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Abstract

Translation surfaces are obtained by identifying opposite edges of a
polygon with an even number of sides, paired together. We explore the
question of tiling translation surfaces including the torus and the sur-
faces generated by the regular octagon with squares. Given any tiling, we
identify its contacts graph, a triangulation formed by corresponding one
vertex per square and drawing edges between vertices corresponding to
adjacent squares. In particular, we prove that under certain conditions,
there is exactly one torus tiling that has contacts graph a given torus
triangulation. We then provide a method to approximately construct this
tiling. We also show that the regular octagon translation surface cannot
be tiled with squares. However, we give constructive tilings of translation
surfaces corresponding to certain affine transformations of the octagon.

1 Introduction

Square tilings are an extremely intriguing aspect of mathematics. Not only
are tilings aesthetically beautiful, but they also relate to many important math-
ematical concepts, such as packing and conformal theory. How does one ef-
fectively work with square tilings? In 1993, Oded Schramm [2] examined such
tilings of a square using a combinatorial approach. His work was founded upon
two important ideas: the contacts graph of a tiling and the extremal metric of
such a graph.

Using these tools, Schramm proved the following striking theorem.

Theorem 1.1. Given a triangulation T of a square S1 with vertices Vi, there
exists a unique real number h > 0 and a tiling of a 1

h by h rectangle with squares
Zi such that Zi and Zj share an edge if and only if Vi and Vj are connected, with
the condition that if Vi touches an edge of S1, then Zi touches the corresponding
edge of the rectangle.

In this paper, we generalize several of Schramm’s results concerning tori. We
first show that Theorem 1.1 can be extended to cylinders and tori. In particular,
for any triangulation of a cylinder or torus T , there exists a unique tiling of
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a cylinder or torus, respectively, with T as contacts graph, up to horizontal
translations or vertical translations.

We then introduce translation surfaces, surfaces generated from identifying
opposite edges in a polygon. We prove that the surface corresponding to the
regular octagon cannot be tiled at all. However, in the same vein as the use
of the variable h in Theorem 1.1, we show that there exist translation surfaces
corresponding to an affine transformation of the regular octagon which are in
fact tileable.

The remainder of the paper is structured as follows. Section 2 presents the
preliminary definitions used in the remainder of the paper. Section 3 introduces
results in the case of singly periodic or cylinder tilings. Section 4 gives results on
doubly periodic or tori tilings, and Section 5 considers a generalization involving
translation surfaces, constituting our main results. Finally, in Section 6, we
present paths for further research.

2 Preliminary Definitions

We begin by introducing the key concepts used by Schramm: the contacts
graph and the extremal metric.

The contacts graph of a tiling T which consists of finitely many squares
{A1, A2, . . . An} is the graph G that has vertex set V and edge set E, such that
V = {V1, V2, . . . Vn} and ViVj ∈ E if and only if Ai and Aj are adjacent in the
tiling. As suggested by its name, this graph gives us a way of documenting the
adjacencies of a tiling.

In order to understand the extremal metric, we must first understand the
definitions of metric extremal length. Let G be an arbitrary simple graph.

Definition 1. A metric m is any assigning of positive real numbers m(Vi) to
each vertex Vi.

The length of any simple path γ = V1V2...Vn in G is then just l(γ) =∑n
i=1m(Vi). By considering all possible paths in a graph from one set of ver-

tices to another set for a given metric, we arrive at a notion for the length of a
metric.

Definition 2. Let V be the vertex set of G and S1, S2 be two disjoint subsets
of V . Let m be a metric and l(m) denote the infimum over all paths from S1 to
S2 of the path lengths. Then l(m) is the length of m on (G,S1, S2).

Because this definition of length ignores scaling, we also present a normalized
definition of length.

Definition 3. Let V be the vertex set of G and S1, S2 be two disjoint subsets of

V . The normalized length of (G,S1, S2) is l(m)2

||m||2 , where l(m) is the length and

||m|| =
√∑

v∈V m
2
v is the norm.
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Using this notion of normalization, we may define the extremal length of a
graph and two vertex sets.

Definition 4. Let V be the vertex set of G and S1, S2 be two disjoint subsets of
V . The extremal length of the set (G,S1, S2) is the supremum over all metrics
of the normalized length of each metric.

Finally, we arrive at the definition of the extremal metric.

Definition 5. An extremal metric is any metric whose normalized length equals
the extremal length of (G,S1, S2).

Schramm proved in [2] that the extremal metric is unique for any finite graph
G. He then used the metric as follows. Let T be a triangulation of a square S1
with vertices Vi (1 ≤ i ≤ n), let m be the extremal metric for (T, S1, S2), where
S1 consists of all vertices on the bottom edge of T and S2 consists of all vertices
on the top edge of T . Call a square tiling of a larger square S2 admissible if
any vertex touching the bottom edge of S1 corresponds to a square touching
the bottom edge of S2. Schramm’s following theorem then relates the extremal
metric to tilings.

Theorem 2.1. [2] In any admissible tiling, the size of a square corresponding
to V ∈ T equals m(V ). Conversely, there exists a unique admissible tiling of S2
with contacts graph T .

Note that Theorem 2.1 implies Theorem 1.1.

Schramm [2] also determined a method to approximately construct the tilings.
We remark that because the extremal metric solves an extremal problem, it is
difficult to determine its exact values. In the next sections, we generalize these
results for singly and doubly periodic tilings. We begin with singly periodic
tilings.

3 Singly Periodic Tilings

In the case of singly periodic tilings, many of Schramm’s results for finite
tilings still hold. Let T be a singly periodic triangulation invariant under the
transformation T + 1, where T + 1 refers to the image of T translated right by
1. In what follows, we work only with such triangulations.

