Revisiting Ensembles in an Adversarial Context: Improving Natural Accuracy

Aditya Saligrama (MIT PRIMES) and Guillaume Leclerc (MIT)

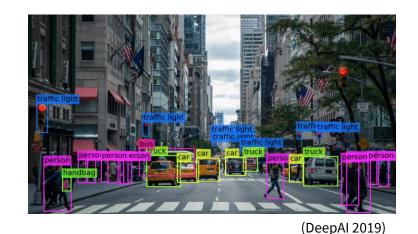
ICLR 2020 Workshop on Towards Trustworthy ML: Rethinking Security and Privacy for ML

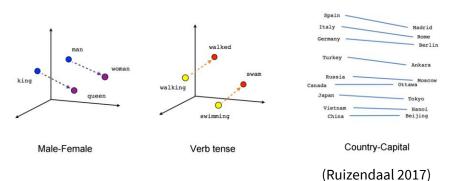
April 26, 2020

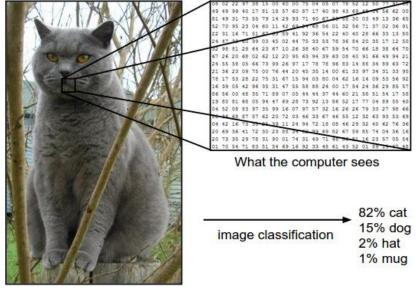
Deep learning and adversarial examples

Deep learning

• Has become ubiquitous in the last few years and can outperform humans on some tasks







Adversarial attacks

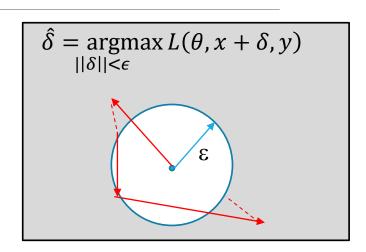
- Modify image in a set S, such as L2-ball of size ε, to maximize loss L
 - Imperceptible to human observer
 - Fools deep learning models

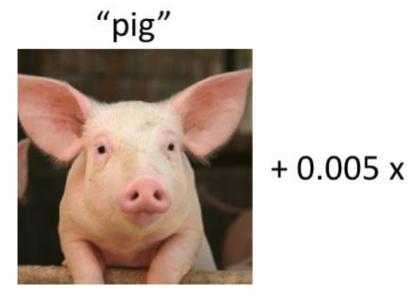
$$\hat{\delta} = \underset{||\delta|| < \epsilon}{\operatorname{argmax}} L(\theta, x + \delta, y)$$



Adversarial attacks

- Modify image in a set S, such as L2-ball of size ε, to maximize loss L
 - Imperceptible to human observer
 - Fools deep learning models
- Many ways of synthesizing adversarial examples:
 - Such as PGD projected gradient descent (Mądry et al. 2017)

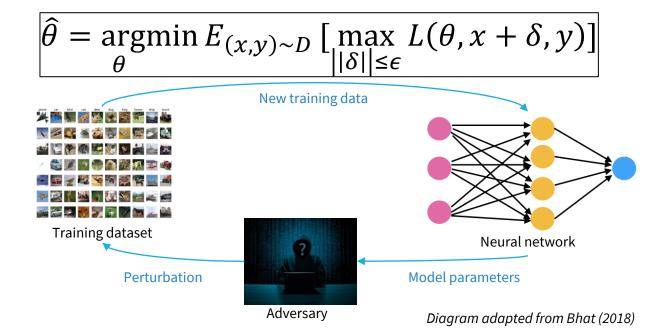




(Madry and Schmidt 2018)

Robust training

- Train robust model θ on dataset D:
 - Resistant to adversarial attacks
 - Robust training via PGD (Mądry et al. 2017)
 - Many other ways...

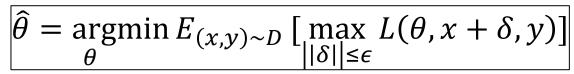


Robust training

- Train robust model θ on dataset D:
 - Resistant to adversarial attacks
 - Robust training via PGD (Mądry et al. 2017)
 - Many other ways...

