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Abstract

With more than 1.7 million COVID-19 deaths, identifying effective measures to prevent COVID-

19 is a top priority. We developed a mathematical model to simulate the COVID-19 pandemic with

digital contact tracing and testing strategies. The model uses a real-world social network generated from

a high-resolution contact data set of 180 students. This model incorporates infectivity variations, test

sensitivities, incubation period, and asymptomatic cases. We present a method to extend the weighted

temporal social network and present simulations on a network of 5000 students. The purpose of this

work is to investigate optimal quarantine rules and testing strategies with digital contact tracing. The

results show that the traditional strategy of quarantining direct contacts reduces infections by less than

20% without sufficient testing. Periodic testing every 2 weeks without contact tracing reduces infections

by less than 3%. A variety of strategies are discussed including testing second and third degree contacts

and the pre-exposure notification system, which acts as a social radar warning users how far they are

from COVID-19. The most effective strategy discussed in this work was combined the pre-exposure

notification system with testing second and third degree contacts. This strategy reduces infections by

18.3% when 30% of the population uses the app, 45.2% when 50% of the population uses the app,

72.1% when 70% of the population uses the app, and 86.8% when 95% of the population uses the app.

When simulating the model on an extended network of 5000 students, the results are similar with the

contact tracing app reducing infections by up to 79%.

1 Introduction

More than 1.7 million people have died of COVID-19 [13]. With such catastrophic loss of life at risk, it is

a top priority to identify effective measures to prevent the spread of COVID-19. Preventing the spread of

COVID-19 has several challenges. Firstly, 44% of COVID-19 transmissions occur during the asymptomatic

stage with infected individuals being most infectious 1 to 2 days before symptom onset [18]. Secondly,

according to the CDC Planning Scenarios report [8], 40% of all COVID-19 cases remain asymptomatic and

this number could be as high as 79% for those under 20 [11]. The CDC Planning Scenario also estimates

that asymptomatic individuals are 75% as infectious as symptomatic individuals. Finally, the false-negative
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rate of RT-PCR tests on presymptomatic individuals ranges from 67% to 100% [22]. All of these factors

make it very difficult to prevent COVID-19 with symptom-based measures.

Contact tracing has existed for decades, helping to reduce tuberculosis [3], sexually transmitted diseases

[4], and Ebola [27]. However, manual contact tracing relies on substantial human labor. According to a

recent survey by NPR, 39 states do not have enough contact tracers [35]. Additionally, of the contacts

reported, only around 50% were reachable by contact tracers [24]. Health officials estimate an additional

$12 billion dollars are needed to fund the 180,000 manual tracers needed [37]. Manual contact tracing is also

susceptible to errors with the United Kingdom’s Test and Trace service losing 15,000 positive COVID-19

cases between September 25 and October 2 [12].

Digital contact tracing is a relatively new method of fighting pandemics. Although the Bluetooth tech-

nology for digital contact tracing was first validated in 2014 [15], contact tracing apps have only recently

been implemented to fight the COVID-19 pandemic. Since digital contact tracing apps require a critical

mass of a population in order to be effective, a key goal is to convince enough people to use the app. In

[10], it is suggested that targeting small communities like universities first will allow the app to be used by

enough people within that community. This is more feasible than expecting a significant proportion of the

population at large to use the app. Many universities have experienced outbreaks [39] and are looking for

ways to prevent further spread. Currently, Georgia Tech, Carnegie Mellon, Grand Valley State University,

and even the city of Santa Fe are beginning to adopt contact tracing apps like NOVID [29]. Currently, there

are not enough users within these communities to prove the effectiveness of contact tracing apps. We will

use simulation to evaluate the effectiveness of digital contact tracing.

Efforts to model diseases date back to the 1920s with the creation of the SIR (Susceptible, Infectious,

Recovered) model [21] where people in a fully mixed population are modeled as being Susceptible, Infec-

tious, or Recovered. The SEIR (Susceptible, Infectious, Exposed, Recovered) model [1] is a variant of the

SIR framework used for diseases with longer incubation periods. It includes the Exposed stage which are

infected individuals who do not show symptoms. More recently, network based models, where humans

are vertices and contacts are edges, have been adopted. Epidemiological models have been instrumental in

encouraging preventative measures in the COVID-19 pandemic such as masking [20, 14], social distancing

[36, 17], testing [30, 31]. In particular, [20, 30] are network based models.

Since digital contact tracing relies on the exact contacts that occur in a population, it is best modeled

with a contact network where people are vertices and contacts are edges. Recent efforts to simulate digital

contact tracing [19, 2] have been done using synthetic networks where households and communities are

constructed with random processes such as full mixing, and each pair of people have the same probability of

contact. However, very little is known about the exact structure of human contacts and how these structures

affect digital contact tracing. Additionally, those models assume perfect COVID-19 tests which changes

optimal strategies of digital contact tracing and testing.