Call a periodic tiling Z of a horizontal strip bounded by y = 0 and y = h
with contacts graph T admissible if for any V, V + k ∈ T , their corresponding
squares V ′, V ′k satisfy V ′k = V ′ + k, and if V intersects y = 0 if and only if V ′

intersects y = 0, and similarly for y = 1. In addition, for any vertex V of the T
on either side (top or bottom) of the strip, the corresponding square V ′ touches
the same side in Z. Finally, if there are two vertices V , W touching the same
side of the strip such that one is to the left of the other, then V ′, W ′ satisfy the
same left-right relation. We will work with admissible tilings only.

In order to generalize Schramm’s results, we will need to modify the defini-
tion of the extremal metric.

3



3.1 The Extremal Metric for Singly Periodic Tilings

For a singly periodic triangulation, consider the paths from any vertex V to
V + 1. Define length and normalized length in the same way as in Section 2
except with this set of paths. A valid metric is then any metric m where for any
vertices V0, V1 ∈ T , if V1 = V0+k, then m(V1) = m(V0). We define the extremal
length as the supremum over all valid metrics of all normalized lengths, and an
extremal metric as one attaining this supremum.

The following theorem, an analogue to Theorem 3.1 in [2], shows that this
is a functional definition.

Theorem 3.1. Any singly periodic triangulation T has a unique extremal metric
m, up to scaling.

Proof. We follow the proof of Theorem 3.1 in [2]. Call a metric admissible if
it has unnormalized length at least 1. Then the set S of admissible metrics
is nonempty, closed, and convex. Now, the norm is a strictly convex function
because λx2 + (1− λ)y2 > [λx+ (1− λ)y]2 ⇐⇒ (λ)(1− λ)(x− y)2 ≥ 0, which
is true. Therefore, there exists a unique element m of S with minimal norm.
Then, m must have length 1, as otherwise scaling m down reduces its norm.
Since any other metric can be scaled to one of length 1, its normalized length
must be strictly less than that of m unless it is m itself. Hence m is an extremal
metric, and all other extremal metrics can be scaled to m. This completes the
proof.

Next, we will relate the extremal metric to the sizes of squares in a singly
periodic tiling.

3.2 Extremal Metric and Square Sizes

As shown below, the sizes of the squares in any admissible tiling Z correspond
to the values of the extremal metric on T .

Theorem 3.2. Let Z be any admissible tiling with contacts graph T . Then, for
any square V ′ ∈ Z corresponding to a vertex V ∈ T , the side length of V ′ equals
m(V ).

Proof. Suppose the strip is bounded by y = t0 and y = t1 for t1 − t0 = h > 0.
Then let SR1

be the set of squares in Z which intersect y = t0 and let SR2
be

the set of squares in Z which intersect y = t1.
Let l(m) be the length of m. Given a line x = r, suppose it intersects

V ′ ∈ SR1
and W ′ ∈ SR2

. Clearly, V ′,W ′ are unique. Then, consider the unique
path γ from V ′ to W ′ traversing through only squares which intersect x = r.
We define the function f : R→ R such that f(r) = l(γ).

Clearly f(r) ≥ l(m). The key is then, like in [2], to integrate this over a
range r ∈ [0,M ], for some integer M . This yields:

M · l(m) ≤
∫ M

0

f(r) dr. (1)
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In the integral on the right hand side of 1, every square V ′ ∈ T0 correspond-
ing to a vertex V ∈ T0 and its translations V ′+m contributes a total of at most

M ·m(V )s(V ), (2)

where s(V ) is the side length of V ′.
Combining inequalities (1) and (2) and using the Cauchy-Schwarz inequality,

M · l(m) ≤M
∑
V ∈T0

m(V )s(V ) ≤M ||m|| · ||s||. (3)

Here, s is the metric which assigns to each vertex of T to side length of
its corresponding square in Z. Then by a density argument, ||s||2 = h. In
addition, l(s) = h because the shortest path must always go from y = t0 to
y = t1 vertically. Manipulating inequality 3 yields

l(m)2

||m||2
≤ 1

M
||s||2 =

l(s)2

||s||2
.

Since m is the unique extremal metric on T , it follows that s ≡ m. The
lemma is thus proved.

Having related tilings to extremal metrics, we now turn to nonuniqueness.

3.3 Nonuniquenesses

Unlike in square tilings, singly periodic tilings are not necessarily unique
when given the contacts triangulation, even when we restrict ourselves to ad-
missible tilings. However, the nonuniquenesses may be concisely characterized.
The following theorem determines all possible nonuniquenesses.

Theorem 3.3. Suppose Z and Z ′ are singly periodic admissible tilings with
contacts graph T . Then, one of the following is true:

(1) There exists a vector λ′ ∈ R2 for which Z ′ = Z + λ′.
(2) There exists real numbers a and P and a partition of the strip into

horizontal strips of the form Hk = {(x, y), x ∈ R, y ∈ [ak, ak+1]} (k ∈ Z), such
that Z ∩Hk and Z ′ ∩Hk differ only by a horizontal translation.

Proof. First, choose any vertex V corresponding to a square V ′ which touches
the bottom of the strip. Then, there is a unique vertex W adjacent to V which
also corresponds to a square touching the bottom of the strip, W ′, and right of
V ′. Continuing and using periodicity, we may determine the locations of all the
squares touching the bottom row easily.

Next, given any two nonaligning topmost squares such that we have not
placed any squares directly above any of them, observe that we can uniquely
place a square which touches both of them. This is because there are at most
two squares touching both of them, which we may determine through the tri-
angulation. However, these squares must have different heights along the strip.
Yet through our metric, remark that there is at least one minimal path going
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through any one square, and the sum of metrics of all squares between the
bottommost one and this square in the past gives the height of the square.
Therefore, we may uniquely determine which square is in which location.

Also, each time we place a square, we may immediately place all translates
of the square. Therefore, because we place new squares (even up to translation)
each time, we will eventually have placed all the squares.

