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Abstract. Flow polytopes are an important class of polytopes in combinatorics whose lattice points and
volumes have interesting properties and relations. The Chan–Robbins–Yuen (CRY) polytope is a flow

polytope with normalized volume equal to the product of consecutive Catalan numbers. Zeilberger proved

this by evaluating the Morris constant term identity, but no combinatorial proof is known. There is a
refinement of this formula that splits the largest Catalan number into Narayana numbers, which Mészáros

gave an interpretation as the volume of a collection of flow polytopes. We introduce a new refinement of

the Morris identity with combinatorial interpretations both in terms of lattice points and volumes of flow
polytopes. Our results generalize Mészáros’s construction and a recent flow polytope interpretation of the

Morris identity by Corteel–Kim–Mészaros. We prove the product formula of our refinement following the

strategy of the Baldoni–Vergne proof of the Morris identity with a combinatorial approach.

1. Introduction

1.1. Foreword. Flow polytopes play a fundamental role in combinatorial optimization through their relation
to maximum matching and minimum cost problems (e.g. see [16, Ch. 13]). Flow polytopes have been used
in various fields like toric geometry [9] and representation theory [2]. More recently, they have been related
to geometric and algebraic combinatorics thanks to connections with Schubert polynomials [6], diagonal
harmonics [14], and generalized permutahedra [12].

Given a graph G with vertex set {0, 1, . . . , n, n+ 1} and edges (i, j) oriented i → j if i < j, we associate
with G a net flow vector a = (a0, a1, . . . , an,−

∑n
i=0 ai) such that vertex i has net flow ai for i = 0, 1, . . . , n.

The set of all flows with net flow vector a, called the flow polytope, is denoted by FG(a). Define KG(a)
as the number of lattice points (integer flows) of FG(a), called the Kostant vector partition function. The
name comes from the fact that for the complete graph kn+2, KG(a) is a vector partition function studied
by Kostant in the context of Lie algebras (e.g. [10]). The following theorem, which appears in unpublished
work of Postnikov and Stanley and in the work of Baldoni-Vergne [2], relates the volume of a flow polytope
to a Kostant partition function.

Theorem 1.1 (Postnikov-Stanley, Baldoni-Vergne [2]). For a loopless digraph G with vertices {0, 1, . . . , n+1}
having unique source 0 and unique sink n+ 1,

(1.1) volFG(1, 0, . . . , 0,−1) = KG(0, d1, . . . , dn,−
n∑

i=1

di),

where di = indegG(i)− 1.

In Section 3, we provide a new recursive proof of this theorem by extending a well-known subdivision map
of flow polytopes to integer flows.

An important example of a flow polytope is the Chan-Robbins-Yuen (CRY) polytope [4], defined as
CRYn+1 := Fkn+2(1, 0, . . . , 0,−1). Zeilberger calculated the volume of CRYn+1 algebraically using the Morris
constant term identity, equivalent to the famous Selberg integral formula (see [7]). For convenience, we use
the term volume in this paper to refer to normalized volume. For instance, a d-dimensional simplex has
volume 1.
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Figure 1. The graph ka,b,cn+2 and graph of the Kostant partition function corresponding to
the volume of Fka,b,c

n+2
.

Theorem 1.2 (Zeilberger’s Morris Identity [20]). For positive integers n, a, and b, and nonnegative integer
c, define the constant term

Mn(a, b, c) := CTx

n∏
i=1

(1− xi)−bx−a+1
i

∏
1≤i<j≤n

(xj − xi)−c,

where CTx := CTxn · · ·CTx1 . Then

(1.2) Mn(a, b, c) =

n−1∏
j=0

Γ(a− 1 + b+ (n− 1 + j) c
2 )Γ( c

2 + 1)

Γ(a+ j c
2 )Γ(b+ j c

2 )Γ( c
2 (j + 1) + 1)

.

By specializing this identity, Zeilberger proved that the volume of CRYn+1 is the product of the first n−1
Catalan numbers.

Theorem 1.3 (Zeilberger [20]). The volume of the polytope CRYn+1 is given by Mn(1, 1, 1) =
∏n−1

i=1 Ci,

where Ci = 1
2i+1

(
2i
i

)
is the ith Catalan number.

However, no combinatorial proof of Theorem 1.3 is known.
Corteel-Kim-Mészáros [5, Theorem 1.2] also showed that for any positive a, b, and c, Mn(a, b, c) gives the

volume of the flow polytope on the following graph. For positive integer n, let ka,b,cn+2 denote the graph on
vertex set {0, 1, . . . , n+ 1} with edge (0, i), i ∈ [1, n] appearing with multiplicity a, edge (i, n+ 1), i ∈ [1, n],
appearing with multiplicity b, and (i, j), 1 ≤ i < j ≤ n, appearing with multiplicity c (see Figure 1). Then
they showed the following.

Theorem 1.4 (Corteel-Kim-Mészáros [5]). Let n, a and b be positive integers and c be a nonnegative integer.
Then

(1.3) volFka,b,c
n+2

(1, 0, . . . , 0,−1) = Kka,b,c
n+2

(0, a1, . . . , an,−
n∑

i=1

ai) = Mn(a, b, c),

where ai = a− 1 + c(i− 1).

Another interesting property of the CRY polytope was a refinement of the product formula. Namely,
the following conjecture of Chan-Robbins-Yuen [4, Conj. 2], settled by Zeilberger [20], refines the product
CnCn−1 · · ·C1 by splitting Cn into a sum of Narayana numbers N(n, k) = 1

n

(
n
k

)(
n

k−1

)
.

Theorem 1.5 (Zeilberger [20]). The sum of Kostant partition functions Kkn+2
(0, a1, . . . , an,−

∑n
j=1 aj)

such that for i ∈ [n], ai ≤ i− 1, with ai = i− 1 holding for exactly k values of i, is given by the product

N(n, k)

n−1∏
i=1

Ci.

Mészáros [11, Thm. 11] also provides a collection of interior disjoint polytopes whose volumes sum to
N(n, k)Cn−1 · · ·C1, thus giving a combinatorial interpretation to Conjecture 2 of Chan-Robbins-Yuen.

1.2. A new refinement of Mn(a, b, c). In [20], Zeilberger sketched the proof of Theorem 1.5 using Aomoto’s
refinement of the Selberg integral [1], but no explicit refinement of Mn(a, b, c) was given (see also [19]).
In this paper we give such a refinement and give a Kostant partition function interpretation generalizing
Theorem 1.5. We also give our refinement a geometric interpretation as a collection of interior disjoint
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polytopes subdividing Fka,b,c
n+2

(1, 0, . . . , 0,−1), extending Mészáros’s interpretation [11] and Theorem 1.4.

Our refinement is inspired by a related refinement of Mn(a, b, c) introduced by Baldoni-Vergne [3] to prove
the Morris identity (Theorem 1.2), for which we extend a Kostant partition function interpretation (see
Section 5) but which did not imply Theorem 1.5.

To state our results, define the constant term

(1.4) Ψn(k, a, b, c) := CTx[tk]

n∏
i=1

(1− xi)−bx−a+1
i (1 + t

xi
1− xi

)
∏

1≤i<j≤n

(xj − xi)−c.

In the case that k = 0, Ψn(0, a, b, c) = Mn(a, b, c). We now give Kostant partition function and polytope
volume interpretations for Ψn(k, a, b, c), as well as an explicit product formula.

To state these interpretations, we introduce some notation. Denote by
(

[n]
k

)
the set of k-element subsets

of [n]. For S ∈
(

[n]
k

)
, let ka,b,cn+2 (S) be the set of graphs obtained from taking ka,b,cn+2 , adding n edges (0, n+ 1),

and for each i ∈ S deleting one of the a incoming edges (0, i) and adding an outgoing edge (i, n + 1) (See
Figure 1).

Theorem 1.6. For positive integers n, a, and b, nonnegative integer c, and nonnegative integer k ≤ n, the
constant term Ψn(k, a, b, c) equals the following:

(i) the sum of Kostant partition functions of the form Kka,b,c
n+2

(0, a1, . . . , an,−
∑n

j=1 aj) such that for

i ∈ [n], ai ≤ a− 1 + c(i− 1), with ai = a− 1 + c(i− 1) holding for exactly n− k values of i.

(ii) the volume of the interior disjoint polytopes {Fka,b,c
n+2 (S) | S ∈

(
[n]
k

)
}. Thus,

Ψn(k, a, b, c) =
∑

S∈([n]
k )

volFka,b,c
n+2 (S).

We see that when a = b = c = 1, the Kostant partition function interpretation of Ψn(k, a, b, c) reduces to
Conjecture 2 of Chan-Robbins-Yuen, giving that

Ψn(k, 1, 1, 1) = N(n, k + 1) · Cn−1 · · ·C1.

As a corollary, our constant term Ψn(k, a, b, c) refines the Morris constant term Mn(a, b+ 1, c).