This paper presents an enhanced network based SEIR model of the COVID-19 pandemic with digital

contact tracing and testing strategies that incorporates variations in infectivity and test sensitivity. In contrast
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to previous work on digital contact tracing, the networks in the model are generated from a real world data

set of interactions among 180 students of a high school in France [16]. Since the data set was only recorded

over 7 days, we use a MUNGE-like heuristic to generate additional days for the model. We present a new

method to extend temporal weighted graphs in order to perform simulations on a larger population of 5000

people.

Our model incorporates test sensitivity and shows that it has a significant impact on digital contact

tracing strategies. The model simulates a new digital contact tracing strategy developed by NOVID [29]

called the pre-exposure notification system. The pre-exposure notification system acts like a ”social radar”

telling app users how close they are to COVID-19, allowing them to take extra precautionary measures. In

contrast with traditional SEIR models, test sensitivity is modeled to change over time depending on the time

of symptom onset [22]. The incubation period is sampled from the COVID-19 incubation period distribution

[25]. The infectiousness of an individual is modeled to change over the infectious period and is fitted to the

function in [18].

The model shows that the traditional strategy of quarantining direct contacts reduces infections by less

than 10% when more than half the population is asymptomatic. Testing second and third degree contacts

reduces infections by up to 40% when 70% of the population uses the app. The pre-exposure notification

system reduces infections by an additional 43% and reduces the number of quarantines required by 51%.

Quarantining second degree contacts reduces infections but leads to a high number of quarantines. If large

proportions of the population are asymptomatic, periodic testing reduces infections by an additional 41%.

However, periodic testing without tracing reduces infections by only 3%. The most effective strategy dis-

cussed in this work was combined the pre-exposure notification system with testing second and third degree

contacts. This strategy reduces infections by 18.3% when 30% of the population uses the app, 45.2% when

50% of the population uses the app, 72.1% when 70% of the population uses the app, and 86.8% when 95%

of the population uses the app. When simulating the model on an extended network of 5000 students, the

results are very similar with the contact tracing app reducing infections by up to 79%.

1.1 Paper Outline

In Section 2, we present the contact network generation process. Section 3 outlines the SEIR based model of

COVID-19 spread. In Section 4, we create the model of the contact tracing app. In Section 5 we present the

results of 8 simulated scenarios. In Section 5.1, the traditional strategy of quarantine of first degree contacts

is investigated. In Section 5.2, testing of second and third degree contacts is incorporated. In section 5.3,

the pre-exposure notification system is investigated. Section 5.4 investigates periodic testing. Section 5.5

simulates the model on an extended version of the graph. In Section 5.6, we estimate the economic value of

the contact tracing app. In Section 6, we provide a summary and concluding remarks.
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2 Model of Contact Network

The first component of the model is the contact network which encapsulates the interactions between in-

dividuals in the simulation. The model iterates through discrete timestamps each representing a day in the

simulation. Each day in the model, individuals come into contact, and these contacts ultimately determine

how the virus transmits. The contact network on day t, Gt is defined to be a graph where each vertex

v1, ..., vn represent an individual in the model and the edge weight eij between vi and vj represents the total

amount of time person i and person j have spent in contact with each other during this time step. We do

not distinguish between times of the day of the contact or number of contacts between the same individuals.

This is in accordance with a recent CDC policy change that defines a close contact to be measured using

cumulative contact time over the course of a day [6].

Traditional SEIR models assume uniform mixing where each individual has the same probability of

coming into contact with every other individual. Since digital contact tracing involves the exact contacts that

occur in a population, a realistic contact network is needed. Temporal networks in the model are generated

using a publicly available high-resolution data set [16] which used RFID (Radio Frequency Identification

Devices) to record all contacts between 180 students from Lycée Thiers high school in France over the

course of 7 days.

Since the simulation is over longer periods of time, we present a heuristic for generating additional days.

Define Ha to be the contact network in day a of the data set where 1 ≤ a ≤ 7. The edge weight Ha,i,j is the

duration of contact between people i,j on day a from the data set. The heuristic is similar to the MUNGE

algorithm [5] which generates synthetic training data. The algorithm picks an initial data value, and for

each feature, with a certain probability, swaps that feature with the feature of its nearest neighbor. In this

heuristic, we use a random day rather than the nearest neighbor. Initially, 2 distinct days a,b are chosen at

random from the data set. Starting with the contact graph for day a, for the contact duration between vi
and vj with probability 0.5, we replace that contact duration with Hb,i,j . On average, the generated contact

network Gt has half of its edges equal to the corresponding edges in Ha, and the other half equal to Hb.

To simulate the app on larger networks, we present a method to generate larger networks from the orig-

inal data set. We create a modified version of the Albert-Barabási process that is adjusted for constructing

weighted temporal graphs and maintains the average degree of the vertices.