The nonuniqueness occurs when after having placed some set of squares,
we obtain exactly a smaller strip. Then, the remaining squares must tile some
smaller strip. In addition, we can determine which squares touch the bottom
and top of the strip via the initial conditions and the squares which have already
been placed. We may therefore continuously repeat this process until all squares
have been placed, obtaining uniqueness up to horizontally translating each strip.

Thus, the square placements are unique up to horizontally translating strips.
This completes the proof of the theorem.

We end this section with the following remark.

Remark 6. The proof of Theorem 3.3 also provides a method to construct singly
periodic tilings given the contacts triangulation.

4 Doubly Periodic Tilings

We now examine doubly periodic tilings of the plane. Let T be a doubly
periodic triangulation invariant under the transformations T + 1 and T + i. In
what follows of this section, we will work with only such triangulations.

Call a doubly periodic tiling Z = {A1, . . . An} admissible if its contacts graph
is a admissible triangulation T , and there is a vector λZ = [u, v], v > 0, such
that whenever two vertices Vi, Vj of T satisfy Vj = Vi+[m,n], the corresponding
squares V ′i , V

′
j satisfy V ′j = V ′i +m+nλ. We will restrict our focus to admissible

tilings.
We then have the following theorem of existence.

Theorem 4.1. [3] Let T be an admissible triangulation. Then there exists a
admissible tiling Z with contacts graph T .

Proof. The theorem follows from Theorem 6.5 in [3], by rounding the corners
of the squares to make them convex disks.

4.1 The Extremal Metric for Doubly Periodic Tilings

We now adapt the idea of an extremal metric for doubly periodic tilings.
Let T0 be a subset of vertices of T such that every vertex in T can be obtained

by a translation by [m,n] (m,n ∈ Z) of some vertex in T0. Let T0 contain |T0|
vertices, and let S0 be the set of all finite paths in T from any vertex V ∈ T0 to
V + 1.
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Then, the extremal metric of a triangulation T is defined in the same way
as for square and singly periodic tilings, except the set of paths is S0. First we
will show that this definition is functional.

Theorem 4.2. Any admissible doubly periodic triangulation T has a unique
extremal metric m.

Proof. The proof is the exact same as that of Theorem 3.1, as all the statements
in the proof still hold. Thus this theorem is true as well.

Now we analyze the relation between the extremal metric and the sizes of
squares in admissible tilings. In fact, similar theorems hold for doubly periodic
tilings as square and singly periodic tilings.

4.2 Extremal Metric and Square Sizes

The following theorem then shows that the sizes of the squares in any admis-
sible tiling Z equal the values of the extremal metric on corresponding vertices
of T :

Theorem 4.3. Let T be a admissible triangulation with extremal metric m,
and let Z be any admissible tiling with contacts graph T . Then, for any square
V ′ ∈ Z corresponding to a vertex V ∈ T , the side length of V ′ equals m(V ).

Proof. The proof is somewhat similar to that of Theorem 3.2.
Let λ = [u, h]. Consider a large M by N rectangle R in the plane with

bottom-left corner the origin, where M is an integer multiple of h and N is an
integer, and let SR be the set of squares in Z which intersect the left edge of R.

Let l(m) be the length of m. Given a line y = r intersecting R, suppose it
intersects V ′ ∈ SR. Clearly, V ′ is unique. Then, consider the unique path γ
from V ′ to V ′ + N traversing through only squares which intersect y = r. We
define the function f : R− > R such that f(r) = l(γ).

Observe that γ can be written as the union of N paths going from V ′ + i to
V ′+ i+ 1 for 0 ≤ i ≤ N − 1. Since each of these paths has length at least l(m),
we must have

N · l(m) ≤ l(γt). (4)

The key is then to integrate inequality (4) over the range of r ∈ [0,M ]. We
obtain:

MN · l(m) ≤
∫ M

0

f(r) dr. (5)

In the integral on the right hand side of (5), every square V ′ ∈ T0 corre-
sponding to a vertex V ∈ T0 and its translations V ′+m+nλ contributes a total
of at most

1

h
MN ·m(V ′) · s(V ′) +

1

h
(2M + 2N + 4), (6)
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where s(V ′) is the side length of V ′. This is because given V ′, at most 1
h (M +

2)(N+2) of its translations, including itself, can intersect R, and the side length
of any square is clearly at most 1.

Combining inequalities (5) and (6) and using the Cauchy-Schwarz inequality,

MN · l(m) ≤
∑
V ′∈T0

1

h
MN ·m(V ′) · s(V ′) +

1

h
(2M + 2N + 4)

=⇒ MN · s(m) ≤ 1

h
MN ||m|| · ||s||+ 1

h
(2M + 2N + 4)|T0|. (7)

Here, s is the metric which assigns to each vertex of T to the side length of its
corresponding square in Z. Then by a density argument, ||s||2 = h. Therefore,
manipulating (7) yields

l(m)2

||m||2
≤ (

1√
h

+
1

h

2M + 2N + 4

MN
|T0|)2. (8)

Observe that l(s) = 1. Indeed, we may take some y = r and some square V ′

intersecting the line. Then, the set of squares between V ′ and V ′+1 intersecting
y = r forms a path with length 1, as Z is admissible. In addition, no path from
V ′ to V ′ + 1 may have length less than 1, because the sum of side lengths in
such a path is at least the difference in the x coordinates of V ′ and V ′ + 1.

Therefore, setting M = hN and taking the limit of inequality (8) as N
approaches infinity yields

l(m)2

||m||2
≤ 1

h
=
l(s)2

||s||2
.

Since m is the unique extremal metric on T , it follows that s ≡ m. The
lemma is thus proved.

4.3 Nonuniquenesses

For doubly periodic tilings, the possible nonuniqueness is similar to that for
singly-periodic tilings, except that we may have either horizontal or vertical
strips. These possible nonuniquenesses are given in the theorem below.