Corollary 1.7. Let n, a, and b be positive integers, and let c be a nonnegative integer. Then

(1.5) Mn(a, b+ 1, c) =

n∑
k=0

Ψn(k, a, b, c).

We also compute the following explicit product formula for Ψn(k, a, b, c) that completes our refinement of
the Morris identity.

Theorem 1.8. For positive integers n, a, and b, nonnegative integer c, and nonnegative integer k ≤ n, the
constant term Ψn(k, a, b, c) is given by

Ψn(k, a, b, c) =

(
n

k

)
Mn(a, b, c)

k∏
j=1

a− 1 + (n− j) c
2

b+ (j − 1) c
2

.

We prove Theorem 1.8 by proving four recurrence relations satisfied by Ψn(k, a, b, c), by proving these
relations uniquely define Ψn(k, a, b, c), and by proving the product formula also satisfies these relations. This
closely follows the approach of Baldoni-Vergne [3, p. 10] in their proof of the Morris identity. However, our
proofs are combinatorial rather than algebraic, with the notable exception of the proof of the relation (4.9),
which states that for 1 ≤ k ≤ n,

(?) k(b+ (k − 1)c/2) ·Ψn(k, a, b, c) = (n− k + 1)(a− 1 + (n− k)c/2) ·Ψn(k − 1, a, b, c).

We leave as an open problem to prove this relation combinatorially, which would then imply a combinatorial
proof of the volume formula for the CRY polytope (Theorem 1.3).
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Figure 2. The subdivision lemma reduces a flow polytope to two interior disjoint polytopes
whose union is integrally equivalent to the original flow polytope.

1.3. Outline. The rest of this paper is structured as follows. In Section 2, we establish basic theory sur-
rounding flow polytopes, Kostant partition functions, and the Morris constant term identity. Section 3 gives
a recursive proof of Theorem 1.1. In Section 4, we prove our results for Ψn(k, a, b, c), including Theorem 1.6,
Corollary 1.7, and Theorem 1.8. In Section 5, we apply our methods for Ψn(k, a, b, c) to the Baldoni-Vergne
constant term and prove Theorem 5.2, and in Section 6 we provide final remarks and potential avenues for
future research.

2. Background and Notation

2.1. Flow polytopes and their subdivisions. Given a loopless acyclic connected digraph G with vertex
set {0, 1, . . . , n, n + 1} and m edges, we orient edge (i, j) from i to j if i < j. We can then represent each
edge (i, j) by the positive type An root α(i, j) = ei − ej . We also define MG to be the (n + 2) ×m matrix
whose columns are given by the multiset {{α(e)}}e∈E(G).

Then given a net flow vector a = (a0, a1, . . . , an,−
∑n

i=0 ai), where ai represents the net flow at vertex i,
we define an a-flow fG as a vector fG = (f(e))e∈E(G) satisfying MgfG = a. We now define the flow polytope
FG(a) as the set of all a-flows on G. More precisely, FG(a) := {fG ∈ Rm

≥0 |MGfg = a}. In the absence of an

explicit vector a, it is implied that a = (1, 0, . . . , 0,−1). In other words, FG := FG(1, 0, . . . , 0,−1). If G has
a unique source 0 and sink n+ 1, then the dimension of FG is m− n− 1.

Next we define a notion of equivalence for flow polytopes. Let aff(·) denote affine span. For two flow
polytopes P ⊂ Rn and Q ⊂ Rm, we say that P and Q are integrally equivalent, denoted P ≡ Q, if there
exists an affine transformation ϕ : Rn → Rm that is a bijection both when restricted between P and Q and
when restricted between aff(P ) ∩ Zn and aff(Q) ∩ Zm. Polytopes that are integrally equivalent share many
similar properties, including the same volume and Ehrhart polynomials.

We now give a recursive subdivision of flow polytopes used by Postnikov-Stanley in their unpublished
work and which appears in the work of Mészáros-Morales [13].

Let G = ({0, 1, . . . , n, n + 1}, E). We now repeatedly apply the following algorithmic step, called the
reduction rule: starting with a graph G0 on vertex set {0, 1, . . . , n, n+ 1} and (i, j), (j, k) ∈ E(G0) for some
i < j < k, we reduce G0 to two graphs G1 and G2 with vertex set {0, 1, . . . , n, n+ 1} and edge sets

E(G1) := E(G0) \ {(j, k)} ∪ {(i, k)},(2.1)

E(G2) := E(G0) \ {(i, j)} ∪ {(i, k)}.(2.2)

Proposition 2.1 (Subdivision Lemma, Postnikov, Stanley [17] (e.g. [11, Prop. 1])). Given a graph G0 on
the vertex set {0, 1, . . . , n, n+ 1} and (i, j), (j, k) ∈ E(G0) for arbitrary i < j < k, define G1 and G2 by the
above reduction rule. Then we have

FG0
≡ FG1

∪ FG2
, F◦G1

∩ F◦G2
= ∅,

where F◦G denotes the interior of the polytope FG.

The subdivision lemma is illustrated in Figure 2. The proof can be found in [13]. Define a graph G to
be reducible if we can apply the reduction rule to two of its edges (that is, there exists (i, j), (j, k) ∈ E(G)).
Otherwise, the graph G is irreducible. We now define the reduction tree T (G) of a graph G. The root of
T (G) is G, and each node G0 has two children G1 and G2 described by the reduction rule. Each leaf of T (G)
is hence irreducible. T (G) is not unique and depends on the order of reductions applied, but the number of
leaves is always the same.
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2.2. Kostant partition functions. We now examine an important subset of FG(a). For a graph G on
vertex set {0, 1, . . . , n, n + 1} and (i, j) oriented i → j if i < j, denote by FZ

G(a) the set of lattice points of
the flow polytope FG(a), and define KG(a) := #FZ

G(a) to be the number of such lattice points, called the
Kostant partition function. The name comes from interpreting the function as giving the number of ways of
writing a as a N-linear combination of the type A positive roots ei − ej , where ei is the ith standard vector
and i < j.

The generating function of Kostant partition functions on G is given by∑
a

KG(a)xa =
∏

(i,j)∈E(G)

(1− xix−1
j )−1,

where the term xix
−1
j represents a single flow along the edge (i, j), and the number of flows with net

flow of j at vertex i is represented by the coefficient of xji . In particular, for the graph ka,b,cn+2 , the generating
function can be simplified to

(2.3)
∑
a

Kka,b,c
n+2

(a)xa =

n∏
i=1

(1− x0x
−1
i )−a(1− xix−1

n+1)−b
∏

1≤i<j≤n

(1− xix−1
j )−c.

Theorem 1.1 relates the volume of a flow polytope to a Kostant partition function with a certain net flow
vector. Using the generating function for Kostant partition functions, this has very useful implications, such

as Theorem 1.4. To prove Theorem 1.4, first apply Theorem 1.1 for ka,b,cn+2 . Since the net flow at the source is

zero, we can ignore the term
∏n

i=1(1−x0x
−1
i )−a. Because the total flow is conserved, the flow at vertex n+1

is already determined, so we can simplify the product by setting xn+1 = 1. The result follows by extracting
the appropriate coefficient in (2.3), and expressing it as a constant term extraction (see [5, Theorem 1.2]).
This approach thus gives a way to express Kostant partition functions as a constant term.

2.3. Catalan numbers, Narayana numbers, and Proctor’s formula. The Catalan numbers satisfy
the formula Cn = 1

n+1

(
2n
n

)
, and are one of the most ubiquitous sequences in combinatorics. For instance, the

Catalan number Cn counts the number of lattice paths from (0, 0) to (n, n) that do not pass above the line y =
x. Stanley [18] even gives an exercise in 66 parts asking readers to show the number of various combinatorial
structures was the Catalan sequence, and his online addendum adds over 200 additional combinatorial
interpretations. The Catalan numbers are refined by the Narayana numbers N(n, k) = 1

n

(
n
k

)(
n

k−1

)
such that

Cn =

n∑
k=1

N(n, k).

In analogy to the Catalan numbers, the Narayana number N(n, k) counts the number of lattice paths from
(0, 0) to (n, n) that do not pass above the line y = x and has 2k − 1 turns. Notably, both Narayana
and Catalan numbers appear in Theorem 1.5, where the Narayana refine the volume of the CRY polytope.
Proctor’s formula describes another form in which Catalan numbers can appear. In [15], Proctor shows that∏

1≤i<j≤n

2(a− 1) + i+ j − 1

i+ j − 1
= det[Cn−2+i+j ]

a−1
i,j=1.

We will see Catalan numbers appear in several forms in Section 2.4 for special cases of the Morris identity,
including through Proctor’s formula.