The principal idea of the Albert-Barabási process is that nodes of high degree are more likely to interact

with new nodes. Given a temporal graph G with n vertices where the graph on timestamp t is Gt, extra

people are added one at a time with the following process:

A new vertex v is added, and for each existing w, a random third vertex u is chosen. The temporal edge

weight between v and w is determined to be the same as the edge weight between w and u: Gt,v,w = Gt,u,w

for all t. This step is the same as in Albert-Barabási except adjusted to fit a weighted temporal graph. To

preserve the average degree of the vertices, each of the original edges of G are deleted with probability 1
n−1 .

Note that the generated graph no longer has the scale-free property.
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The extended network is initialized to be the original graph in the data set and extended in accordance

to the above procedure to a total of 5000 individuals.

3 Model of COVID-19 Spread

The SEIR framework organizes the people in the simulation into one of the following four states: Susceptible

(S), Exposed (E), Infectious (I), or Recovered (R). Individuals in the Susceptible stage have not been infected

and therefore are susceptible to the virus. Exposed individuals have been infected with the virus but do not

yet show symptoms. The Infectious stage begins when infected individuals show symptoms. Finally, the

Recovered stage contains individuals who have recovered or otherwise removed from the model and are

now immune from further spread. Individuals in both the Exposed and Infectious stage can infect others.

An individual moves onto the next stage according to the following rules:

• S → E: Individuals in the susceptible stage can only be exposed if they come into contact with an

infected individual. Infections will be discussed in later sections.

• E → I: After being exposed to a virus, the period of time before symptom onset is called the

Incubation period, typically within 2 to 14 days. According to [25], the distribution of incubation

periods is approximately the log-normal distribution with parameters µ = 1.621, σ = 0.418. The log-

normal distribution is defined as follows: Let Z be a random variable with normal distribution with

mean µ and deviation σ, then X = eZ where X is the random variable with log-normal distribution

with parameters µ, σ. To determine the incubation period of an individual, we take a random sample

from this distribution rounded to the nearest positive integer.

• I → R:Individuals with moderate symptoms stop being infectious around 10 days from symptom

onset [9]. As in traditional SEIR models, we assume that every time stamp after symptom onset, there

is a probability λ = 0.11 which is 1
9 that an Infectious person recovers or is removed from the model.

As in traditional SEIR models, the functions S(t), E(t), I(t), R(t) are the number of individuals in the

compartments susceptible, exposed, infections, and recovered respectively at time t. We defined Q(t) to

be the number of individuals quarantined at time t but have not received a positive test result and T (t) to

be the number of individuals who have received a positive before or during time t but have not recovered.

Individuals counted in T (t) are in quarantine as well. Quarantines will be discussed in Section 4. In the

rest of the paper, for each individual vi, we will refer to Evi , Ivi , and Rvi as the time of exposure, symptom

onset, and recovery respectively of vi. Additionally, Tvi is the time of the first positive test of vi.

In realistic scenarios, individuals can infect others before symptom onset with the level of infectiousness

changing throughout of the infection. The relative infectiousness of an individual is calculated in [18]. We

will call this function ID(t) where the input t is the number of days since symptom onset. ID(t) is taken to

be the function in [18] where infectiousness was assumed to start 5 days before symptom onset. Individuals
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are shown to be more infectious before symptom onset than after. We assume the infectiousness of an

individual, which is defined to be the probability of infection given a 20-second contact, is some constant

multiple, p, of this function.

Consider the graphGt to be the contact network during timestamp t in the model, with vertices v1, ..., vn
representing people and edge weight eij to be the total contact duration between vi, vj during day t. Assum-

ing infection to be an event that can happen during the course of a contact, if vi is in either the exposed or

infectious compartments, and vj is susceptible, we model the probability that vj becomes exposed to be

1− (1− pID(t− Ivi))d

where t− Ivi is the number of days since symptom onset of vi.

The basic reproduction number, or R0, is the expected number of secondary infections caused by a

single infectious individual. Estimates of the value of R0 range from 1.5 to 6.7 with the median value being

2.8 [28] and the methods used to estimate R0 varies widely between studies [41]. Through simulation, we

calculate the value of R0 as a function of p as shown in Figure 3. The value of p is ranged in increments

of 0.0025 from 0 to 0.225 for a total of 100 values. For each value of p, we run the simulation 1,800 times

where each individual is the seed infection 10 times and the R0 value is measured as the average number of

secondary infections caused by the seed infection. As shown in Figure 3, the scenario when p = 0.10 yields

an R0 value of 2.8. In the rest of this work, the value of p will be set to 0.10
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Figure 1: Probability of infection vs individual reproduction number

According to [8], 40% of the population remain asymptomatic throughout their infectious periods.

Again, estimates vary widely and it is noted that this value could range from 10% to 70%. In [32], it is

estimated that over 80% of young individuals are asymptomatic. The possibilities of when 20%, 40%, 60%,

and 80% are asymptomatic are tested in the results. Asymptomatic individuals have similar viral loads to

symptomatic individuals [26]. Thus, we will assume that asymptomatic individuals are as infectious as

symptomatic individuals.

