
PRIMES Math Problem Set

PRIMES 2020

Due December 1, 2019

Dear PRIMES applicant:

This is the PRIMES 2020 Math Problem Set. Please send us your solutions as part
of your PRIMES application by December 1, 2019. For complete rules, see http:

//math.mit.edu/research/highschool/primes/apply.php

• Note that this set contains two parts: “General Math problems” and “Advanced
Math.” Please solve as many problems as you can in both parts.

• You can type the solutions or write them up by hand and then scan them. Please
attach your solutions to the application as a PDF file. The name of the attached
file must start with your last name, for example, “smith-solutions”. Include
your full name in the heading of the file.

• Please write not only answers, but also proofs (and partial solutions/results/ideas
if you cannot completely solve the problem). Besides the admission process, your
solutions will be used to decide which projects would be most suitable for you if
you are accepted to PRIMES.

• Submissions in LATEX are preferred, but handwritten submissions are also accepted.

• You are allowed to use any resources to solve these problems, except other people’s
help. This means that you can use calculators, computers, books, and the Internet.
However, if you consult books or Internet sites, please give us a reference.

• Note that posting these problems on problem-solving websites before
the application deadline is strictly forbidden! Applicants who do so will be
disqualified, and their parents and recommenders will be notified.

Note that some of these problems are tricky. We recommend that you do not leave
them for the last day. Instead, think about them, on and off, over some time, perhaps
several days. We encourage you to apply if you can solve at least 50% of the problems.

Enjoy!

Why it makes no sense to cheat

PRIMES expects its participants to adhere to MIT rules and standards for honesty
and integrity in academic studies. As a result, any cases of plagiarism, unautho-
rized collaboration, cheating, or facilitating academic dishonesty during the
application process or during the work at PRIMES may result in immedi-
ate disqualification from the program, at the sole discretion of PRIMES. In
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addition, PRIMES reserves the right to notify a participant’s parents, schools, and/or
recommenders in the event it determines that a participant did not adhere to these
expectations. For explanation of these expectations, see What is Academic Integrity?,
integrity.mit.edu.

Moreover, even if someone gets into PRIMES by cheating, it would immediately be-
come apparent that their background is weaker than expected, and they are not ready
for research. This would prompt an additional investigation with serious consequences.
By trying to get into PRIMES by cheating, students run very serious risks of exposing
their weak background and damaging their college admissions prospects.

General Math Problems

Problem G1. Let n ≥ 4 be an integer. We wish to arrange the numbers 1, . . . , n
in a circle so that any two consecutive numbers sum to a prime number. For example,
(1, 2, 3, 4) would be a valid arrangement when n = 4.

(a) Is there an odd n ≥ 5 for which this is possible?

(b) For each of n = 6, n = 8, n = 10, determine whether this is possible.

Problem G2. Consider pairs (a, b) of positive integers where b is not a perfect square
and a2 > b. Let

q =

√
a +
√
b +

√
a−
√
b.

(a) Assume (a, b) = (17943, 321185624). Show that q is rational and determine its
value.

(b) Find another pair (a, b) as above for which q is rational.

(c) Determine whether there are infinitely many pairs (a, b) for which q is rational.

(d) Is it possible to find (a, b) such that q is rational but not an integer?

Problem G3. Three distinct points are chosen on the parabola y = x2, determining a
triangle ∆.

(a) Express the area of ∆ as a function of the three slopes of the sides of ∆.

(b) Determine the largest possible area of ∆, given that all slopes of sides of ∆ have
absolute value at most m.

Problem G4. Let k be a positive integer. A 3 × 3 matrix M with integer entries is
given. It turns out that each of the four continuous 2× 2 submatrices has determinant
1. (These are the four minors obtained by deleting either the first row or last row, and
either the first column or last column.) Moreover, the center entry is equal to k.

Given this information, find all possible values of detM , in terms of k.

Problem G5. Let n be a positive integer and let S = {1, . . . , n}. We choose three sub-
sets A, B, C of S uniformly at random (from the 2n possible subsets), with replacement.

(a) Find the expected value of |A ∩B ∩ C|.

(b) Find the expected value of |A ∩B| · |B ∩ C|.

Problem G6. A robot starts at the point 0 on a number line. Thereafter, if it is at the
number n, then
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• it goes to n + 1 with probability 1/2,

• it goes to n− 1 with probability 1/3,

• it goes to n− 2 with probability 1/6.

Determine the probability the robot ever reaches 1. You may take for granted the
probability this occurs is not 1.

Problem G7. Let n be a positive integer. An n×n board is given, and some rooks are
placed on the board. In a move, any rook may capture another rook in the same row
or column (i.e. if rook R is in the same row or column as rook R′, then R′ is removed
and R takes its place). This continues until no more captures are possible; the resulting
configuration is called peaceful.

(a) Describe an algorithm to compute, in O(n2) time, the maximum number of cap-
tures that can be made before reaching a peaceful configuration.

(b) Describe an algorithm to compute, in O(n3) time, the minimum number of captures
that can be made before reaching a peaceful configuration.

If you use a standard or well-known algorithm as part of your solution, you do not need
to describe the exact steps of the algorithm itself, but you should reference what the
algorithm does, give either a name or citation, and state on the runtime.

Advanced Math Problems

Problem M1. There are six towers which are each 24 blocks tall. Bob the Builder
wishes to merge them into a tower which is 144 blocks tall.

In a move, Bob may take a block from any tower (say with a blocks) and move it on
top of any other tower (say with b blocks), as long as a ≤ b. Due to gravity, the effort
of doing so takes Bob b− a + 2 hours. Determine the minimum amount of time it takes
Bob to construct a tower of height 144.

Problem M2. Let f : [0, 1]→ R be a strictly increasing function which is differentiable
in (0, 1). Suppose that f(0) = 0 and for every x ∈ (0, 1) we have

f ′(x)

x
≥ f(x)2 + 1.

How small can f(1) be?

Problem M3. Let n be a fixed positive integer and consider the vector space V of real
polynomials of degree at most n. We define the map T : V → V by

f(x) 7→ d

dx

[
(x + 1)n+1 · f

(
1

x + 1

)]
.

Is T a linear map? If so, compute its determinant.

Problem M4. Let G be a finite group and let A = Aut(G) denote its automorphism
group.

(a) If |G| = 1048576, can it happen that |A| is divisible by 1048575?

(b) If |G| = 1048572, can it happen that |A| is divisible by 1048571?
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Problem M5. We say an integer n ≥ 2 is chaotic if for any monic nonconstant poly-
nomial f(x) with positive integer coefficients, the set

{f(1), f(2), . . . , f(n)}

contains fewer than 10deg f · n
logn prime numbers. Are there finitely many chaotic integers?

(Possible hint: use the prime number theorem for arithmetic progressions.)

Problem M6. Fix an additive abelian group G. Say a family I of finite subsets of G
is G-admissible if the following properties hold:

• if A ∈ I and g ∈ G, then g + A = {g + a | a ∈ A} is also in I;

• whenever A,B ∈ I, the symmetric difference

A4B = {x | (x ∈ A and x /∈ B) or (x ∈ B and x /∈ A)}

is also in I.

If A ⊆ G is finite, let A denote the smallest admissible family containing A.

(a) Is every Z-admissible set of the form A for some A?

(b) Describe all Z-admissible sets.

(c) For each n = 2, 3, . . . , 9 compute the number of Z/nZ-admissible sets.

(d) What can you say about Z/nZ-admissible sets for general n?
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