2.4. The Morris constant term identity Mn(a, b, c). We first formalize the notion a constant term

extraction. For a Laurent series f(xi), we denote the coefficient of xji by [xji ]f(xi), and we denote the
constant term in xi by CTxi f(xi). Similarly, for a Laurent series f(x1, x2, . . . , xn), we denote the constant
term by CTx f(x1, x2, . . . , xn) := CTxn · · ·CTx1 f(x1, x2, . . . , xn).

Similary, we define the residue of f(xi) with respect to xi as the coefficient of x−1
i . We denote this by

Resxi
f(xi) := [x−1

i ]f(xi), and we also use the notation Resxf(x1, x2, . . . , xn) := Resxn
· · ·Resx1

f(x1, x2, . . . , xn).
A useful property of residues is that for an analytic function f(x1, x2, . . . xn), the residue of a partial deriv-
ative is always zero. That is,

Resxi

∂

∂xi
f(x1, x2, . . . xn) = 0.



6 WILLIAM SHI

We now give some special properties and cases of the Morris constant term identity (1.2). Note that for
c > 0, we can substitute Γ(x+ 1) = xΓ(x) to obtain the following alternate form of Morris identity

Mn(a, b, c) =
1

n!

n−1∏
j=0

Γ(a− 1 + b+ (n− 1 + j) c
2 )Γ( c

2 )

Γ(a+ j c
2 )Γ(b+ j c

2 )Γ( c
2 (j + 1))

.

This form of the Morris identity is used in most of our computational proofs. Note also the following
fundamental symmetry of Mn(a, b, c) with respect to a and b.

Proposition 2.2. Mn(a, b, c) = Mn(b, a, c).

Proof. This can directly be seen from symmetry of a and b in the product formula of Mn(a, b, c).
On a polytope level, consider a bijection ϕ : Fka,b,c

n+2
→ Fkb,a,c

n+2
defined as follows. For each flow f ∈ Fka,b,c

n+2
,

ϕ(f) is obtained by reversing the direction of flow of each edge in ka,b,cn+2 . It is easy to see that this is an
involution, so the volume of the two polytopes must be equal. �

Recall that Mn(1, 1, 1) is a product of consecutive Catalan numbers. Interestingly, the case Mn(a, 1, 1)
strongly resembles Mn(1, 1, 1), and is, by Proctor’s formula, a product of Catalan numbers times a determi-
nant of Catalan numbers.

Corollary 2.3. [2, 11] The constant term Mn(a, 1, 1) can be expressed as a product of consecutive Catalan
numbers times a determinant of Catalan numbers.

Mn(a, 1, 1) = C1C2 · · ·Cn−1

∏
1≤i<j≤n

2(a− 1) + i+ n− 1

i+ n− 1

= det[Cn−2+i+j ]
a−1
i,j=1Cn−1Cn−2 · · ·C1.

To investigate possible generalizations, here we list simplified identities for some other special cases of
the Morris identities. Proofs of these formulas and other special cases, namely Mn(a, b, 1) and Mn(a, b, 2k),
are rather computational and are hence provided in the Appendix. Intriguingly, the explicit formula for
Mn(a, b, 1) strongly resembles the formula for Mn(a, 1, 1).

Corollary 2.4. For positive integers n, a, and b, the constant term Mn(a, b, 1) is given by

M2n(a, b, 1) = C1C2 · · ·C2n−1

∏
1≤i<j≤2n

2(a+ b− 2) + i+ j − 1

i+ j − 1

∏
1≤i≤n

(
2a+2b+4i−6

2a+2i−3

)(
2a+2b+4i−6

2i−1

)
M2n−1(a, b, 1) =

(
a+ b− 2

a− 1

)
C1C2 · · ·C2n−2

∏
1≤i<j≤2n−1

2(a+ b− 2) + i+ j − 1

i+ j − 1

∏
1≤i≤n−1

(
2a+2b+4i−4

2a+2i−2

)(
2a+2b+4i−4

2i

) .
We also give a formula for Mn(a, b, c) for even c, which curiously differs significantly from other computed

special cases.

Corollary 2.5. For positive integers n, a, b and k, the constant term Mn(a, b, 2k) is given by the product

Mn(a, b, 2k) =

n∏
i=1

(a+ b− 2 + (2i− 3)k)!k!

((i− 2)k)!(ik)!

(
a+ b− 2 + (2i− 2)k

a− 1 + (i− 1)k

)
.

To prove the Morris identity, Baldoni-Vergne defined the generating function

φ′n(k, a, b, c) := k!(n− k)!ek

n∏
i=1

(1− xi)−bx−a+1
i

∏
1≤i<j≤n

(xj − xi)−c,

where ek = [tk]
∏n

i=1(1 + txi) is the kth elementary symmetric polynomial. They proved several recur-
rence relations that computed the constant term Φ′n(k, a, b, c) := CTx φ

′
n(k, a, b, c), which implies the Morris

identity when k = 0.

Theorem 2.6 (Baldoni-Vergne [3]). For positive integer n and nonnegative integer k, a, b, c, with a+ b ≥ 2,
the constant term Φ′n(k, a, b, c) is given by the formula

Φ′n(k, a, b, c) = n! ·Mn(a, b, c)

k∏
j=1

a− 1 + (n− j) c
2

a+ b− 2 + (2n− j − 1) c
2

.
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Interestingly, the Baldoni-Vergne constant term does not generalize the refinement of Mn(1, 1, 1) given by
Theorem 1.5 which helped motivate our new refinement of Mn(a, b, c) in Section 4.

3. A recursive proof of Theorem 1.1

In this section we give a new recursive proof of Theorem 1.1 by introducing a subdivision map for the
right-hand side of (1.1). To give our proof, we first show that all subdivisions reduce to a similar form.

Lemma 3.1. Every connected directed graph G on vertex set {0, 1, . . . , n + 1} with unique source 0 and
unique sink n+ 1 can be reduced to subdivisions G′ with the same vertex set, unique source and sink and for
i ∈ [n], outdegG′(i) = 1.

Proof. We apply the following algorithm:

(1) Consider if graph G has a non-empty set S of vertices i such that indegG(i) > 1 and outdegG(i) > 1.
Then we apply the reduction rule at any vertex in S.

(2) Consider if graph G has a non-empty set T of vertices i such that indegG(i) = 1 and outdegG(i) > 1.
Then we apply the reduction rule at any vertex in T.

We note the net flow for a vertex in T is zero, so the flow along the incoming edge must be at
least the flow along any of the outgoing edges. Obtaining G1 and G2 as in (2.1) and (2.2), applying
the map on flows as shown in Figure 2, gives that FG1 = ∅, and can be disregarded. Hence, we see
that the uniqueness of the sink and source are also preserved in G2.

(3) We continually apply steps (1) and (2) until S = T = ∅, at which point we conclude outdegG(i) = 1
for i ∈ [n].

Since the graph is finite, we see the algorithm must terminate. �

We now prove the following lemma, which establishes the base case for our induction.

Lemma 3.2 (Base Case). For a graph G on vertex set {0, 1, . . . , n + 1} with m edges, unique source 0,
unique sink n+ 1, and where outdegG(i) = 1 for i ∈ [n], we have that

volFG(1, 0, . . . , 0,−1) = KG(0, d1, . . . , dn,−
n∑

i=1

di) = 1,

where di = indegG(i)− 1.

Proof. First we show volFG(1, 0, . . . , 0,−1) = 1. Since outdegG(i) = 1 for i ∈ [n] then the source has
outdegree m − n, and the flows along these m − n edges determines a unique flow on G. To see this, note
that the flows of the outgoing edges of vertices in the set {0, 1, . . . , i} for i ∈ [n] determine recursively the
outgoing flow at vertex i + 1. We see that FG is equivalent to a (m − n − 1)-dimensional simplex and has
normalized volume 1.

Next we show that KG(0, d1, . . . , dn,−
∑n

i=1 di) = 1. We recursively show that there is only one integer
flow f with the desired net flow. Since the source has net flow zero, then f(0, i) = 0 for i ∈ [n]. Then the
flows of the outgoing edges of vertices in the set {0, 1, . . . , i} recursively determine the outgoing flow from
vertex i+ 1 since outdegG(i+ 1) = 1. Thus, only a single integer flow f is possible. �

We now define some notation. For a reducible graph G0 on vertex set {0, 1, . . . , n, n+ 1}, let G1 and G2

be obtained by equations (2.1) and (2.2) for fixed (i, j), (j, k) ∈ E(G0). Let d′i = indegG1
(i)−1, and let d′′i =

indegG2
(i) − 1. Also, let d = (0, d2, · · · , dn,−

∑n
i=2 di) and likewise define d1 = (0, d′2, · · · , d′n,−

∑n
i=2 d

′
i)

and d2 = (0, d′′2 , · · · , d′′n,−
∑n

i=2 d
′′
i ).

We prove that if G1 and G2 satisfy Theorem 1.1, so does G0. By the subdivision lemma, we have that

volFG0 = volFG1 + volFG2 .