Testing is a key component of contact tracing. The contact tracing app relies on positive tests to identify
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cases of COVID-19. We adjust test sensitivities based on days from symptom onset to the distribution

calculated in [22]. The false-negative rate of RT-PCR COVID-19 tests are between 67% to 100% before

symptom onset, and fall to 20% to 40% after symptom onset [22]. The median number of days from

symptom onset to taking a test is 3 days with interquartile range 1 to 6 [8]. We approximate this distribution

by assuming that each day there is a probability of 19% that symptomatic individuals are tested. This

preserves the median of 3 days and interquartile range 1 to 6. We do not account for false-positive tests or

individuals symptomatic with a disease unrelated to COVID-19. Test results are received after a delay of

1 day. This is similar to the delay on university campuses [40]. After receiving a positive COVID-19 test

result, we assume the person will remain in quarantine until recovery.

4 Model of Contact Tracing App

The contact tracing app has incomplete information about the contact network and the states of the individ-

uals. Ultrasound apps such as NOVID can measure distances to the resolution of inches and detect contacts

with accuracy over 99.6% [29]. We will assume all contacts between individuals with the app are sensed.

Thus, the contact tracing app can detect the subgraph of the contact map induced by the set of app users.

Contact tracing apps support the consideration of degree k contacts rather than just direct contacts. This

is not possible with manual contact tracing. A contact is defined to be a tuple (p1, p2, t, d) that contains

the following four pieces of information: p1, p2 are the people involved in the contact, t is the day of con-

tact, and d is the duration of the contact measured in units of 20 seconds. Since the digital contact tracing

app cannot determine the time of symptom onset, the estimated transmission probability of the contact is

(1 − (1 − p′)di). The value p′ = ÎDp is substituted for pID(t) where ÎD = 0.11 is the average value of

ID(t) during the 6 most infectious days. In addition to contacts, users report all positive test results. If a

user has tested positive, we assume that this user will report recovery. In the contact tracing app, we define

a degree k contact to be a sequence of contacts c1, . . . , ck that satisfy the following properties:

1. The individuals p1, ..., pi+1 involved in the contacts form a chain: ci = (pi, pi+1, ti, di).

2. p1 has reported a positive test: t1 ≤ Tp1 ≤ t1 + 10. Through simulation of 1800 outbreaks without

interventions, 95% of all symptomatic individuals took a test within 8 days of symptom onset. Since

infectiousness becomes significant 2 days before symptom onset, the contacts from 10 days before

the test must be recalled.

3. pi, pi+1 have not reported recovery and thus can transmit or catch the virus: Rpi , Rpi+1 > ti for each

i.

4. The serial interval is between 1 and 10 days: ti +1 ≤ ti+1 ≤ ti +10. The serial interval is defined to

be the duration from the exposure time of the infector(ti) to the exposure time of the infected(ti+1).

Through simulation of the model 1800 time, 94% of all serial intervals are within 10 days.
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The weight of this contact chain is the product of the estimated transmission probabilities of each con-

tact:
k∏

i=1

(1− (1− p′)di).

First and second degree contacts are computed using contact data from previous days directly after p1
reports a positive test. Larger degree contacts are computed recursively. For each person vi in the model,

we keep track of a matrix Mi where Mi,l,t is the total sum of contact chains of length l that affect person vi
at time t. Using the contacts, the app can calculate Mi recursively.

On day t, if vi has contacts with va1 , ..., vak with durations d1, ..., dk respectively, where vi, va1 , ..., vak
have not reported recovery by day t, then:

Mi,l,t =

k∑
s=1

((
1− (1− p′)ds

) 10∑
r=1

Ms,l−1,t−r

)
.

For all of vi’s contacts, we take the sum of all contact chains of length l−1 and multiply by the estimated

transmission probability 1− (1− p′)ds to obtain the sum of all contact chains of length l.

A person x is a degree k contact on day t if the sum of all weights of their contacts with degree ≤ k is

above 10%:

k∑
i=1

10∑
j=1

Mx,i,t−j ≥ C.

The contact cutoff value,C, only affects the quarantine rules and not simulating the disease transmission.

Essentially, direct contacts that are calculated to be infected with probability at least C are quarantined. The

value of C is set to 10% by default. By default, first degree contacts are quarantined.

The pre-exposure notification system, as implemented in NOVID [29], acts like a ”social radar” telling

users how close they are to COVID-19 by showing the number of positive cases at each distance in their

social network. App users can see the number of neighbors of distance d that are COVID-19 positive. We

assume that first, second, and third degree neighbors will take precautionary measures. For second degree

contacts, we assume a 75% reduction in contacts. For third degree contacts, we assume a 50% reduction in

contacts.

5 Results

At the beginning of the simulation, exactly one individual is exposed while the rest are susceptible. The

simulation runs for 120 days. There are 180 individuals and for each simulation we run 1800 trials where

each individual starts as the seed infection 10 times. We simulate the cases when 0%, 30%, 50%, 70%, and

95% of the population use the app.

