Privacy Preserving Similarity Search for Online
Advertising

Patrick Zhang
MIT PRIMES - June 2020

Abstract

Online advertisements are an essential component of the business model
of many online platforms and often the main source of revenue. Ads are
most effective when relevant ads are shown to the proper audience, which
requires detailed personal information to be collected on web users. This
is accomplished using Similarity Search algorithms which match user in-
terests to ads. However, current techniques make no attempt at providing
privacy to the end users. We propose a novel approach to the similarity
search problem for selecting ads by designing a private interactive pro-
tocol that provides user privacy without compromising ad selection ac-
curacy. Our protocol matches the accuracy of existing Similarity Search
algorithms and is experimentally evaluated using real-world data.

1 Introduction

Online advertisement is an essential aspect of online media applications. Ad-
vertisement is the primary source of revenue for the majority of websites as
advertisers pay websites to display ads to its users. Advertisers invest into dis-
playing ads with the expectation that the exposure will increase their customer
count. Thus, the audience is an important factor to advertisers trying to maxi-
mum customer count. Ads should be shown to users who display interest in the
same types of products. Targeted advertising is already implemented in prac-
tice using a variety of similarity search algorithms to match up users to ads.
However, in order for these algorithms to perform accurately, vast amounts of
information on users of websites must be collected through various means such
as browsing history and previously clicked ads. The lack of privacy regarding the
collection of personal information has been a constantly growing concern with
the general public, creating a movement towards regulation on data collection.

We aim to create a system for privacy preserving similarity search. The goal
is to serve targeted ads to users without revealing their personal information to
the ad brokers, such as Google and Facebook. This also implies that the system
must hide the ads that the ad brokers are sending out from the ad brokers
since knowing the attributes of the displayed ads is also information revealing.

While privacy is the foremost concern of our work, we aim to maintain as much
accuracy as possible without compromising run time as well.

2 Related Works

Locality-sensitive hashing (LSH) is the most prominent technique in similarity
search in practice. Recently, there has been work on improving LSH techniques
in terms of accuracy by utilizing the data [1] as well preserving-privacy LSH in
sublinear time [3] [8].

Other works regarding similarity search pointed towards other techniques
such as dimensionality reduction. Specifically, the use of locality preserving
space-filling lines such as the Hilbert curve can was used to map points in d
dimensions into a single dimension. This allowed for the use of b-trees for an
approximate nearest-neighbor search [7]. However, their original protocol was
not aimed to preserve privacy. Our work, greatly based off of their techniques,
adds privacy for both clients and servers.

3 Setup

3.1 Entities

There exists three main entities in a ad retrieval protocol. First is the Ad
Broker which is a company that stores ads submitted by advertising companies.
Well known examples are Google and Yahoo!. The broker controls the whole ad
retrieval system. Brokers often display these ads on their own websites, but they
also create deals with other websites to show ads to users. The websites that
display ads are known as the Publishers. Well-known examples are New York
Times, YouTube, and Wired. Lastly, Users are the targets of the ad brokers
that view ads on web browsers.

3.2 Representation of Ads and Users

Users typically have binary profile vectors several thousands of dimensions long
that encode various personal information regarding location, hobbies, and de-
mographic. Similarly, the ads contained by Ad Brokers each have a feature
vector that encode information regarding the target audience of the ads. Both
of these vectors can be thought of as point in d-dimensional space where d is the
the size of the dimensions. Similarity search utilize different notions of distance
measure such as Jaccard or cosine. The aim is then to find ads with feature
vectors closest to the user profile. This can be described as the approximate
nearest neighbors problem.

While the original vectors are often thousands of dimensions long, the con-
tents are often extremely sparse meaning that they mainly consist of 0’s. In
the real world, most people don’t have hundreds of hobbies or interests. The
sparseness of these vectors allows us to greatly reduce dimensionality using the

Johnson-Lindenstrauss transform (JL) or hashing-based techniques such as Min-
Hash [2]. The remainder of the paper will use d to represent the number of the
dimensions of the transformed vectors.

3.3 Similarity Search Algorithms

Currently, common methods for solving the approximate nearest neighbors
problem use locality sensitive hashing (LSH). Each point in d-dimensions is
mapped to a single number of b-bits. A common way of doing this is using b
hyperplanes in d dimensions, each splitting the set of points into two groups.
Each hyperplane defines a certain bit, and points that are close together are
more likely to have the same hash. This algorithm currently does not preserver
privacy, and upon further investigation, requires the use of fully homomoprhic
encyrption (FHE) which is highly inefficient in practice.

Despite using a transformation to reduce dimensions, the dimensions of the
vectors still makes the nearest-neighbor search difficult. We can use locality-
preserving space-filling curves to reduce the number of dimensions to one to be
able to apply linear operations. The importance of linear operations is that it
allows us to use additively homomorphic encryption (AHE) which is much more
efficient than FHE.