Hence, it suffices we show the following lemma.

Lemma 3.3 (Inductive Step). Let G0, G1, G2 and d,d1,d2 be as defined above. Then,

KG0
(d) = KG1

(d1) +KG2
(d2).
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G0 G1 G2

i j k i j k i j k

x y
y

x− y
x
y − x− 1

x ≥ y x < y

G0

i j k

x yϕ1 ϕ2

Figure 3. The maps ϕ1 and ϕ2 for integer flows of a subdivided graph.

Proof. Note that since d1 6= d2, we have that FZ
G1

(d1) and FZ
G2

(d2) are disjoint. We give a bijection

ϕ : FZ
G0

(d)→ FZ
G1

(d1) ∪̇ FZ
G2

(d2).

For an integer flow f ∈ FZ
G0

(d), let x = f(i, j), and let y = f(j, k). Then we denote by FZ
G0

(d; y ≤ x) the

subset of FZ
G0

(d) where y ≤ x, and likewise let FZ
G0

(d; y > x) denote the the subset of FZ
G0

(d) where y > x.

We let ϕ1 be restriction of ϕ to FZ
G0

(d; y ≤ x), and ϕ2 the restriction of ϕ to FZ
G0

(d; y > x). We now
construct ϕ1 and ϕ2 as bijections with disjoint codomains where the union is the codomain of ϕ. We define
ϕ1 and ϕ2 as illustrated in Figure 3.

More formally, we define

ϕ1 : FZ
G0

(d; y ≤ x)→ FZ
G1

(d1),

where f 7→ f ′ given by

f ′(e) =


x− y, e = (i, j)

y, e = (i, k)

f(e), e ∈ E(G1) \ {(i, j), (i, k)}.
Since the indegrees in G0 and G1 are the same, we see that the net flow vector is d1 = d, so the map is
well-defined. We now construct the inverse map ϕ−1

1 with f 7→ f ′ given by

f ′(e) =


f(i, j) + f(i, k), e = (i, j)

f(i, k), e = (j, k)

f(e), e ∈ E(G0) \ {(i, j), (j, k)}.

The net flow vector is again unchanged, so the map is well-defined and therefore ϕ1 is a bijection.
We now construct a second bijection

ϕ2 : FZ
G0

(d; y > x)→ FZ
G2

(d2),

with f 7→ f ′ given by

f ′(e) =


y − x− 1, e = (j, k)

x, e = (i, k)

f(e), e ∈ E(G2) \ {(j, k), (i, k)}.
The only change in indegrees is that d′′j = dj − 1 and d′′k = dk + 1. However, the outgoing flow at vertex
j also decreases by 1, whereas the incoming flow at vertex k also decreases by 1, so the net flow vector is
indeed d2. We similarly construct the inverse map ϕ−1

2 with f 7→ f ′ given by

f ′(e) =


f(i, k), e = (i, j)

f(j, k) + f(i, k) + 1, e = (j, k)

f(e), e ∈ E(G0) \ {(i, j), (j, k)}.

The only indegrees that change are dj = d′′j + 1 and dk = d′′k − 1, but since the outgoing flow at vertex
j increases by 1 and the incoming flow at vertex k decreases by 1, we see the graph is locally unchanged.
Hence, the map is well-defined and ϕ2 is a bijection as a well.

Since FZ
G1

(d1) and FZ
G2

(d2) are disjoint, we have that ϕ is a bijection, and the result follows. �

Recursive proof of Theorem 1.1. The proof follows from the base case given in Lemma 3.1 and Lemma 3.2,
and the inductive step established in Lemma 3.3. �
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c

b
n+ 1

c

b+ 1
n+ 1< < < = = =. . .a− 1 + c(i− 1) a− 2 + c(i− 1). . .

Figure 4. For each strict inequality where ai < indeg(i) − 1, the inequality can be
weakened by decreasing a by 1 to obtain ai ≤ indeg(i)− 1. We then add an additional edge
(i, n+ 1) to carry the necessary flow such that ai = indeg(i)− 1.

4. A new refinement of Mn(a, b, c)

We define the following constant term that generalizes the case of Conjecture 2 to Mn(a, b, c).

Definition 4.1. Define the following constant term

Ψn(k, a, b, c) := CTx[tk]

n∏
i=1

(1− xi)−bx−a+1
i (1 + t

xi
1− xi

)
∏

1≤i<j≤n

(xj − xi)−c.

4.1. Volume and Kostant partition function interpretations for Ψn(k, a, b, c). We prove both parts
of Theorem 1.6.

Proof of Theorem 1.6 (i). We first prove the Kostant partition interpretation of Ψn(k, a, b, c). We specialize
the generating function in equation (2.3) as in the proof of Theorem 1.4 in Section 2.2. Note that compared
with Mn(a, b, c), Ψn(k, a, b, c) has an extra term [tk]

∏n
i=1(1+ t xi

1−xi
). This term selects k values of {1, . . . , n}

and for each selected i multiplies the generating series by xi

1−xi
.

By linearity of constant term extraction,

(4.1) CTxi

xi
1− xi

f(x1, . . . , xn) =

∞∑
j=1

CTxi x
j
if(x1, . . . , xn) =

∞∑
j=1

[x−ji ]f(x1, . . . , xn).

When the generating function for Mn(a, b, c) is substituted for f(x1, . . . , xn) in the RHS of (4.1), this is
equivalent to strictly decreasing the net flow at vertex i in the Kostant partition function interpretation of
Mn(a, b, c). Since we take the coefficient of tk, there are exactly k vertices with net flow ai < a− 1 + c(i− 1),
and n− k vertices with net flow ai = a− 1 + c(i− 1). The result follows.

�

We now prove the volume interpretation. To do so, we first define a modification of ka,b,cn+2 .

Definition 4.2. For a set S ⊆ [n], let ka,b,cn+2 (S) be the graph obtained from ka,b,cn+2 by adding n edges (0, n+1)
and for each i ∈ S we delete one of the a incoming edges (0, i) and add an outgoing edge (i, n+ 1).

For a set S ⊆ [n], define also the set T (S) as the set of vectors a = (0, a1, a2, . . . , an,−
∑n

j=1 aj) with

ai < a− 1 + c(i− 1) for i ∈ S and ai = a− 1 + c(i− 1) for i /∈ S.

Proof of Theorem 1.6 (ii). First we show that

(4.2)
∑

a∈T (S)

Kka,b,c
n+2

(a) = volFka,b,c
n+2 (S).

Consider the Kostant partition functions on the left-hand side. For each vertex i ∈ S, we remove an
incoming edge (0, i) (decreasing a by 1) to create a weak inequality instead of a strict equality. We then add
an outgoing edge (i, n+ 1) to carry the necessary flow to force the equality ai = indeg(i)− 1. This process
is shown in Figure 4.

We note that if we were to add the edge (0, n + 1) n times, the volume would not change. This is due
to Theorem 1.1, which gives the volume as a Kostant partition function where the source has zero net flow.
Since an edge (0, n + 1) also would not affect the indegree of any internal vertex, it has no effect on the

Kostant partition function or volume. By adding the edge (0, n+ 1) n times, the graph becomes ka,b,cn+2 (S).
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c

n+ 10
a

b+ 1

c

n+ 10
a

b

c

n+ 10
a− 1

b+ 1

Figure 5. The graph ka,b,cn+2 is shown in gray on the left with some highlighted edges in black.
The graphs on the right give the two subdivisions obtained from applying the subdivision
lemma on a single internal vertex.

Hence, since each internal vertex has net flow ai = indeg(i) − 1, we apply Theorem 1.1 again to obtain
that this Kostant partition function is equal to volFka,b,c

n+2 (S), thus proving equation (4.2).

We can now sum both sides of equation (4.2) over S ∈
(

[n]
k

)
. Since the Kostant partition function

interpretation of Ψn(k, a, b, c) counts all flows with exactly k strict inequalities ai < a− 1 + c(i− 1), we see
that the left-hand side is now Ψn(k, a, b, c), and the result follows. �

On a polytope level, this volume interpretation translates to the following result.

Lemma 4.3. For S ⊆ [n], the polytopes Fka,b,c
n+2 (S) are interior disjoint and satisfy

Fka,b+1,c
n+2

≡
⋃

S⊆[n]

Fka,b,c
n+2 (S).

Proof. We apply the subdivision lemma (2.1) and (2.2) at each internal vertex of Fka,b+1,c
n+2

exactly once.

For each internal vertex i, the edge (0, n+ 1) is added, and either an incoming edge (0, i) or outgoing edge
(i, n+ 1) is deleted. This is shown in Figure 5.

That is, for each vertex i, one of two cases must hold:

(i) Edge (0, i) appears a− 1 times and edge (i, n+ 1) appears b+ 1 times.
(ii) Edge (0, i) appears a times and edge (i, n+ 1) b times.

