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Motivation and Definition

Looking at the solutions to equations over different fields

Looking at the structure of the above solutions

Lines and Conics are polynomials of degree 1 and 2 in two variables

Advancing to cubics in two variables

Definition (Elliptic Curve)

An elliptic curve is a curve that is isomorphic to a curve of the form
y2 = p(x), where p(x) is a polynomial of degree 3 with nonzero
discriminant.
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Illustration of the Group Law
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Explicit Rules for the Group Law

Given an elliptic curve y2 = x3 + ax2 + bx + c , we can define the group
law between two points (x1, y1), (x2, y2) explicitly with

x3 = λ2 − a− x1 − x2

y3 = λx3 + v

where

λ =
y2 − y1
x2 − x1

v = y1 − λx1
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Defining the Group Law

How do the points on an elliptic curve using the group law satisfy the
group axioms?

Group Axioms

1 Closure

2 Identity - Point O at infinity

3 Inverses

4 Associativity

This group is also abelian since the group composition is commutative.
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Points of Finite vs. Infinite Order

We want to explore the group of torsion points on elliptic curves. Take an
elliptic curve C .

Definition (Order of a Point)

A point P on C has order m if mP = P + . . .+ P︸ ︷︷ ︸
m times

= O but m′P ̸= O for

all integers 1 ≤ m′ < m.

Definition (Finite and Infinite Order)

When such an m exists as above, then P has finite order. Otherwise, P
has infinite order.

Note: By definition, O is a point of finite order.
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Example for Points of Finite Order

Proposition (Points of Order Two)

Take a point P = (x , y) ̸= O on C . Then P has order 2 if and only if
y = 0.

Proof.

The points of order 2, or 2−torsion points, are given by 2P = O.
Rewriting gives P = −P, or (x , y) = (x ,−y). This implies that y = 0, so
the x−coordinates of the 2−torsion points are the complex roots of the
cubic f (x).
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An Illustration

y2 = x3 − x y2 = x3 + x
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The Statement of the Nagell-Lutz Theorem

Take an elliptic curve C : y2 = f (x) = x3 + ax2 + bx + c with integers
a, b, c . The discriminant of the cubic is

D = −4a3c + a2b2 + 18abc − 4b3 − 27c2.

When we factor f (x) over the complex numbers to get

f (x) = (x − α1)(x − α2)(x − α3),

we can find the discriminant to be

D = (α1 − α2)
2(α1 − α3)

2(α2 − α3)
2.

Theorem (Nagell-Lutz Theorem)

Let P = (x , y) be a rational point of finite order. Then, x and y are
integers and either y = 0 (in which P has order 2) or y divides D.
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Applying the Nagell-Lutz Theorem

Example

C : y2 = x3 − x2 + x

The only rational points of finite order are (0, 0), (1, 1), and (1,−1).

Let a point of finite order on C be (x , y). By the Nagell-Lutz Theorem,
either y = 0 or y |D = −3. Thus, the only possibilities are y = 0,±1,±3 :

1 For y = 0 : (0, 0) is the only rational point of order 2.

2 For y = ±1 : we have the solutions (1, 1) and (1,−1).

3 For y = ±3 : there are no rational solutions.

Because the converse of the Nagell-Lutz Theorem is not true, we check
that P1 = (1, 1) and P2 = (1,−1) actually have finite order: they have
order 4.
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An Introduction to the Mordell’s Theorem

Theorem (Group of Rational Points)

Let the set of rational points on an elliptic curve C be C (Q). Then,
C (Q) forms a group.

Theorem (Mordell’s Theorem)

Let the group of rational points on an elliptic curve C be C (Q). Then
C (Q) is finitely generated.

Finitely generated simply means that there is some finite set of points
S ⊂ C (Q) such that every point in C (Q) can be written as an integer
combination of these points.
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An Outline of the Proof

We begin by defining the notion of the height of both a rational number
and a point.

Definition

Define the height, H(x), of a rational number x = a
b , written in simplest

form, as:
H(x) = max(|a|, |b|).

Further define h(x) = log(H(x)), and for a point P = (x , y), define
H(P) = H(x) and h(P) = h(x).
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An Outline of the Proof

Lemma 1

The set {P ∈ C (Q) : h(P) ≤ M} is finite for all positive real M.

Lemma 2

Let P0 ∈ C (Q) be fixed. Then, there exists a constant κ0, depending on
only P0 and C , such that for any P ∈ C (Q), h(P + P0) ≤ 2h(P) + κ0.

Lemma 3

There exists a constant κ, depending only on C , such that for any
P ∈ C (Q), h(2P) ≥ 4h(P) + κ.

Lemma 4

The subgroup of C (Q), 2C (Q), has finite index in C (Q).

The argument from here is a descent argument.
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Over Finite Fields?

Given an elliptic curve C : F (x , y) = 0, what do they look like over finite
fields?

Example

y2 = x3 + x + 1

Solutions: C (F5) = {O, (0,±1), (2,±1), (3,±1), (4,±2)}

1 C (Fp) is a group.

2 This group structure is a cyclic group of order 9 (i.e. generator could
be (0, 1))
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Rational Points on an Elliptic Curve over Finite Fields

If we simply substitute x, for each f (x) ∈ Fp, there is on average one
corresponding y value that works.

Theorem (Hasse Theorem)

If C is an elliptic curve defined over a finite field Fp, then the number of
points on C with coordinates in Fp is equal to p + 1− ϵ, where the “error
term” ϵ satisfies |ϵ| ≤ 2

√
p.
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Elliptic Curve Cryptography

Discrete Logarithm Problem

Let p be a prime, and let a and b be non-zero numbers modulo p. Then,
find an integer m that solves the following congruence:

am ≡ b (mod p)

Elliptic Curve Discrete Logarithm Problem (ECDLP)

Given P, Q ∈ C (Fp) for some elliptic curve C ,

mP = Q
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Applications of the DLP: Elgamal Cryptosystem

Elgamal Cryptosystem

A group G and an element g ∈ G is chosen publicly.

Alice picks a privately, calculates A = ga, then announces A publicly.

Bob picks m ∈ G to send and random integer k . He calculates
c1 = gk and c2 = mAk , then sends to Alice.

Alice computes c2c
−a
1 = mAk(gk)−a = mgamg−am = m

Bob calculates Ab, Alice calculates Ba, both getting k = gab.

If someone can solve the DLP for a, they can calculate m.
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