by manually adding

to muscle forces’ magnitudes after solving for what forces are needed for equilibrium.

4.2 Fingers

Although the framework for their addition was set up in the third model, the implementation of the fingers

themselves was avoided due to the vast amount of degrees of freedom they would add. However, in more

specific cases where the shape of the held object is known, having a set of predetermined configurations may

aid in this. Rather than predicting the position of all segments, which as noted before increases exponentially
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in difficulty, testing a small number of expected positions of fingers may be sufficient. For example, for a

hand holding a dumbbell, we may have presets for fingers holding the weight’s rod part as a handle, as

during a biceps curl, and another holding the plates as during an overhead triceps dip, though only with a

single hand, as well as a third with the hand holding the object with the palm facing the wide face of the

plate.

In this proposed implementation, we would simply preset attitude quaternions describing each segment’s

orientation in relation to the next one in the proximal direction, terminating in the segment just before the

wrist. The algorithm would then test the possibility of each orientation and calculate the usually wrenches.

Additional quantities of interest, such as the amount of bending done at a certain joint, may also be calculated

with the attitude quaternions, and depending on the use case the viability of each hand preset may be judged

with the desired criteria.

4.3 Analytical-Numerical Methods for Arms in Motion

At present the models have only considered the arm in a fixed position, and can only conveniently be extended

to applied to other systems in static equilibrium. However, we may extend the model to study systems in

motion, which [3] covers in the general wrench equation (2) while also providing a number of formulas for

velocity and acceleration in relation to the attitude quaternions of segments. These analytical methods may

then be used in conjunction with numerical ones and explicit integration techniques to arrive at a numerical

solution.
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