Each reduced graph is the polytope Fka,b,c
n+2 (S), where S is the set of vertices satisfying case (i). Since the

graphs Fka,b,c
n+2 (S) are obtained different subdivisions, these polytopes are interior disjoint by Proposition 2.1,

and the result follows. �

As an application of these interpretations we now prove Corollary 1.7, which refines the productMn(a, b, c).

Proof of Corollary 1.7 via Kostant partition function. The sum on the right-hand side of (1.5) over k of
Ψn(k, a, b, c) is the sum of all Kostant partition functions Kka,b,c

n+2
(0, a1, . . . , an,−

∑n
j=1 aj) such that for

i ∈ [n], ai ≤ a− 1 + c(i− 1). This is equivalent to adding another edge between each vertex i and the sink
with flows such that each net flow satisfies ai = a− 1 + c(i− 1). Hence we see this sum is Mn(a, b+ 1, c). �

Proof of Corollary 1.7 via volumes. Using Lemma 4.3 and computing the volume on both sides gives

volFka,b+1,c
n+2

=
∑
S⊆[n]

volFka,b,c
n+2 (S).

The result follows by applying Theorem 1.4 to the left-hand side and Theorem 1.6 to the right-hand side. �
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4.2. Recurrence Relations of Ψn(k, a, b, c). In this section we prove recurrence relations that Ψn(k, a, b, c)
satisfies and that are instrumental to our proof of Theorem 1.8. First we show two cases where Ψn(k, a, b, c)
is equivalent to the Morris identity.

Proposition 4.4. Let n, a, b, c be positive integers. Then

Ψn(0, a, b, c) = Mn(a, b, c)(4.3)

Ψn(n, a, b, c) = Mn(a− 1, b+ 1, c).(4.4)

Proof. The first equation holds since n equalities implies the exact same constraints as those of Mn(a, b, c).
The second equation holds since 0 equalities implies the upper bound of the inequalities can be decreased by 1
(by decreasing a by 1) to make a weak inequality, and another edge from each vertex to the sink can be added
with the necessary flow to force equality. This transformation gives a bijection with Mn(a− 1, b+ 1, c). �

We now give a bijective contraction on certain integer flows.

Proposition 4.5. For a net flow vector a = (0, 0, a2, . . . , an,−
∑n

j=2 aj), define ã := (0, a2, . . . , an,−
∑n

j=2 aj).
Then for positive integers a, b, n and nonnegative integer c,

(4.5) Kk1,b,c
n+2

(a) = Kkc+1,b,c
n+1

(ã).

Proof. Define the map

ϕ : FZ
k1,b,c
n+2

(a)→ FZ
kc+1,b,c
n+1

(ã),

where f 7→ f ′, with f ′(i, j) given by

f ′(i, j) =

{
0, i = 0

f(i+ 1, j + 1), 1 ≤ i < j ≤ n.

This map contracts edge (0, 1) to create vertex 0 and relabels each vertex i ∈ [2, n + 1] by i − 1. We
see the c edges (1, i) for i ∈ [2, n] become identical with the edges of the form (0, i), i ∈ [2, n]. Hence, the

graph transforms to become kc+1,b,c
n+1 . We now show that ϕ is a bijection. It is sufficient we show ϕ has a

well-defined inverse function for all f ∈ Fkc+1,b,c
n+1

(ã). Define the inverse map

ϕ−1 : FZ
kc+1,b,c
n+1

(ã)→ FZ
k1,b,c
n+2

(a)

where f 7→ f ′, with f ′(i, j) given by

f ′(i, j) =

{
0, 0 ≤ i ≤ 1

f(i− 1, j − 1), 2 ≤ i < j ≤ n+ 1.

Note that for (i, j) ∈ E(FZ
k1,b,c
n+2

(a)), f(0, j) = f(1, j) = 0 as the net flows at vertices 0 and 1 are both zero,

so we see ϕ−1 is indeed our desired inverse function. Thus ϕ is a bijection, and the result follows. �

We further strengthen this contraction identity to hold bijectively for Ψn(k, 1, b, c).

Lemma 4.6 (Contraction Lemma). For positive integers b and n and nonnegative integers c and k ≤ n,
Ψn(k, 1, b, c) = Ψn−1(k, c+ 1, b, c).

Proof. Recall Ψn(k, 1, b, c) is the sum of Kostant partition functions of the form Kk1,b,c
n+2

(a), with a =

(0, 0, a2, . . . ,−
∑n

j=1 aj) where for i ∈ [2, n], ai < c(i − 1) holds k times and ai = c(i − 1) holds n − 1 − k
times (since the first internal vertex trivially satisfies this equality). Let A be the set of all such a satisfying
these conditions. That is,

Ψn(k, 1, b, c) =
∑
a∈A

Kk1,b,c
n+2

(a).

Similarly, let A′ be the set of all a′ = (0, a2, . . . ,−
∑n

j=1 aj) where for i ∈ [2, n], ai < c(i − 1) holds k

times and ai = c(i− 1) holds n− 1− k times. Then

Ψn−1(k, c+ 1, b, c) =
∑
a′∈A′

Kkc+1,b,c
n+2

(a′).
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Noting the nearly identical on the restrictions on a ∈ A and a′ ∈ A′, we see that the map ϕ : A→ A′,a 7→ ã
is a bijection. Equating the Kostant partition functions using equation (4.5), the result follows. �

As a result of this lemma, the following two corollaries are immediate.

Corollary 4.7.
Mn(1, b, c) = Mn−1(c+ 1, b, c).

Proof. This is a result of Lemma 4.6 when k = 0. �

Corollary 4.8. For positive integers a and n, it holds that

Mn(a, 1, 1) =

n∑
k=0

Ψn−1(k, a, 1, 1).

Proof. By Corollary 4.7 and Proposition 2.2, we see that Mn(a, 1, 1) = Mn−1(a, 2, 1). Hence applying Lemma
1.7, the result follows. �

Following the approach of Baldoni-Vergne in their proof of Theorem 2.6, we now give relations of
Ψn(k, a, b, c) that we later show uniquely determine this function.

Lemma 4.9. For nonnegative integer c, positive integers a, b, n, and nonnegative integer k ≤ n, the constant
term Ψn(k, a, b, c) satisfies the following identities:

Ψn(n, a, b, c) = Ψn(0, a− 1, b+ 1, c)(4.6)

Ψn(n− 1, 1, b, c) = Ψn−1(0, c, b+ 1, c)(4.7)

Ψn(0, 1, b, 0) = 1(4.8)

k(b+ (k − 1)c/2) ·Ψn(k, a, b, c) = (n− k + 1)(a− 1 + (n− k)c/2) ·Ψn(k − 1, a, b, c) for 1 ≤ k ≤ n.(4.9)

Proof. The first relation follows immediately from the bijections in Proposition 4.4. The second relation
follows by applying Lemma 4.6 to the left-hand side, which turns the equation into Ψn−1(n− 1, c+ 1, b, c) =
Ψn−1(0, c, b+ 1, c), which follows from the first relation. The third relation is immediate since the left-hand
side implies ai = a− 1 + c(n− 1) = 0 for all i ∈ [n], giving only one possible flow where each edge has flow
zero. Lastly we prove the fourth relation. This is the sole relation we prove algebraically.

Let U :=
∏n

i=1(1 − xi)−bx−ai

∏
1≤i<j≤n(xj − xi)−c, and let Pk := k!(n − k)![tk]

∏k
i=1(1 + t xi

1−xi
), where

[tk]
∏k

i=1(1 + t xi

1−xi
) = ek( xi

1−xi
) is the kth elementary symmetric function in xi

1−xi
. We have that

∂

∂x1
(1− x1)

x1

1− x1
· · · xk

1− xk
U(4.10)

=

b x1

1− x1
· · · xk

1− xk
+ (1− a)

x2

1− x2
· · · xk

1− xk
+ c(1− x1)

x1

1− x1
· · · xk

1− xk

n∑
j=2

1

xj − x1

U.

If c is odd, then U is antisymmetric. Anti-symmetrizing over Sn gives:∑
w∈Sn

(−1)ww · ( ∂

∂x1
(1− x1)

x1

1− x1

x2

1− x2
· · · xk

1− xk
U)(4.11)

= bPkU + (1− a)Pk−1U + c
∑

w∈Sn

w ·

(1− x1)
x1

1− x1

x2

1− x2
· · · xk

1− xk

n∑
j=2

1

xj − x1

U.(4.12)

To evaluate the sum, we seek pairings of summands that reduce easily. Consider when w is the identity
permutation. Then for each summand in

∑n
j=2

1
x1−xj

, for 2 ≤ j ≤ k, we see that

(4.13)
(1− x1)x1xj

(xj − x1)(1− x1)(1− xj)
+

(1− xj)x1xj
(x1 − xj)(1− x1)(1− xj)

=
x1xj

(1− x1)(1− xj)
.