Theorem 4.4. Let T be a admissible triangulation. Suppose Z and Z ′ are
admissible tilings with contacts graph T . Then, one of the following is true:

(1) There exists a vector λ′ ∈ R2 for which Z ′ = Z + λ′.
(2) There exist real numbers a and P , a vector λ′, and a partition of the plane

into horizontal strips of the form Hk = {(x, y), x ∈ R, y ∈ [ak, ak+1]} (k ∈ Z),
such that Z ∩Hk and Z ′ + λ′ ∩Hk differ only by a horizontal translation.

(3) There exist real numbers a and P , a vector λ′, and a partition of the plane
into vertical strips of the form Ck = {(x, y), y ∈ R, x ∈ [ak, ak+1]} (k ∈ Z), such
that Z ∩ Ck and Z ′ + λ′ ∩ Ck differ only by a vertical translation.
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In order to prove this theorem, we will need several preliminary lemmas.
First, pick any vertex V of our triangulation T and let square A correspond

to V . Place A randomly on the plane. Hereafter we will use for some square V ′

and constant r the notation V ′ + r to denote V ′ + [r, 0].
Call a vertex Vi of T admissible if there exists real numbers r, s and a path

γ such that V + r, Vi, V + s are in γ in that order, and γ has length s− r.
From now on, assume that neither (2) nor (3) occur. Then we have the

following lemma.

Lemma 4.5. All vertices of T are admissible.

Proof. Suppose vertex W is not admissible, and let it correspond to W ′ ∈ Z.
Since A is fixed, let A intersect the horizontal line y = k0.

Without loss of generality, assume that W ′ is above y = k0. Define a se-
quence of squares V ′1 , V

′
2 , . . . V

′
n, . . . as follows: Let V ′1 be the lowest square which

shares a vertical edge with W ′ and is to the right of W ′. Given V ′n, let V ′n+1

denote the lowest square to the right of and sharing a vertical edge with V ′n and
to the right of V ′n.

Similarly, define U ′1, . . . U
′
n to the left of W ′ such that U ′1 is the lowest square

sharing a vertical edge with and to the right of W ′, and U ′i+1 is the lowest square
sharing a vertical edge with and to the right of U ′i .

Clearly it is impossible that V ′i is entirely above y = k0 and V ′i+1 is entirely
below y = k0. The same thing holds for the U ′i . There are now two possibilities:

(i) Both sequences eventually intersect y = k0, say at U ′j and V ′k. Then, we
may choose r, s appropriately such that A+ r is left of U ′j and A+ s is right of
U ′k.

Define a sequence of squares intersecting y = k0: W ′0 = A + r and W ′i+1 is
adjacent to W ′i . Suppose that U ′j = W ′x, V

′
k = W ′y, and A+ s = W ′z.

Consider the path

γ = W ′0W
′
1 . . .W

′
xU
′
jU
′
j−1 . . . U

′
1W
′V ′1 . . . V

′
k−1W

′
yW
′
y+1 . . .W

′
z.

It is easy to see that the length of the γ is exactly s− r, because it is the sum
of the side lengths of the squares in γ. In addition, consider any other path γ′

taking A + r to A + s. By projecting all the squares in the path onto the line
y = 0, we obtain a set of intervals which cover a larger interval of length s− r.
Since the extremal metric corresponds to the square side lengths, we see that
the length of the path γ′ is at least s− r.

Therefore, γ is the shortest path from A+ r to A+ s, and since W ′ ∈ γ, W
must be admissible.

(ii) At least one sequence does not intersect y = k0. Without loss of gener-
ality, suppose V ′i does not. Set f(V ′i ) to be the y-coordinate of the bottom-left
corner of V ′i . Clearly, the sequence f(V ′i ) is nonincreasing but bounded below.
Therefore, it converges to some real t, and so for any sufficiently small ε, there
exists I ∈ Z such that for all i ≥ I, y = t+ ε intersects the interior of V ′i .
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Suppose there is any square S′ whose interior has nonempty intersection with
the line y = t. Then, observe that we may choose ε > min{{m(V ), V ∈ T}, 0}
such that y = t+ ε intersects the interior of S′ as well. Then it is clear that all
squares of the sequence V ′i for i > I must intersect y = t+ ε as otherwise their
side length is no greater than ε, contradicting our definition of ε.

Choose sufficiently large l such that f(S′ + l) > f(VI+1). From the above
remarks, S′ + l = V ′j for some j. But then f(V ′j ) is less than t, contradicting
the definition of t.

Thus, all squares of Z are either above y = t or below y = t. Suppose
λ = [p, q]. Then split the complex plane into strips Hk = {(x, y), x ∈ R, y ∈
[t+ kq, t+ (k + 1)q]}. It is clear that Z ∩Hk is well defined because Z has no
squares which intersect more than one strip.

Then, let the set of vertices which are admissible be S. By the above work,
for any non-admissible vertex U corresponding to square U ′ above A, we may
associate a line y = g(U) with g(U) < f(U ′), which no square intersects. By
symmetry, for any non-admissible vertex U corresponding to square U ′ below A,
we may associate a line y = g(U) with g(U) > f(U ′) which no squares intersect.

Consider y = t and y = t−q. Clearly all admissible vertices are in said strip,
since no vertex outside the strip shares a vertical edge with any edge inside the
strip.

Now, if any square in the strip U is not admissible, then we may reduce
the height of the strip by replacing one of the strip bounds by y = g(U). It
is clear that this reduces the strip height by at least the size of the smallest
square. Therefore, repeating this process, we eventually obtain a strip with the
entire set of squares corresponding to admissible vertices contained inside, and
no other squares.