We use the Hilbert curve (a recursive space filling curve) to accomplish
to map d dimensional points to a single line, allowing us to define each ad
by its Hilbert distance on the line. This allows us to created a sorted list
of ads by Hilbert distance where we essentially find the approximate nearest
neighbor using linear regression. This protocol is very similar to [7], replacing
the use of B-trees with a privacy-preserving data structure built using only
linear regressions. To achieve theoretical guarantees of accuracy, d different
sorted lists must be constructed where the data is shifted d times. Proof of
this is included in [7]. Unfortunately, having multiple copies of the data is a
requirement for correctness, even when using more standard techniques such as
LSH [4].

3.4 User Setup

Typically the user profile is stored by the ad broker (server side) as it is con-
structed by the server from observing user behaior online. In our protocol, we
opt for having the profile constructed and stored on the client (e.g. browser),
as it can both lead to more accurate targeting and ensures privacy from the
broker.

3.5 Ad Broker Setup

The data structure used by the Ad Broker to find the ads is a Learned Index
Structure [6]. Every point in the sorted list can be thought of as a point (Hilbert
distance, index) in a 2D Cartesian grid. These points make a cumulative dis-
tribution function (CDF) in which we can use linear regression to approximate

the index of the nearest neighbor by plugging the Hilbert distance of the user
profile into the line of best fit. This only requires use of additively homomor-
phic encryption (AHE) which is much more efficient than FHE. A single linear
regression isn’t sufficient to achieve high accuracy, so we recursively apply linear
regression on smaller subsets of points. The resulting index of each recursive
call is used to determine the following subset of ads.

The learned index uses a tree structure where the nodes in every layer repre-
sents bins of ads. The root node approximates the entire CDF. Each node has
w children, making the size of any layer wPt". Each child represents a smaller
interval of ads of its parent, each interval equally-spaced by Hilbert distance. If
0 is the minimum Hilbert distance and Hm is the maximum Hilbert distance,
each node in the ith layer represents an an interval of Hw; = Hm/w'.

The jth node in the ith layer contains the slope (m;;), y-intercept (b;;), and
x-intercept (wi;).

This result of the learned index gives an index for an approximate nearest
neighbor. This would be done for each of the d lists in parallel as described
in [7].

4 Protocol

In order to achieve theoretical guarantees of accuracy, the following protocol
must be completed (d+ 1) times. In each iteration, the original JL transformed
vectors for ads and the user profile are shifted as described in.

4.1 Interactive Index Retrieval

1. The User computes @, the Hilbert distance for the JL transformed profile
vector.

2. The User only needs to compute the result of a single node for the approx-
imate nearest neighbor in a layer. However this would reveal which nodes
are being used to the Ad Broker, revealing information about @) and the
user profile. Thus, all the nodes in the tree must be used. For each layer
i of the learned index:

(a) In any layer, there is an index ind; € [1,w’] that represents the node
in the layer of the learned index that is being used for approximation.
For the first layer, ind is always 1 as there is only 1 node. The User
typically doesn’t know ind; but rather ind, = ind;+r; mod w', where
r; is a random positive value known to the Ad Broker and w? is the
size of the layer.

(b) The User computes a vector g and h where each have w' elements.
Every value of ¢ is 1 except for a 0 at index ind;, and every value
of h is 0 except for @ at ind}. All values of 0’s and 1’s must also be
encrypted to hide ind;.

(¢) The Ad Broker receives g and h, and rotates the vectors by r;, moving
the 1 in g and @ in h to ind. For every j, the server transforms g
by multiplying each g; with w;;. g and h are combined into s, where
sj = g; + hj. The resulting array s has w;; at every location except
for @ at ind. s is then transformed by s; = m;; - s; + b;;. Note that
m;j - wij + by = 0, thus s contains 0 at every location except for
Mi(ind) * Q@+ bi(ind) at ind, which is the approximate index for nearest
neighbor. The Ad Broker computes p, the sum of the values of s. p’
is then calculated as p’ = p + r;y1 - Hwitq.

(d) The User receives m’ and decrypts it. The user than computes
ind;, ;, =m'/Hw; 1 mod w* for the next layer.

3. The result of the final m’ is used for ad retrieval.

4.2 Ad Retrieval

The User now has an approximate index m’ for the nearest neighbors to query
using PIR. The Ad Broker will compute m = m’ — r;11 - Hw;11 during the
PIR protocol to return the ad at the proper index. In order to retrieve the
approximate k-nearest neighbors, as multiple ads are typically displayed, the
User queries a sub-sequence of ads in the sorted list. The User receives the k/2
ads to the left and right of m along with the ad at m.

5 Analysis

Theorem 1 (Correctness). The protocol of Section 4 is correct and outputs the
approrimate nearest neighbor to the query.

Proof. Correctness follows from the theoretical guarantees of the ANN algo-
rithm described in [7]. By close inspection of our protocol, we evaluate a learned

index structure in a privacy preserving way which emulates the binary tree used
in [7]. O

Theorem 2 (Client Privacy). By executing the protocol in 4.1, the server does
not learn anything of the client’s profile vector including its Hilbert value.