On the other hand for j > k,

(4.14)
(1− x1)x1

(xj − x1)(1− x1)
+

(1− xj)xj
(x1 − xj)(1− xj)

= −1.
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Thus for each w ∈ Sn and j ∈ [2, n], we pair the summand

w ·
(

(1− x1)
x1

1− x1

x2

1− x2
· · · xk

1− xk
· 1

xj − x1

)
with the summand obtained by taking w and transposing w(1) and w(j). Hence we duplicate the sum and
simplify with equations (4.13) and (4.14):

2
∑

w∈Sn

w ·

(1− x1)
x1

1− x1

x2

1− x2
· · · xk

1− xk

n∑
j=2

1

xj − x1

U

=
∑

w∈Sn

w ·
(

(k − 1)
x1

1− x1

x2

1− x2
· · · xk

1− xk
− (n− k)

x2

1− x2
· · · xk

1− xk

)
U

= (k − 1)PkU − (n− k)Pk−1U.

Thus, the expression in equation (4.12) simplifies to:
(4.15)∑
w∈Sn

(−1)ww·( ∂

∂x1
(1−x1)

x1

1− x1

x2

1− x2
· · · xk

1− xk
U) = bPkU+(1−a)Pk−1U−

c

2
(n−k)Pk−1U+

c

2
(k−1)PkU.

Since the residue of a partial derivative of an analytic function is always zero, taking the residues of the
terms allows setting the equation to 0:

0 = bResxPkU + (1− a)ResxPk−1U −
c

2
(n− k)ResxPk−1U +

c

2
(k − 1)ResxPkU.

By definition of Ψ(·), we have that ResxPkU = k!(n− k)!Ψn(k, a, b, c), which gives:

(b+ (k − 1)
c

2
)k!(n− k)!Ψn(k, a, b, c) = (a− 1 + (n− k)

c

2
)(k − 1)!(n− k + 1)!Ψn(k − 1, a, b, c).

Simplifying gives relation 5 for odd c. When c is even, U is symmetric, so symmetrizing over Sn gives:∑
w∈Sn

w · ( ∂

∂x1
(1− x1)

x1

1− x1

x2

1− x2
· · · xk

1− xk
U)

= bPkU + (1− a)Pk−1U + c
∑

w∈Sn

w ·

(1− x1)
x1

1− x1

x2

1− x2
· · · xk

1− xk

n∑
j=2

1

xj − x1

U,

which is essentially identical to when c is odd, and the proof follows verbatim. �

4.3. Closed Formula for Ψn(k, a, b, c). Our proof for the closed formula of Ψn(k, a, b, c) follows the recur-
rence approach used by Baldoni-Vergne [3, p. 10] (see also [14, Prop. 3.11]) using the recurrences proven in
the previous section.

Lemma 4.10. The relations (4.6)-(4.9) uniquely determine the function Ψn(k, a, b, c).

Proof. Case 1: Consider if c = 0, n ≥ 1, and a ≥ 1. To compute Ψn(k, a, b, 0), we repeatedly apply equation
(4.9) to increment k until k = n, at which point we apply equation (4.6). Thus Ψn(k, a, b, c) reduces to
calculating Ψn(0, a− 1, b+ 1, c):

Ψn(k, a, b, 0)
(4.9)

// Ψn(k + 1, a, b, 0)
(4.9)∗

// Ψn(n, a, b, 0)
(4.6)

// Ψn(0, a− 1, b+ 1, 0).

By iterating this recursion, we see this is equivalent to calculating Ψn(0, 1, a+ b−1, 0). By equation (4.8),
this is equal to 1.
Case 2: Consider if c ≥ 1, n = 1, and a ≥ 1. Since

∏
1≤i<j≤n(xj − xi)

−c is the empty product, this is
equivalent to when c = 0, which implies that

Ψ1(k, c, a+ b+ c(n− 2), c) = Ψ1(k, c, a+ b+ c(n− 2), 0).

This reduces to Case 1.
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Case 3: Consider if c ≥ 1, n ≥ 2, and a ≥ 1. Similar to in Case 2, to compute Ψn(k, a, b, c) we repeatedly
apply equation (4.9) to increment k until k = n, at which point we apply equation (4.6). Thus Ψn(k, a, b, c)
reduces to calculating Ψn(0, a− 1, b+ 1, c).

Ψn(k, a, b, c)
(4.9)

// Ψn(k + 1, a, b, c)
(4.9)∗

// Ψn(n, a, b, c)
(4.6)

// Ψn(0, a− 1, b+ 1, c).

We iterate this recursion until a = 1, at which point we reduce the calculation to finding Ψn(0, 1, a+b−1, c).
Now we again increment k by (4.9) until k = n−1. Applying equation (4.7) reduces the calculation to finding
Ψn−1(0, c, a+ b, c).

Ψn(k, 1, a+ b− 1, c)
(4.9)

// Ψn(k + 1, 1, a+ b− 1, c)
(4.9)∗

// Ψn(n− 1, 1, a+ b− 1, c)
(4.7)

// Ψn−1(0, c, a+ b, c).

We now repeatedly apply the above two cycles until we reduce n to 1, in which case we reduce the computation
to Ψ1(0, c, a+ b+ c(n− 2), c). Since n = 1, this becomes Case 2.

Since all cases eventually reduce to case 1, the result follows. �

Using the fact that the relations (4.6)-(4.9) uniquely define Ψn(k, a, b, c), we now prove our explicit product
formula.

Proof of Theorem 1.8. By Lemma 4.10, it is sufficient to show a formula of Ψn(k, a, b, c) that satisfies the
relations (4.6)-(4.9). To show equation (4.6), recall that:

Mn(a− 1, b+ 1, c) =

n−1∏
j=0

Γ(a+ b− 1 + (n− 1 + j) c
2 )Γ( c

2 + 1)

Γ(a− 1 + j c
2 )Γ(b+ 1 + j c

2 )Γ((j + 1) c
2 + 1)

.

Recall that Γ(x + 1) = xΓ(x). Hence, Γ(a − 1 + j c
2 ) =

Γ(a+j c
2 )

a−1+j c
2
, and Γ(b + 1 + j c

2 ) = (b + j c
2 )Γ(b + j c

2 ).

Substituting gives

Mn(a− 1, b+ 1, c) = Mn(a, b, c)

n−1∏
j=0

a− 1 + j c
2

b+ j c
2

= Mn(a, b, c)

n∏
j=1

a− 1 + (n− j) c
2

b+ (j − 1) c
2

.

To show equation (4.7) from (4.6), it is sufficient to show the product formula satisfies Lemma 4.6.
First we show Mn(1, b, c) = Mn−1(c+ 1, b, c). To do so, consider the ratio

Mn(1, b, c)

Mn−1(c+ 1, b, c)
=

1

n
·

Γ(b+ (n− 1) c
2 )Γ( c

2 )

Γ(b+ (n− 1) c
2 )Γ( c

2n)
·

Γ( c
2n+ 1)

Γ( c
2 + 1)Γ(1)

Since Γ(x+ 1) = xΓ(x), the above ratio simplifies to 1, and the result follows.

Using the above equality, it is sufficient to show that
(
n
k

)∏k
j=1(n − j) =

(
n−1
k

)∏k
j=1(n + 1 − j). Both

sides of the equation simplify to
∏k

j=1(n+1− j)(n− j)/j, thus proving relation the product formula satisfies

Lemma 4.6 and hence equation (4.7).

To show equation (4.8), recall that since k = 0, we have that
(
n
k

)∏k
j=1

a−1+(n−j) c
2

b+(j−1) c
2

= 1. Then

Ψn(0, 1, b, 0) = Mn(1, b, 0) = 1.

To show equation (4.9), note that

Ψn(k, a, b, c)

Ψn(k − 1, a, b, c)
=

(
n
k

)(
n

k−1

) · a− 1 + (n− k) c
2

b+ (k − 1) c
2

=
n− k + 1

k
·
a− 1 + (n− k) c

2

b+ (k − 1) c
2

.

Rearranging gives the desired recurrence relation, and the result follows. �

We also compute the following special cases of Ψn(k, a, b, c), which generalize the special cases ofMn(a, b, c)
computed in Section 2.4.
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Corollary 4.11. The constant term Ψn(k, a, b, c) satisfies the following:

Ψn(k, a, 1, 1) =
1

n+ 2(a− 1)

(
n

k

)(
n+ 2(a− 1)

k + 1

)
Mn(a, 1, 1)(4.16)

Ψn(k, 1, b, 1) =

(
n− 1

k

)(
n

k

)(
k + 2b− 1

k

)−1

Mn(1, b, 1)(4.17)

Ψn(k, 1, 1, c) = N(n, k + 1)

k∏
j=1

c(j + 1)

c(j − 1) + 2
Mn(1, 1, c).(4.18)

Proof. We manipulate the product formula given in Theorem (1.8) to obtain the desired relations. Note that

k∏
j=1

2(a− 1) + (n− j)
j + 1

=
1

n+ 2(a− 1)

(
n+ 2(a− 1)

k + 1

)
k∏

j=1

n− j
j + 2b− 1

=

(
n−1
k

)(
k+2b−1

k

)
k∏

j=1

(n− j)c
2 + (j − 1)c

=
1

n

(
n

k + 1

) k∏
j=1

c(j − 1) + 2c

c(j − 1) + 2
.