Then, the set of squares touching the boundaries of the strip is uniquely
determined because it is simply the set of admissible vertices which have a non-
admissible neighbor. Thus, using Theorem 3.3, since A is fixed and obviously
admissible by definition, the strip is also fixed (i.e. same for Z and Z ′), since
the set of admissible vertices is independent of the tiling. Suppose this strip is
bounded by y = a0 and y = a1, a0 < a1. Then first note that k is uniquely
determined by the norm of the metric, since the total area of all the squares
must be k by a density argument. Then by translating the squares between
y = a0 and y = a1, the strip between y = a0 + k and y = a1 + k can also
be uniquely covered by squares. Then, we may place the squares bounded by
y = a1 and y = a0 + k using Theorem 3.3, up to translation. Finally, we may
shift the squares between y = a0 and y = a0 + k to yield the entire tiling.

Note that this is done independently of the tiling (i.e. only with the metric),
hence Z and Z ′ have both been split into horizontal strips on which they differ
by a constant, i.e. (2) holds, contradiction.

The lemma is therefore proved in both cases.

Let the x-coordinate x(S′) of a square S′ be the x-coordinate of the bottom
left corner of the square.

Next, we prove that:
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Lemma 4.6. The x-coordinate of every square is determined uniquely by T .

Proof. Let V ′ denote any square. By Lemma 4.5, V ′ is admissible. Thus, there
exists real numbers r, s and a path A+r, V ′1 , V

′
2 , . . . , V

′
n, V

′, U ′1, U
′
2, . . . , U

′
m, A+s

with length s− r.
Project each square on the path to the line y = 0. Since the extremal metric

corresponds to the side length of the square, we obtain a sequence of intervals
covering an interval of length s− r, with total length equalling s− r. Therefore,
any two consecutive intervals intersect at their endpoints only.

This implies that the x-coordinate of V ′ equals x(A+r)+m(A+r)+m(V ′1)+
m(V ′2)+. . .+m(V ′n), which is uniquely determined by T , proving the lemma.

Now, define y(S′) to be the y-coordinate of the bottom-left corner of a square
S′.

The following two lemmas will pinpoint the y-coordinate of each square.

Lemma 4.7. Suppose that the squares S′0 and S′1 are fixed and share a horizontal
edge, and that both squares intersect the line x = r. Then for any other square
W ′ whose interior intersects x = r, the value y(W ′) is determined uniquely.

Proof. Recall that we have fixed the location of square A. Suppose the interior
of A intersects the line x = r. By Lemma 4.6, the x-coordinate of every square
is determined uniquely by T , hence the set S of squares which have nonempty
intersection with x = r is fixed.

Inductively place a sequence of squares S′i whose locations are all fixed as
follows: S′1 has already been placed. Given the placement of S′n, let S′n+1

be a square which is adjacent to S′n and in the set S, but not adjacent to or
equivalent to S′n−1. Then by Lemma 4.6, the x-coordinate of S′n+1 is determined
uniquely. In addition, by definition, the bottom edge of S′n+1 must lie on the
same horizontal line as the top edge of S′n, hence y(S′n+1) = y(S′n) + m(Sn).
Since S′n has been placed, y(S′n) is fixed, hence y(S′n+1) is fixed as well.

Thus, the location of S′n+1 is fixed and the square may be placed uniquely.
Finally, since x = r intersects the interior of W ′, there must exist k such

that W ′ = S′k. Hence the y-coordinate of S′k is determined uniquely.

Lemma 4.8. Let N > 0 be a fixed real number. Then there exists a real number
m and a finite set of squares S′, whose locations are uniquely determined by the
location of A and the triangulation T , such that for every r ∈ [m,m + N ], the
line x = r intersects at least two squares in S′ which share a horizontal edge.

Proof. Set m such that m+N = x(A). Set A = A1. Using Lemma 4.7, we may
uniquely place a square B1 which shares a horizontal side with A1.

We aim to inductively construct a sequence of quadruples (Ai, Bi, x = ri),
such that each pair shares a horizontal edge, both squares intersect x = k for
any k ∈ [ri, ri−1], ri is the maximum of x(Ai) and x(Bi), and the sequence {ri}
is strictly decreasing.

Define (A1, B1) as above, and simply let r1 be the maximum of x(A1) and
x(B1). Given Ak, Bk, using Lemma 4.6, we may construct a sequence of squares
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S1 = Ak, S2 = Bk, S3, . . . such that Si and Si+1 share a horizontal edge and
each Si intersects x = rk. We have the following two cases:

(i) If there exists i such that x(Si) < rk, take the smallest such i. Then, let
Ak+1 be Si, and let Bk+1 be the unique square adjacent to Si and Si−1 and to the
left of Si−1. Clearly Bk+1 is uniquely determined. Let the maximum of x(Bk+1)
and x(Ak+1) be rk+1. By definition, Ak+1 and Bk+1 must both intersect the
line x = x(rk+1). Also, rk+1 < rk and both Ak+1 and Bk+1 intersect rk+1. In
addition, by the minimal choice of i and the fact that rk = x(Si−1), we see that
both squares intersect x = rk.

(ii) If there does not exist such i, then since Ak and Bk intersect x = rk,
we must have x(Si) = rk for all i. Then observe that we may partition the
plane into strips bounded by x = rk and x = rk + l + 1. By Lemma 4.6, the
x-coordinate of every square is fixed, hence there is a unique way to partition
the set of vertices in T into sets Rt such that Rt is the subset that corresponds
to the set of squares within the strip bounded by x = rk + t, rk + t + 1. In
addition, Lemma 4.6 implies that the set of squares intersecting the boundary
of any strip is uniquely determined.

Therefore, by the vertical analogue to Theorem 3.3, each of these strips may
be tiled uniquely up to vertical translation, hence we obtain the case (3) in the
statement of Theorem 4.4. This contradicts our assumption, hence (ii) may not
occur.