We simulate the following 5 scenarios:
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1. Quarantine of first degree contacts

2. Quarantine of first degree contacts with followup testing of second and third degree contacts

3. Pre-exposure notification system

4. Pre-exposure notification system with periodic testing

5. Scenario 4 on the extended graph

We will measure the contact tracing app and COVID-19 testing configuration by 3 metrics: Total in-

fected, total days spent in quarantine, and total tests used. In the tables below, the App Proportion column

shows the proportion of individuals in the model that use the app. The Asymptomatic column show the

proportion of individuals that are asymptomatic. The Infected column shows the average number of indi-

viduals infected after 120 days. Quarantines are split into 3 categories: false, true, tested. False quarantines

are quarantined individuals who do not have COVID-19. Individuals in the True quarantine category are

infected with COVID-19 but have not received a positive test result. Tested quarantines are those who have

tested positive. We distinguish the Tested quarantines because these infections have been confirmed by test

while True and False quarantines are predicted by the quarantine rules. Each of the quarantine columns

show the total number of days spent in quarantine across all individuals over 120 days. The Tests Used

column shows the number of tests used in the simulation after 120 days.

In scenario 1, the most basic strategy of quarantining first degree contacts is not effective at high asymp-

tomatic levels, suggesting that a more comprehensive testing strategy is required. Scenario 2 shows that

testing second and third degree contacts greatly increases the effectiveness of the app. The pre-exposure

notification system, which warns second and third degree contacts to take extra precautionary measures, can

reduce infections by an additional 40% while also reducing the number of quarantines by up to 50%. IN

Scenario 4, it is shown that periodic testing without contact tracing reduces infections by less than 3%. Each

app user decreases the economic cost of COVID-19 by $2,841 at 50% app usage and $4,185 at 70% app

usage.

5.1 Scenario 1 — Quarantine of first degree contacts (Traditional Strategy)

This is the most basic strategy where only first degree contacts are quarantined. Every day, symptomatic

individuals have a 19% chance of getting a test as discussed in Section 3. The simulation is performed on

the original network of 180 students.
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Table 1: Quarantine direct contacts, no followup testing

Situation
Infected

Quarantine
Tests Used

App Proportion Asymptomatic False True Tested
0% 40% 106.05 0 0 291.87 53.57
30% 40% 101.20 78.78 39.73 278.42 50.97
50% 40% 97.15 195.71 94.06 265.96 48.97
70% 40% 87.48 329.17 149.91 242.71 44.41
95% 40% 70.25 477.30 200.56 194.77 35.39
0% 80% 110.43 0 0 101.43 18.43
30% 80% 107.99 33.53 19.23 98.83 18.09
50% 80% 108.12 88.47 52.20 97.12 17.96
70% 80% 101.82 159.04 91.53 94.11 17.04
95% 80% 99.73 282.78 156.70 90.58 16.76
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Figure 2: Quarantine direct contacts, no followup testing

From Table 1, we can find out that the effectiveness of the app depends on the percentage of the people

use the app. At 40% asymptomatic ratio, the contact tracing app reduces infections by 8.4% at 50% app

usage and 17.5% at 70% app usage. The effectiveness of the app increases doubles from adding the extra

20% of app users. This shows that it is very important to have a majority of app users.

A limitation of this strategy is that it is ineffective at high asymptomatic ratios. At 80% asymptomatic

ratio the contact tracing app reduces infections by less than 10% in all cases. This is because in this scenario,

since COVID-19 testing relies on symptomatic individuals, the effectiveness of the app is greatly reduced at

high asymptomatic levels. Less than 20 tests are used while over 100 students are infected which indicates

that the majority of infections are undetected. The results in this scenario suggest that more comprehensive

testing strategies are needed, especially when large proportions of the population are asymptomatic.

The cost of using the app is that quarantines increase as more people use the app. In all cases, the number

of false quarantines is approximately double the number of true quarantines. The time of peak infections
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is similar for each app usage. In Figure 1, infections rise dramatically, peaking at around 30 days after the

initial infection and then falls as herd immunity is reached. Because quarantine rules require a history of

contacts to be recalled, the initial 10 days show no difference between the graphs of each app usage level.

At 60% and 80% asymptomatic ratio, the app is unable to reduce infections significantly.

5.2 Scenario 2 — Testing of second and third degree contacts

In this scenario, first, second, and third degree contacts are tested every 3 days. All other parameters are the

same as in scenario 1. The simulation is performed on the original network of 180 students.