The results follows from substitution. �

Remark 4.12. Note that unlike Mn(a, b, c) (see Proposition 2.2), in most cases Ψn(k, a, b, c) 6= Ψn(k, b, a, c).
Instead, we have the following symmetry.

Proposition 4.13. For positive integers a, b, n and nonnegative integers c and k ≤ n,
Ψn(k, a, b, c) = Ψn(n− k, b+ 1, a− 1, c).

Proof. Reversing flows in the flow polytope interpretation of Ψn(k, a, b, c) gives the polytope interpretation
of Ψn(n− k, b+ 1, a− 1, c). Since this map is an involution, it must be volume-preserving, so we see the two
collections of polytopes have equal volume, and the result follows. �

As a corollary, we also have the following special case when a = b = c = 1.

Corollary 4.14.
Ψn(k, 1, 1, 1) = N(n, k + 1)Cn−1 · · ·C1.

Proof. This follows from (4.16) when a = 1. �

Corollary 4.15. Theorem 1.6 and Theorem 1.8 imply Theorem 1.5.

Proof. Theorem 1.8 implies Corollary 4.14. Applying Corollary 4.8 and the Kostant partition function
interpretation in Theorem 1.6 thus gives Theorem 1.5. �

Remark 4.16. Corollary 4.14 and Lemma 4.3 in the case that a = b = c = 1 give a coarser version of the
refinement provided by Mészáros [11, Thm. 13].

5. The Baldoni-Vergne refinement of Mn(a, b, c)

In this section, we modify the Baldoni-Vergne refinement in [3] of the Morris identity to give a Kostant
partition function interpretation, and we combinatorialize the proof of some of the recurrence relations used
to define Φ′n(k, a, b, c). To more naturally interpret this constant term with Kostant partition functions, we
scale Φ′n(k, a, b, c).

Definition 5.1. We define the following modification of the Baldoni-Vergne constant term:

(5.1) Φn(k, a, b, c) := CTx[tk]

n∏
i=1

(1− xi)−bx−a+1
i (1 + txi)

∏
1≤i<j≤n

(xj − xi)−c.

Equivalently, we have Φn(k, a, b, c) :=
Φ′n(k,a,b,c)
k!(n−k)! . We now prove Theorem 5.2.
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Theorem 5.2. Φn(k, a, b, c) is the sum of Kostant partition functions Kka,b,c
n+2

(0, a1, . . . , an,−
∑n

j=1 aj) such

that for i ∈ [n], a− 2 + c(i− 1) ≤ ai ≤ a− 1 + c(i− 1), with ai = a− 1 + c(i− 1) for exactly n− k values of
i. Φ′n(k, a, b, c) can then be interpreted identically to Φn(k, a, b, c), but with the internal vertices of the graph
distinguished.

Proof. Recall that specializing the generating function of equation (2.3) gives the Morris constant term

Mn(a, b, c) = CTx

n∏
i=1

(1− xi)−bx−a+1
i

∏
1≤i<j≤n

(xj − xi)−c.

We see that Φn(k, a, b, c) has an additional term [tk]
∏n

i=1(1+txi), which replaces CTxi
with [x−1

i ] for exactly
k values of i, so this is equivalent to decreasing the net flow at these vertices by 1.

Recall from equation (1.3) that Mn(a, b, c) = Kka,b,c
n+2

(0, a1, a2, . . . , an,−
∑n

j=1 aj), with ai = a−1+c(i−1)

for all i ∈ [n]. Decreasing the net flow by one at exactly k vertices gives the desired Kostant partition function
interpretation.

There are k!(n − k)! ways of distinguishing the vertices based on their net flow, we also obtain the
combinatorial interpretation for Φ′n(k, a, b, c), and the result follows. �

Remark 5.3. We note that Φn(k, a, b, c) does not seem to have a refinement similar to Corollary 1.7.
Summing Φ(·) over k removes all restrictions on t terms from the expression, giving:

n∑
k=0

Φn(k, a, b, c) := CTx

n∏
i=1

(1− xi)−bx−a+1
i (1 + xi)

∏
1≤i<j≤n

(xj − xi)−c,

for which a simplified expression is not immediate.

We now give the recurrence relations used by Baldoni-Vergne [3] to prove Theorem 2.6. These relations
served as the inspiration for the relations for Ψn(k, a, b, c) in Section 4.

Proposition 5.4 (Baldoni-Vergne). The constant term Φ′n(k, a, b, c) is uniquely determined by the following
relations:

(1) Φ′n(n, a, b, c) = Φ′n(0, a− 1, b, c)
(2) Φ′n(n− 1, 1, b, c) = Φ′n−1(0, c, b, c)
(3) Φ′n(0, 1, b, 0) = r!
(4) Φ′1(k, 0, b, c) = 0
(5) (a+ b− 2 + c

2 (2n− k − 1))Φ′n(k, a, b, c) = (a− 1 + c
2 (n− k))Φ′n(k − 1, a, b, c).

Remark 5.5. One can give combinatorial proofs for all but the last relation in a nearly identical manner
to our combinatorial proofs for Ψn(k, a, b, c) in Lemma 4.9.

6. Final remarks and Future Work

In this paper we investigated a refinement of the Morris identity with several combinatorial interpretations,
including a certain sum of Kostant partition functions and the volume of a collection of polytopes. We

demonstrated how these collections of polytopes subdivide the graph ka,b,cn+2 , and proved a product formula
for our refinement. We now give some possible avenues for future exploration.

6.1. The recurring appearance of Aomoto’s integral. The Morris constant term identity strongly
resembles the Selberg integral, and the two identities are known to be equivalent. Interestingly, the prod-
uct formula for the Baldoni-Vergne refinement of the Morris identity greatly resembles Aomoto’s integral.
However, the relationship between these two seemingly related identities is as of yet unclear. Intriguingly,
Zeilberger also cites Aomoto’s integral in his proof of Conjecture 2 of Chan-Robbins-Yuen, and while we did
not see an immediate application of Aomoto’s integral in our proof of the product formula of Ψn(k, a, b, c), this
seems to suggest these refinements of the Morris identity are in some way related to Aomoto’s generalization
of the Selberg integral.1

1Interestingly, note that recently the Selberg integral was proven bijectively [8].
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6.2. Towards a combinatorial proof of the Morris identity. This paper provides multiple combina-
torial proofs of recurrence relations for Ψn(k, a, b, c) that could contribute to a combinatorial proof of the
Morris constant term identity, and therefore, the volume formula for the Chan-Robbins-Yuen polytope. With
the approach of this paper, the only remaining step is to give a combinatorial proof for equation (4.9). A
combinatorialization of our algebraic proof of (4.9), or a new combinatorial proof altogether, would certainly
be interesting. We also note that equation (4.9) can be written as

(kb+

(
k

2

)
c) ·Ψn(k, a, b, c) = ((n− k + 1)(a− 1) +

(
n− k + 1

2

)
c) ·Ψn(k − 1, a, b, c).

where the extra factors on the left-hand and right-hand sides appear to be selecting certain edges of the

graph ka,b,cn+2 . Applying the identity in Proposition 4.13 to the right-hand side, the expression becomes

(kb+

(
k

2

)
c) ·Ψn(k, a, b, c) = ((n− k + 1)(a− 1) +

(
n− k + 1

2

)
c) ·Ψn(n− k + 1, b+ 1, a− 1, c).

where both sides have very similar structures. Given that a combinatorial proof of the Morris identity has
been elusive and would serve immediately as a combinatorial proof for the volume formula of the Chan-
Robbins-Yuen polytope, this is an intriguing avenue for future work.

6.3. Volume of polytopes with different net flow vectors. In Section 3, we presented a new recursive
proof of Theorem 1.1. Generalizing Theorem 1.1 is the following theorem of Baldoni-Vergne-Lidskii.

Theorem 6.1 (Baldoni-Vergne-Lidskii [2]). Let G be a connected digraph on vertex set {0, 1, . . . , n, n + 1}
with m edges directed i→ j if i < j and such that for i ∈ {0, 1, . . . n}, there is at least one outgoing edge at
vertex i. Then for a fixed net flow vector a = (a0, a1, . . . , an,−

∑n
j=0 aj), ai ∈ Z≥0, it holds that

volFG(a) =
∑
j

(
m− n− 1

j0, . . . , jn

)
aj00 · · · ajnn ·KG(j0 − outdegG(0), . . . , jn − outdegG(n), 0).