This process yields an inductive construction for the triples (Ai, Bi, x = ri).
Set l to be the minimum square side length. Then, it is easy to see that ri+1 ≤
max(ri − l, ri−1 − l), since by the construction method (i) above, if rk+1 =
x(Bk+1), then rk+1 = rk −m(Bk+1) ≤ rk − l, and otherwise rk+2 = x(Bk+2).

Therefore the sequence ri is not bounded, since rk ≤ rk−2 − l and l > 0.
Then set S to include all pairs Ai and Bi up to some sufficiently large index k,
where rk < m. From the construction of (Ai, Bi), we see that all k ∈ [m,m+N ]
satisfy that k ∈ [rj , rj−1] for some j and therefore x = k intersects Aj and Bj ,
which share a horizontal edge.

Since Ai and Bi are determined uniquely by our process above, this com-
pletes the proof of the lemma.

Now, we are ready to prove Theorem 4.4.

Proof. TakeN > 1+4δ, where δ is the maximum of the lengths of all the minimal
paths between a vertex V and V + i in T . Consider a set S′ and real number m
as described in the statement of Lemma 4.8. Then, for every r ∈ [m,m + N ],
there are two squares intersecting x = r which share a horizontal edge. By
Lemma 4.6, the set of squares intersecting x = r is uniquely determined, and
by Lemmas 4.6 and 4.7, their locations are fixed as well.

Since N > 1 + 4δ, there must be some two squares V ′, V ′′ which intersect
the vertical strip bounded by x = m and x = m + N , which correspond to
vertices V, V + [0, 1] in T . By the above comments, the positions of V ′ and V ′′

are uniquely determined. Therefore, λ = [x(V ′′)−x(V ′), y(V ′′)−y(V ′)] is fixed
as well.

12



In addition, for every vertex V ∈ T0, since N > 1, there exists a real number
k such that m < x(V +k) < m+N . Then by Lemmas 4.7 and 4.8, the square V ′k
corresponding to V + k can be uniquely placed. Then the square corresponding
to V can be obtained by shifting V ′k left by k.

Thus, every vertex V ∈ T0 corresponds to a square V ′ which may be uniquely
placed. Thus, Z and Z ′ must be the same tiling, proving the theorem.

4.4 Constructing the Tiling

The proof of Theorem 4.4 also provides us with the following method for
constructing any given tiling from the contacts triangulation T and the extremal
metric m.

First fix any square A corresponding to some V ∈ T .
Let the minimum value of the metric on T be r. Then, for each vertex V

in T0, take any path from V to V + 1, and set it’s length as g(V ). Then any

path with more than g(V )
r vertices cannot be the shortest path from V to V +1.

Hence, we may take all paths with at most g(V )
r vertices starting from V and

in finite time deduce the length of the shortest path from V to V + 1.
Repeating this process for each V ∈ T0, we may deduce the length of the

metric.

For the next steps, we borrow the notation of x-coordinate and y-coordinate
as well as the functions x(V ′) and y(V ′) from the proof of Theorem 4.4.

For any vertex W 6= X, we claim that we can determine in finite time
whether there exists k, l > 0 and a path from X to X+ l passing through W +k
with length l. Call W X-accessible if this path exists. Note that any such path
will consist of vertically adjacent squares.

Indeed, follow in the method given by the proof of Lemma 4.5. As usual,
let V ′0 be the square corresponding to V0 for any vertex V0. Take the sequences
U ′i and V ′i defined there. Set |T0| to be the number of vertices in T0. Note that
in the first |T0| + 1 squares, there must be two squares which are translations
of each other. If they are horizontal translations, then we obtain case (2) of
Theorem 4.4, because W is not X-accessible. Otherwise, their y-coordinates
must differ by at least k. Take any path γ from W to X, and observe that the
difference in the y-coordinates of W and X is at most l(γ) + m(W ) + m(X).
Thus, continuing the above process, we will eventually arrive at some V ′j such

that V ′j and X ′ both intersect y = r for some r, where j ≤ l(γ)+m(W )+m(V )
|T0|+1 ,

or we will enter case (2) of Theorem 4.4. If the former occurs, we may take
consecutive squares intersecting y = r until we arrive at horizontal translation
of X ′. Note that this will happen within 1

r squares. Doing the same for the Ui
and translating appropriately shows that we only need to consider paths from

X ′ of length at most 3 + 2 l(γ)+m(W )+m(V )
|T0|+1 + 1

r , of which there are finitely many

to check.
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Then, check for each W ∈ T0 whether W is V -accessible. Then we may
similarly check whether W + [0, 1] and W + 1 are W -accessible. If any of our
checks yields a negative answer, then due to Lemma 4.5, we are in case (2) of
Theorem 4.4.

If in any of the above we obtain that we are in case (2) of Theorem 4.4.
Then, take a sequence of vertices V, V1, V2, . . . , Vm such that no two consecutive
vertices correspond to squares sharing a vertical edge and each Vi is V -accessible,
but Vm has neighbors which are not V -accessible. This is possible because using
a similar method as above, U and W share a vertical edge if and only if there is
a path from U to U + 1 of length 1 which passes through W . We may suppose
that the y-coordinates of the Vi form an increasing sequence.

Then, we may determine the height of one line bounding the horizontal
strip which includes A. Next, we may take another sequence V,W1,W2, . . . ,Wn

satisfying equivalent conditions, but with W1 and V1 disconnected in the graph
with vertex set the neighbors of V , and edges between two X,Y if XY is an
edge of T and neither X,Y share a vertical edge with V . It is clear that the
y-coordinates of this sequence are decreasing. The construction implies that
this yields the bounds of the minimal horizontal strip consisting A, which must
contain only V -accessible vertices from the proof of 3.5.