Table 2: Quarantine direct contacts, test second, third degree contacts

Situation
Infected

Quarantine
Tests Used

App Proportion Asymptomatic False True Tested
0% 40% 104.61 0 0 286.37 52.68
30% 40% 98.53 113.23 32.84 325.58 107.60
50% 40% 83.02 259.09 73.70 340.81 234.49
70% 40% 63.33 395.14 101.05 315.52 470.46
95% 40% 27.87 314.2 77.42 172.38 670.94
0% 80% 111.52 0 0 100.72 18.71
30% 80% 106.79 88.73 23.59 156.34 62.29
50% 80% 95.37 253.73 71.30 250.42 188.05
70% 80% 78.03 418.75 110.40 304.72 400.50
95% 80% 44.10 423.31 105.73 238.87 645.00
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(b) Total infected but not recovered or tested.

Figure 3: Test second, third degree contacts

As in scenario 1, the effectiveness of the app increases greatly as the number of app users increases. In

Table 1, at 40% asymptomatic ratio, the contact tracing app reduces infections by 20.6% at 50% app usage

and 39.5% at 70% app usage. These reductions are over 2 times greater than in scenario 1. Notably, at
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95% app usage, infections are reduced by 73.4%, which is almost twice the reduction at 70% app usage.

Compared to scenario 1, the number of true quarantines decreases while the number of tested quarantines

increases at 40% asymptomatic ratio. At 80% asymptomatic ratio, the contact tracing app reduces infections

by 14.5% at 50% app usage and 30.0% at 70% app usage. Again, this strategy is significantly more effective

than scenario 1. However, the number of quarantines increases significantly in all categories compared to

scenario 1. In particular, the number of tested quarantines rises by 224% at 70% app usage. This is to be

expected since the number of tests used rises significantly, from less than 20 to over 400. Again, the app is

significantly more effective at 95% app usage, with infections being reduced by 60.05%. Although results

for 40% and 80% asymptomatic ratio are similar for app proportions less than 70%, at 95% app proportion,

the case of 80% asymptomatic yields 58% more infections.

Similar to scenario 1, the graphs are similar during the first 10 days and then diverge significantly.

However, at high app usage, infections peak before 20 days while no app usage yields peak infections at

around 30 days. In conclusion, testing second and third degree contacts greatly increases the effectiveness

of the app especially at higher asymptomatic proportions. Thus, the increase in test usage and quarantines

is justified.

5.3 Scenario 3 — Pre-exposure notification system

In this scenario, we simulate the pre-exposure notification system. For second degree contacts, we assume

a 75% reduction in contacts. For third degree contacts, we assume a 50% reduction in contacts. All other

parameters are the same as those in scenario 2. The simulation is performed on the original network of 180

students.

Table 3: Quarantine direct contacts, pre-exposure notification system

Situation
Infected

Quarantine
Tests Used

App Proportion Asymptomatic False True Tested
0% 40% 106.99 0 0 295.84 54.24
30% 40% 93.48 92.80 27.40 303.44 101.73
50% 40% 67.25 162.16 44.36 254.02 161.40
70% 40% 36.21 185.80 45.24 162.85 213.24
95% 40% 16.61 190.22 41.60 98.10 279.80
0% 80% 110.90 0 0 101.08 18.69
30% 80% 103.19 87.01 22.46 150.39 64.83
50% 80% 81.68 187.45 48.33 189.58 142.75
70% 80% 54.06 251.14 61.42 179.84 220.68
95% 80% 29.99 287.72 65.62 156.12 309.38

As in the previous scenarios, the effectiveness of the app increases as the number of app users increases.

In Table 3, at 40% asymptomatic ratio, the contact tracing app reduces infections by 37.1% at 50% app usage

and 66.1% at 70% app usage. At 95% app usage, infections are reduced by 84.5% which is an additional

40.2% reduction compared to scenario 2. Compared to scenario 2, the total number of quarantines is reduced
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by 51.4% at 70% app usage. There is a 54.7% reduction in the number of tests used which is caused by the

reduced interactions for second and third degree contacts. This strategy is more effective even though the

number of true and tested quarantines are reduced by 55.2% and 48.4% respectively.

At 80% asymptomatic ratio, the contact tracing app reduces infections by 14.5% at 50% app usage and

30.0% at 70% app usage. Again, this strategy is significantly more effective than scenario 1. At 95% app

usage, the 80% asymptomatic case yields 80.6% more infections than the 40% case. This is an even more

pronounced gap than in scenario 2.
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(b) Total infected but not recovered or tested.

Figure 4: Quarantine direct contacts, pre-exposure notification system

5.4 Scenario 4 — Pre-exposure notification system with periodic testing

In scenario 4, we simulate the Pre-Exposure Notification System with periodic testing every 14 days is inves-

tigated. As in scenario 3, second and third degree contacts take extra precautionary measures. Individuals

in the model are tested every 14 days. The simulation is performed on the original network of 180 students.