Proof. In each interaction, the server only sees two encrypted vectors, hiding
the index of the node used in the layer as well as the Hilbert value of the client’s
profile vector. Every node in the learned index is used, so the server can’t
assume anything of the client. Thus, the server can only learn anything of the
client’s profile vector if it manages to break the encryption scheme. O

Theorem 3 (Server Privacy). Theorem 3 (Server Privacy): The client learns
nothing of the server’s learned index model.

Proof. The client receives m; in every interaction with the server which reveals
nothing of the server’s learned index model since m; is shifted by an unknown
value r; - Hw;. O

5.1 Accuracy & Runtime

Ad Broker’s keep the feature vectors of ads and user profiles secret, as their exact
similarity search algorithms are secret and important aspect of their revenue.
Thus, it is difficult to test the protocol on real world data, but we used a machine
learning data-set [5].

Due to the difference between LSH and our protocol, it was challenging to
accurately compare accuracy. We opted for whether or not the nearest neighbor
was found as a pass or fail. For our protocol, a parameter was used to allow for
some error in the exact nearest neighbor search some k away from the determined
index. This was done for all (d+1) learned indexes to check if the nearest
neighbor was found in any of them. LSH was tested using a constant of 10 bits
in its hash representation. The resulting accuracy for both methods were almost
the same up to 50 dimensions, both ending up around 92%. This however,
generated an unreasonably large amount of run-time for our protocol as the
creation for the learned index and querying started taking several seconds long.

In practice, it is un-acceptable for ad selection to really take more than a
second, and it makes more more sense to only shift the data a few times instead
of d times, trading off some accuracy for runtime. Using a static value of 10
shifts for our protocol, LSH generally performed better. In Figure 1 we show
that at 50 dimensions LSH had around a 92% while our protocol had around
89% accuracy.

Testing on randomized data points, our protocol tended to yield low accu-
racy. However, the feature vectors for ads are most likely clustered as similar
ads have similar feature vectors, and the data is generally sparse. Thus, even
without being able to test using real feature vectors and user profiles, we be-
lieve additional privacy guarantees is worthwhile trade-off for any anticipated
accuracy decrease.

6 Conclusion

We present a privacy preserving protocol for the approximate nearest neigh-
bor problem. We adapt an existing algorithm for finding approximate nearest
neighbors to a client-server setting where a client holds a secret profile vector
and the server holds a database of points. Our protocol allows the client to
find the indices of points in the database that most closely match the query,
without leaking the query to the server and without revealing any additional
information to the client (the server’s database of points remains secret to the
client).

Our protocol can be used to match user profiles with targeted advertisements
in a privacy-preserving way, which we hope can pave the way for a more privacy-
conscious online advertising eco-system.

1.0
T Y ety 7
| B GG
‘T hﬁﬂ ,u...w..‘.‘“
: : 'l | :
O s e e T
= ! ! !
P
=]
] 1 1 1 1 1 1
< ! ! ! ! ! !
T R e e au
: LSH
| =@ = Our Algorithm i ! H |
0.0 -4 : . i i i
0 10 20 30 40 50

dimensions

Figure 1: Comparison of our proposed protocol with LSH

7 Acknowledgements

I thank the MIT PRIMES program for giving me the opportunity to work on
this project. I would also like to thank my mentors Sacha Servan-Schreiber and
Kyle Hogan from the MIT CS department.

References

[1] A. Andoni and I. Razenshteyn. Optimal data-dependent hashing for approx-
imate near neighbors, 2015.

[2] A. Z. Broder. On the resemblance and containment of documents. In
Proceedings. Compression and Complexity of SEQUENCES 1997 (Cat. No.
97TB100171), pages 21-29. IEEE, 1997.

[3] H. Chen, I. Chillotti, Y. Dong, O. Poburinnaya, I. Razenshteyn, and M. S.
Riazi. Sanns: Scaling up secure approximate k-nearest neighbors search,
2019.

[4] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni. Locality-sensitive
hashing scheme based on p-stable distributions. In Proceedings of the twen-
tieth annual symposium on Computational geometry, pages 253-262, 2004.

[5] D. Dua and C. Graff. UCI machine learning repository, 2017.

[6] T. Kraska, A. Beutel, E. H. Chi, J. Dean, and N. Polyzotis. The case for
learned index structures, 2017.

[7] S. Liao, M. A. Lopez, and S. T. Leutenegger. High dimensional similarity
search with space filling curves. In Proceedings 17th International Conference
on Data Engineering, 2001.

[8] M. S. Riazi, B. Chen, A. Shrivastava, D. S. Wallach, and F. Koushanfar.
Sub-linear privacy-preserving near-neighbor search. TACR Cryptol. ePrint
Arch., 2019:1222, 2019.