Now, take a sequence of vertices from Vm such that their adjacent corre-
sponding squares share a vertical edge, their x-coordinates form a monotonically
increasing sequence, and each vertex has a neighbor who is not V -accessible.
Because a tiling must exist from Theorem 4.1, such a sequence will eventually
reach Vm + 1. From this, we obtain by translation the entire set of vertices
corresponding to squares touching the top edge of the strip. Similarly, we may
deduce the set of vertices corresponding to squares touching the bottom edge of
the strip.

Then, by taking lines x = t + kr
2 , k ∈ Z, t ∈ R which intersect X1, X2 on

the top and bottom edges of the strip, we may find all V -accessible vertices up
to horizontal translation through taking all vertices on some path of minimal
length from X1 to X2. The choice of x = t+kr and the fact that each square has
length at least r means that every V -accessible vertex corresponds to a square
intersecting at least one such line, and is thus included in some minimal path.

Then using the remark to Theorem 3.3 we may construct the tiling of our
strip containing A, bounded by y = t0 and y = t1 (t0 < t1). Suppose λ = [p, q].
Remark that q is determined by the metric, as shown in the proof of Theorem
4.4. Then we may tile by translation any strip y = t0 + kq, y = t1 + kq,
k ∈ Z. Finally, we may determine all squares adjacent to the borders y = t1
and y = t0 +q, hence by the remark to Theorem 3.3 we may construct the tiling
of this strip and its vertical translations as well.

This then produces our tiling in this case.

Otherwise, using the above remarks, we may for eachW+[m,n] create a path
from V toW and then toW+1,W+2, . . . ,W+m,W+[m, 1], . . . ,W+[m,n] with
adjacent corresponding squares being vertically adjacent and the x-coordinates
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monotonically increasing. Then we may extract the x-coordinate of W using
the same method as in the proof of Lemma 4.6.

Then, as in the proof of Theorem 4.4, we may obtain the positions of any
square in a fixed vertical strip bounded by x = m and x = m+N , for N > 1+4δ,
where δ is the maximum of the lengths of all the minimal paths between V and
V + i, for V ∈ T0.

Combining this with the proofs of Lemmas 4.7 and 4.8, we may determine
the position of any square. Note that this process is finite. Indeed, all steps in
the proof of Lemma 4.7 are finite, because to determine the S′i in the proof can
be done by looking at all neighbors of S′i−1.

In the proof of Lemma 4.8, borrowing the notation, the only possibly infi-
nite step is in determining whether (i) or (ii) holds. But we may continue to
determine the locations of Si until we have at least |T0|+ 1 consecutive Si with
the same x-coordinate, where |T0| denotes the number of vertices of T0, or have
found that we are in case (i).

In the former, it is easy to see that we are in case (3) of Theorem 4.4. We
may also find some p, q ∈ Z for which pλ+ q = 0. Therefore, we may take T1 to
be the union of all sets T0 + rλ+ s, 0 ≤ r < p and 0 ≤ s ≤ q. Then we may use
T1 as the set which when translated horizontally and vertically yields the whole
plane. In this way, we have altered our λ so that it is of the form [0, t]. Then it
is easy to see that in this case we may use the same method as in the proof of
Theorem 4.5 to determine the y-coordinates of each square. Combining yields
the positions of every square in T1 and knowing the translations, this completes
the construction.

In the latter, we continue with the process outlined in the proof to completely
determine the positions of any square.

Using the above procedure, we may determine the position of squares V ′, V ′+
λ corresponding to vertices V, V + i in T0. This thus gives us the value of λ.
Then for any V ∈ T0, we may identify the position of the corresponding square
V ′.

Since any vertex in T may be written as V + m + ni for some V ∈ T0, the
position of the corresponding square is V ′ + m + nλ, where V ′ corresponds to
V . Since we know λ and the position of V ′, this yields the position of every
square, completing the construction in all cases.

We are therefore able to construct the tiling if we can deduce the metric from
the contacts graph. While this is difficult due to the definition of the extremal
metric (it is unclear how to quickly solve the complex extremal problem), we
have this following remark, with which we end this section.

Remark 7. We may approximate the values of the extremal metric in a naive
way. Indeed, first take any metric of norm 1 and evaluate the length, L. Then,
take all possible metrics m such that m(V ) for any vertex V is an integer mul-
tiple of r, where r is some small rational number. Taking the metric that gives
the maximal length over all of these yields a likely admissible approximation for
the extremal metric.
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5 Tilings of Translation Surfaces

The doubly periodic tilings explored in Section 4 can be equivalently thought
of as tilings of a torus, as identifying the opposite sides of a parallelogram results
in a torus. This motivates us to consider tiling translation surfaces, a natural
generalization of the torus.

5.1 Translation Surfaces: Definition and Examples

Roughly speaking, a translation surface is equivalent to a collection of poly-
gons. To formalize this concept, there are many equivalent definitions, of which
we use the third given in [4].

Definition 8. Let Pi, 1 ≤ i ≤ n be polygons with an even number of sides
such that there exists a pairing of the sides satisfying the condition that any two
paired sides are parallel and of equal length. Then identifying opposite edges in
each Pi and taking the union of the polygons yields a translation surface.

Remark 9. The torus is a translation surface, because it can be obtained through
taking any parallelogram as the polygon P1.

The torus as a translation surface; note that the two green points are identified.

We now analyze a more complex translation surface, namely, the octagonal
translation surface.

5.2 The Octagonal Translation Surface

First we give the formal definition of this surface.

Definition 10. The octagonal translation surface is the translation surface H
obtained by identifying opposite edges of a regular octagon.
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The octagonal translation surface. Opposite sides are identified with the same
color.

One natural question, analogous to the existence of tori tilings, is whether
this surface may be tiled with squares. We first need the concept of Hamel
bases.

Definition 11. A Hamel basis of the real numbers is a countably infinite set
{xr}, r ∈ R, such that each real number x can be uniquely written as a sum

x =
∑
s∈S

xs

for a finite set S ⊂ R.