At 40% asymptomatic ratio, the contact tracing app reduces infections by 45.2% at 50% app usage and

72.1% at 70% app usage. At 95% app usage, infections are reduced by 86.8%. Scenario 3 and 4 show similar

results at higher app usage. In this scenario, the app is effective even at 30% app usage. The 30% app usage

case reduces infections by 18.1% which is much more effective than in previous scenarios. Additionally,

results are similar at all asymptomatic ratios. At 80% asymptomatic ratio, the contact tracing app reduces

infections by 37.8% at 50% app usage and 66.4% at 70% app usage. Thus, periodic testing is especially

helpful when larger proportions of individuals are asymptomatic.

In Figure 5b, the number of infected but not tested individuals drop sharply during days when the

population is tested. The graph displays bumps that come from testing the new second and third degree

contacts every 3 days. Since the graphs are averaged over thousands of trials, the jaggedness is significant.

It is likely caused by many second and third degree contacts being detected at the same time, and thus, the
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followup testing becomes synchronized. Surprisingly, periodic testing at 0% app usage reduces infections

from 106.05 in scenario 1 to 102.83, only a 3.0% decrease. This is an insignificant change given that the

population of 180 students. Thus, periodic testing without contact tracing is not effective.

Table 4: Pre-exposure notification system with periodic testing

Situation
Infected

Quarantine
Tests Used

App Proportion Asymptomatic False True Tested
0% 40% 102.83 0 0 465.62 1021.34
30% 40% 84.05 94.78 27.03 403.80 1125.57
50% 40% 56.32 153.39 37.74 288.68 1286.85
70% 40% 28.73 166.27 38.08 159.21 1440.73
95% 40% 13.61 173.85 35.31 85.44 1571.49
0% 80% 103.95 0 0 375.20 1044.10
30% 80% 90.64 104.25 28.62 358.05 1117.67
50% 80% 64.69 174.51 44.14 281.18 1266.00
70% 80% 34.95 195.32 45.23 172.00 1426.44
95% 80% 17.66 208.92 43.91 105.50 1562.05
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Figure 5: Pre-exposure notification system with periodic testing

5.5 Graph Extension

In this section, We simulate the strategy in scenario 4 on an extended version of the graph. By the pro-

cess described in Section 2, the original weighted temporal graph is extended to 5000 individuals. This

population size is closer to larger communities such as schools or universities.

At 40% asymptomatic ratio, the contact tracing app reduces infections by 27.8% at 50% app usage and

46.5% at 70% app usage. This is less effective than scenario 4. At 95% app usage, infections are reduced

by 79.4% which is similar to in scenario 4. Since the average degree is preserved on the network of 5000

students, the similar results are not surprising. As in scenario 4, the results are similar for all asymptomatic
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Table 5: Graph Extension

Situation
Infected

Quarantine
Tests Used

App Proportion Asymptomatic False True Tested
0% 40% 2429.94 0 0 10991.94 31001.67
30% 40% 1941.70 5858.34 869.33 10054.09 36557.43
50% 40% 1753.64 15410.51 1686.31 9847.13 45625.01
70% 40% 1301.11 26188.07 2111.04 7902.39 62003.10
95% 40% 501.21 22809.78 1438.89 3319.28 81969.96
0% 80% 2433.38 0 0 8759.07 31576.44
30% 80% 2253.48 6640.62 1017.38 10021.54 36332.13
50% 80% 1888.32 16593.59 1851.73 9563.09 45640.46
70% 80% 1341.07 26338.16 2191.90 7671.17 61131.04
95% 80% 591.61 26708.16 1723.15 3861.01 86490.97

ratios. At 80% asymptomatic ratio, the contact tracing app reduces infections by 22.4% at 50% app usage

and 44.9% at 70% app usage. At 95% app usage, infections are reduced by 75.7%. These numbers are very

similar to the corresponding values of 40% asymptomatic ratio.

As in scenario 4, Figure 6b shows noticeable drops in infections on days when the population is tested.

Interestingly, at 95% app usage, the number of infected individuals never rises to more than 100 people,

or 2% of the population. The graph does not exhibit an obvious peak but rather a sustained amount of

infections. Thus is a reflection of the greater population size.

0 20 40 60 80 100 120

Days

0

500

1000

1500

2000

2500

3000

In
fe

ct
io

ns

Asymptomatic=20%
No App
App=30%
App=50%
App=70%
App=95%

0 20 40 60 80 100 120

Days

0

500

1000

1500

2000

2500

3000

In
fe

ct
io

ns

Asymptomatic=40%
No App
App=30%
App=50%
App=70%
App=95%

0 20 40 60 80 100 120

Days

0

500

1000

1500

2000

2500

3000

In
fe

ct
io

ns

Asymptomatic=60%
No App
App=30%
App=50%
App=70%
App=95%

0 20 40 60 80 100 120

Days

0

500

1000

1500

2000

2500

3000

In
fe

ct
io

ns

Asymptomatic=80%
No App
App=30%
App=50%
App=70%
App=95%

(a) Total infected.