In our proof in Section 3, the map ϕ on Kostant partition functions that we introduced is not specific
to flow polytopes with net flow vector (1, 0, . . . , 0,−1). This means that the inductive step will not change
significantly for a different net flow vector, and as such, it is worth investigating whether there is a simple
recursive proof for Theorem 6.1 considering new base cases with net flow vector a. Such a proof would
provide a better understanding of how volumes of flow polytope and Kostant partition functions are refined
by the subdivision lemma.
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Appendix

In this section, we give some computational proofs for Section 2. In multiple of the proofs below, we use
the Legendre duplication formula:

(6.1) Γ(x+
1

2
)Γ(x) = 21−2x

√
πΓ(2x).

We also use the following expression deducible from the Legendre duplication formula. For positive integers
x and k,

(6.2) Γ(x+ k + 1/2)Γ(x) = 21−2x
√
π · Γ(2x)

k−1∏
j=0

(x+ j +
1

2
).

Proof of Corollary 2.4. First, consider the ratio Mn(a, b, 1)/Mn−1(a, b, 1). By (6.1),

Mn(a, b, 1)

Mn−1(a, b, 1)
=

1

n
·

Γ(a+ b+ n− 5
2 )Γ(a+ b+ n− 2)

Γ(a+ b− 2 + 1
2n)

·
Γ( 1

2 )

Γ(a+ n−1
2 )Γ(b+ n−1

2 )Γ(n
2 )

=
1

n
· 26−2(a+b+n)Γ(2(a+ b+ n)− 5)π

Γ(a+ b− 2 + 1
2n)Γ(a+ n−1

2 )Γ(b+ n−1
2 )Γ(n

2 )
.

Substitution with (6.2) then gives

Mn(a, b, 1)

Mn−1(a, b, 1)
=

(2(a+ b+ n)− 6)!

n!(2a+ n− 2)!
∏b−3

j=0(2a+ n+ 2j)
∏b−2

j=0(n+ 2j + 1)

=
(2(a+ b+ n)− 6)!

n!!(2a+ n− 3)!!(2b+ n− 3)!!(2a+ 2b+ n− 6)!!
.

To cancel the double factorials, we instead consider the ratio Mn+1(1, 1, 1)/Mn−1(1, 1, 1):

Mn+1(a, b, 1)

Mn−1(a, b, 1)
=

(2(a+ b+ n)− 4)!(2(a+ b+ n)− 6)!

(n+ 1)!(2a+ n− 2)!(2b+ n− 2)!(2a+ 2b+ n− 5)!

=

(
2a+2b+2n−4

2a+n−2

)(
2a+2b+2n−4

n

)Cn−1Cn

n−1∏
i=1

2(a+ b− 2) + n+ i− 1

n+ i− 1

n∏
i=1

2(a+ b− 2) + n+ i

n+ i
.(6.3)

We establish the base cases M0(a, b, 1) = 1, M1(a, b, 1) =
(
a+b−2
a−1

)
, so by telescoping, we see that:

M2n(a, b, 1) =

n∏
i=1

M2i(a, b, 1)

M2i−2(a, b, 1)

M2n−1(a, b, 1) =

(
a+ b− 2

a− 1

) n−1∏
i=1

M2i+1(a, b, 1)

M2i−1(a, b, 1)
.

Plugging in with (6.3) gives the desired result. �

The remaining proofs in this section follow a similar scheme, using M0(a, b, c) = 1.

http://math.mit.edu/~rstan/trans.html
https://sites.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/ToRobbins
https://sites.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/ToRobbins
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Corollary 6.2. For c even, we have that:

Mn(1, 1, c) =

n∏
i=1

(
(2i− 3) c

2

(i− 1) c
2

)(
(2i− 2) c

2

(i− 1) c
2

)(
i c2

(i− 1) c
2

)−1

.

Proof. Again, consider Mn(1, 1, c)/Mn−1(1, 1, c). We see that

Mn(1, 1, c)

Mn−1(1, 1, c)
=

1

n
·

((2n− 3) c
2 )!((2n− 2) c

2 )!

((n− 2) c
2 )!

·
( c

2 − 1)!

((n− 1) c
2 )!2( c

2n− 1)!

=
((2n− 3) c

2 )!((2n− 2) c
2 )!

((n− 2) c
2 )!

·
( c

2 )!

((n− 1) c
2 )!2( c

2n)!
.

With some rearrangement, we get the equation

Mn(1, 1, c)

Mn−1(1, 1, c)
=

(
n c

2

(n− 1) c
2

)−1(
(2n− 3) c

2

(n− 1) c
2

)(
(2n− 2) c

2

(n− 1) c
2

)
.

Since Mn(1, 1, c) =
∏n

i=1Mi(1, 1, c)/Mi−1(1, 1, c), the result follows. �

Corollary 6.3. For c odd, we have that:

Mn(1, 1, c) =

n∏
i=1

(1 + (2i− 3)c)!((i− 1)c)!c!!

((i− 2)c)!!((i− 1)c)!!2(ic)!!((2i− 3) c
2 + 1

2 )!
.

Proof. Let k = b c2c or c
2 = k + 1

2 . We then simplify the ratio Mn(1, 1, c)/Mn−1(1, 1, c) using (6.2).

Mn(1, 1, c)

Mn−1(1, 1, c)
=

1

n
·

Γ(1 + (2n− 3) c
2 )Γ(1 + (2n− 2) c

2 )

Γ(1 + (n− 2) c
2 )

·
Γ( c

2 )

Γ(1 + (n− 1) c
2 )2Γ( c

2n)

=
1

n
·

2c(3−2n)−1Γ(2 + (2n− 3)c)
∏k−1

j=0 (1 + (2n− 3) c
2 + j + 1

2 )

2c(2−n)−1Γ(2 + (n− 2)c)
∏k−1

j=0 (1 + (n− 2) c
2 + j + 1

2 )
·

Γ( c
2 )

Γ(1 + (n− 1) c
2 )Γ( c

2n)

= 21−c · (1 + (2n− 3)c)!c!!

(1 + (n− 2)c)!(1 + (n− 1)c)!

k−1∏
j=0

1 + (2n− 3) c
2 + j + 1

2

(1 + (n− 2) c
2 + j + 1

2 )(1 + (n− 1) c
2 + j + 1

2 ))

= 21−c+k · ((2n− 3)c)!!c!!((2n− 2)c)!!

((n− 2)c)!!((n− 1)c)!!2(nc)!!
=

(1 + (2n− 3)c)!((n− 1)c)!c!!

((n− 2)c)!!((n− 1)c)!!2(nc)!!((2n− 3) c
2 + 1

2 )!
.

We have Mn(1, 1, c) =
∏n

i=1Mi(1, 1, c)/Mi−1(1, 1, c), and the result follows. �

Proof of Corollary 2.5. We again compute the ratio Mn(a, b, 2k)/Mn−1(a, b, 2k):

Mn(a, b, 2k)

Mn−1(a, b, 2k)
=

1

n
· Γ(a+ b− 1 + (2n− 3)k)Γ(a+ b− 1 + (2n− 2)k)

Γ(1 + (n− 2)k)
· Γ(k)

Γ(a+ (n− 1)k)Γ(b+ (n− 1)k)Γ(kn)

=
(a+ b− 2 + (2n− 3)k)!(a+ b− 2 + (2n− 2)k)!

((n− 2)k)!
· k!

((a− 1) + (n− 1)k)!((b− 1) + (n− 1)k)!(kn)!

=
(a+ b− 2 + (2n− 3)k)!k!

((n− 2)k)!(nk)!
·
(
a+ b− 2 + (2n− 2)k

a− 1 + (n− 1)k

)
.

As with the above proofs, Mn(a, b, 2k) =
∏n

i=1Mi(a, b, 2k)/Mi−1(a, b, 2k), so the result follows. �


	1. Introduction
	1.1. Foreword
	1.2. A new refinement of Mn(a,b,c)
	1.3. Outline

	2. Background and Notation
	2.1. Flow polytopes and their subdivisions
	2.2. Kostant partition functions
	2.3. Catalan numbers, Narayana numbers, and Proctor's formula
	2.4. The Morris constant term identity Mn(a,b,c)

	3. A recursive proof of Theorem 1.1
	4. A new refinement of Mn(a,b,c)
	4.1. Volume and Kostant partition function interpretations for n(k,a,b,c)
	4.2. Recurrence Relations of n(k,a,b,c)
	4.3. Closed Formula for n(k,a,b,c)

	5. The Baldoni-Vergne refinement of Mn(a,b,c)
	6. Final remarks and Future Work
	6.1. The recurring appearance of Aomoto's integral
	6.2. Towards a combinatorial proof of the Morris identity
	6.3. Volume of polytopes with different net flow vectors

	Acknowledgements
	References
	Appendix