The following theorem, whose proof uses ideas from Freiling and Rinne [1],
resolves this question in the negative.

Theorem 5.1. There does not exist a square tiling of H.

Proof. Assume that H has side length
√

2. Let f be any additive function, and

define the f -area of an isosceles triangle with legs a, a to be f(a)2

2 and the f -area
of any rectangle with sides a, b to be f(a)f(b). Suppose that a figure F can be
cut into a union of pieces

⋃
Fi. Let the f -area of any figure be the sum of the

f -areas of Fi. Because f is additive, the f -area is well-defined and it is invariant
under cutting and rearranging pieces.

Suppose that H can be tiled by squares. Then although f does not neces-
sarily take on positive values, the f -area of H must be nonnegative because it
each square has area f(x)2 ≥ 0. On the other hand, as shown in Figure 1, we
may rearrange two isosceles right triangles of side length 1 to change H into the
union of two 1 by 1 +

√
2 rectangles and one

√
2 by 2 +

√
2 rectangle.
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Figure 1: Rearranging two isosceles triangles.

In addition, remark that 1 and
√

2 are linearly independent over Q as
√

2 is
irrational. Thus, there exists a Hamel basis with these two as basis elements,
and because all additive functions are completely determined by its value on
the Hamel basis, we may set x = f(1) and y = f(

√
2). Therefore, it suffices

to find suitable x, y such that the f -area of H is negative, whereupon we arrive
at a contradiction. However, the f -area of H equals 2x(x + y) + y(2x + y) =
2x2 + 4xy + y2. Therefore, setting x = 1 and y = −1 results in an f -area of
−1 < 0. This provides the desired contradiction, hence H cannot be tiled by
squares.

Remark 12. The use of Hamel bases in the above proof shows the motivation
and the ideas behind this method. However, if desired, one may avoid this
notion altogether because it suffices to assign values to f(k) where k is one
of finitely many side lengths that appear in our tiling and the rearrangement.
Because 1 and

√
2 are linearly independent over Q, we may assign x = f(1) and

y = f(
√

2), and then for any remaining elements assign them according to the
additivity condition. Then we may proceed as above and complete the proof.

However, recall that in the tori tilings, we allowed for tilings periodic under
T + 1 and T + λ. Equivalently, we allowed the torus to undergo an affine
transformation. Let us consider a similar idea for the octagonal translation
surface. Specifically, we examine the regular octagon under a vertical stretch
by a factor of l. Call the translation surface generated by this octagon Hl.

Similar methods as in the proof of Theorem 5.1 show that for many values
of l, Hl is not tileable.

Theorem 5.2. There does not exist a square tiling of Hl if l is of the form
a+ b

√
2, where a, b are rational, and |a| > |b

√
2|.

Proof. We follow the method used in the proof of Theorem 5.1. Maintain the
same definition of f -area and also set x = f(1) and y = f(

√
2).

Using the rearrangement and tiling given by 1, the f -area of the octagon is

2xf((1 +
√

2)l) + yf((2 +
√

2)l).

If l 6= a + b
√

2 for rational a, b, then the representation of l in the Hamel
basis includes another real number r. Then 1,

√
2, (1 +

√
2)l, and (2 +

√
2)l

are linearly independent over Q. Therefore we may choose x, y, f((1 +
√

2)l),
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and f((2 +
√

2)l) arbitrarily. Hence setting x = y = 1, f((1 +
√

2)l) = 1, and
f((2 +

√
2)l) = −100 makes the f -area negative, implying as in the proof of 5.1

that no square tiling exists.
If l = a+ b

√
2 for rational a, b, then the f -area may be rewritten as

2x((a+ 2b)x+ (a+ b)y) + y((2a+ 2b)x+ (2b+ a)y),

or
(2a+ 4b)x2 + (4a+ 4b)xy + (2b+ a)y2.

There exist x, y such that this value is negative if (4a + 4b)2 > 4(2a + 4b)(a +
2b) ⇐⇒ 8a2 > 16b2, or |a| > |b

√
2|. Therefore, Hl cannot be tiled if |a| >

|b
√

2|. Combined with the previous case, this concludes the proof.

However, there do exist certain values of l for which Hl is tileable.

Theorem 5.3. There exist square tilings of Hl for l = r(1 +
√

2) and l = r
√

2,
where r is a rational number.

Proof. Assume r = 1; for general r, the vertical stretch implies that if Hk can
be tiled, then Hrk can be tiled by a by ar squares. Since r is rational, the result
follows.

Now we refer to Figures 2 and 3 below. The former provides a tiling for
l = 1 +

√
2 via three squares. This tiling uses the rectangle tiling obtained via

the triangle rearrangement. These rectangles are all similar, so a vertical shift
renders them as squares. The latter one provides a tiling for l =

√
2 via only

two squares.

Figure 2: Three squares tiling the translation surface obtained from vertically
stretching the octagonal translation surface by a factor of l = 1 +

√
2.

We may thus conclude that while the octagonal translation surface H may
not be square-tiled, there exists some affine transformations of H which may
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Figure 3: Two squares tiling the translation surface obtained from l =
√

2.

be square-tiled. This paves the way for further work on tiling this translation
surface.

6 Further Research

There are several avenues of continuation from this work. Firstly, one may
strive for a proof of Theorem 4.1 using the construction methods outlined in
this paper. Unfortunately, the lack of a simple formula for the locations of the
squares similar to that in the proof of Theorem 5.1 in [2].

In addition, our work on the octagonal translation surface H indicates a
natural continuation of working with triangulations on an affine transform of
H. The most general (and a very intriguing) question one may ask is whether
Theorems 4.1 and 4.4 apply in the case of the octagonal translation surface or
translation surfaces in general. Results concerning this would generalize the
theorems presented here and in [3] and [2].
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