0 20 40 60 80 100 120

Days

0

200

400

600

800

1000

In
fe

ct
io

ns

Asymptomatic=20%
No App
App=30%
App=50%
App=70%
App=95%

0 20 40 60 80 100 120

Days

0

200

400

600

800

1000

In
fe

ct
io

ns

Asymptomatic=40%
No App
App=30%
App=50%
App=70%
App=95%

0 20 40 60 80 100 120

Days

0

200

400

600

800

1000

In
fe

ct
io

ns

Asymptomatic=60%
No App
App=30%
App=50%
App=70%
App=95%

0 20 40 60 80 100 120

Days

0

200

400

600

800

1000

In
fe

ct
io

ns

Asymptomatic=80%
No App
App=30%
App=50%
App=70%
App=95%

(b) Total infected but not recovered or tested.

Figure 6: Graph Extension

5.6 Economic Impact

In this section, we estimate the economic impact of COVID-19 and preventative measures. According to a

report by the Kaiser Family Foundation, most COVID-19 tests range between $100 to $200 with the median

cost being $127 [23]. Universities are charging students up to $1000 to quarantine for 2 weeks [34, 38],
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around $71 a day. For students, we estimate a 20 hour work week with an hourly wage of $20 to put daily

income at $57. The average tuition cost at universities can be as high as $41,411 [33]. Assuming 180 days

in a school year and that students miss classes and coursework, the average tuition per day is $230. We

roughly estimate the social cost of a single day in quarantine to be $358 which is the sum of the previous

numbers.

The economic cost of a single COVID-19 infection, or the societal willing-to-pay threshold of avoiding

one COVID-19 infection, is estimated to be $8,500 [30]. We calculate the total economic cost of COVID-19

for Scenario 3 and 4. The decrease in economic cost is computed in comparison to total economic cost at

0% app usage in scenario 1. The average economic impact per app user is the decrease in the total economic

cost of COVID-19 divided by the number of app users.

Table 6: Average Economic Impact Per App User (Scenario 3)

Situation
Cost of Infection

App Proportion Asymptomatic
30% 40% $991
50% 40% $2,841
70% 40% $4,260
95% 40% $4,198
30% 80% -$19
50% 80% $1,251
70% 80% $2,678
95% 80% $2,928

Table 7: Economic Value of Contact Tracing App Per User (Scenario 4)

Situation
Cost of Infection

App Proportion Asymptomatic
30% 40% -$607
50% 40% $2,208
70% 40% $3,614
95% 40% $3,461
30% 80% -$2,052
50% 80% $974
70% 80% $2,788
95% 80% $2,927

The economic benefit per app user can reach as high as $4,260 in scenario 3. In the majority of cases,

the strategy in scenario 3 yields a higher benefit to user ratio. This shows that testing the entire population

every 2 weeks is not cost effective. The economic impact per user is actually negative at low app usage in

scenario 4. This is because the periodic testing creates significant cost while, as mentioned in Section 5.4,

is not effective without sufficient contact tracing.
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6 Discussion and Conclusion

Given the significant loss of life at risk, finding effective measures to prevent the spread of COVID-19

is a top priority. Challenges in COVID-19 prevention include significant pre-symptomatic transmission,

high proportions of asymptomatic cases, and inaccurate tests during the pre-symptomatic stage. This work

focuses on solving these challenges by presenting effective strategies in digital contact tracing and testing.

The parameters in this model can be easily changed as more precise values of COVID-19 parameters are

measured. As more data on human social patterns are collected, larger social networks can be constructed

leading to more accurate predictions in the model. Additionally, as more accurate COVID-19 tests are

developed, model results and optimal strategies could change. Finally, this model only considers infections

based on close contacts. Although COVID-19 mainly spreads through close contacts [7], the significance of

spread through indirect contacts is unclear and could be investigated in future models.

In conclusion, by simulating a variety of tracing and testing strategies, we found that digital contact trac-

ing can be very effective when combined with testing. In scenario 1, the most basic strategy of quarantining

first degree contacts is not effective at high asymptomatic levels, suggesting that a more comprehensive

testing strategy is required. Testing second and third degree contacts greatly increases the effectiveness of

the app. The pre-exposure notification system, which warns second and third degree contacts to take ex-

tra precautionary measures, can reduce infections by an additional 40% while also reducing the number of

quarantines by up to 50%. While periodic testing with contact tracing is effective, periodic testing without

contact tracing reduces infections by less than 3%. We find the results on the extended network of 5000

students to be similar.
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8 Appendix A: App Usage

In the following, we present figures for the number of infections as a function of the app usage. Simulations

are run with the proportion of app users ranging from 0% to 100% in increments of 5%. The app becomes

much more effective as more users use the app. As shown in Section 5.4, scenario 4 shows very close results

for all asymptomatic levels. Scenarios 3 and 4 shows that the effectiveness of the app begins to level off

after more than 80% of the population uses the app.
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(a) Traditional App Configuration (b) Testing second and third degree contacts

(c) Pre-exposure notification system (d) Periodic testing

Figure A.1: App Usage vs Infections
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