ResNet18 models (He et al. 2015) trained on CIFAR10

	Natural train	Robust train (ε=0.5)
Natural test		
Adv. test (ϵ =0.5)		



New training data

Perturbation

Neural network

Model parameters

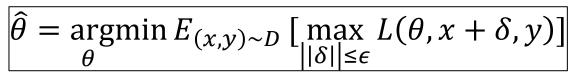
Diagram adapted from Bhat (2018)

Robust training

- Train robust model θ on dataset D:
 - Resistant to adversarial attacks
 - Robust training via PGD (Mądry et al. 2017)
 - Many other ways...

ResNet18 models (He et al. 2015) trained on CIFAR10

	Natural train	Robust train (ε=0.5)
Natural test	95%	88%
Adv. test (ε =0.5)	0%	69%



New training data

Perturbation

Adversary

Neural network

Model parameters

Diagram adapted from Bhat (2018)

Metrics

- Assess resistance to adversarial attacks at multiple attack strengths
 - Adversary can choose any arbitrary attack strength against deployed model
- We define AUC metric as

$$AUC(\epsilon_{target}) = \frac{1}{\epsilon_{target}} \int_{0}^{\epsilon_{target}} \mathcal{A}(\epsilon) d\epsilon.$$

- In practice, evaluate as a Riemann sum
- Use this metric in addition to assessing accuracy at defined attack strengths

Ensembling schemes

Adversarial ensembling

<u>Using ensembling for training (lots of prior work, different from previous slide):</u>

- Vanilla ensembling (baseline for this talk)
 - Random initializations, train M standard models
- Ensemble Adversarial Training (Tramèr et al. 2017)
 - Collect adversarial examples from multiple models
 - Transfer examples to train single model
- Ensemble diversity (Pang et al. 2019)
 - Coupled training of all M models to promote diversity

	Robust training (Mądry et al. 2017)		Ensemble diversity (Pang et al. 2019)
Natural test	88%	94%	93%
Adv. test	69% (ε=0.5)	0%	30% (ε=0.02)

Our proposed methods

Robust ensembling

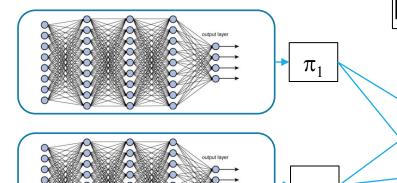
• Train *M* independent models robustly

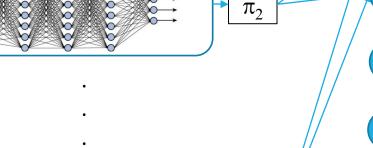
• *i*'th model with seed *i*

 $|\widehat{\theta}_{\mathbf{i}}| = \underset{\theta}{\operatorname{argmin}} E_{(x,y)\sim D} \left[\max_{|\delta| \leq \epsilon} L(\theta, x + \delta, y) \right]$ Robust training with initialization seed i

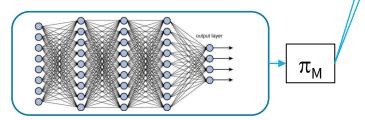
 $\begin{array}{c} \text{Robust} \\ \text{model} \\ \theta_1 \end{array}$

 $\begin{array}{c} \text{Robust} \\ \text{model} \\ \theta_2 \end{array}$





 $\begin{array}{l} \text{Robust} \\ \text{model} \\ \theta_{\text{M}} \end{array}$



$$c(x, \boldsymbol{\theta}, \boldsymbol{\pi}) = \max_{y} \sum_{i=1}^{M} \pi_{i} \theta_{i}(x, y)$$

 $\theta_i(x, y)$: model *i*'s probability of class *y* on instance *x*

How to understand ensembles?

Value of the game (discrete):

- Player: random strategy over M models
 - Probability $\pi_1 \dots \pi_M$
- Adversary: perturbation $\delta_1 \dots \delta_S$ ($S \to \infty$) with probability $q_1 \dots q_S$

$$\ell(\mathbf{q}, \pi, L) = E_{\delta \sim \mathbf{q}} E_{\theta_j \sim \pi} L(\theta_j, x + \delta, y)$$

Adversary strategy

	θ_1	Player str θ_2	θ_3
δ_1	Loss		
δ_2			
δ_3			

Key point: Adversary plays against ensemble rather than single model for each instance

$$\min_{\pi} \max_{\mathbf{q}} \ell(\mathbf{q}, \pi, L) \leq \max_{\delta} \frac{1}{M} \sum_{j} L(\theta_{j}, x + \delta, y)$$
vs.
$$\max_{\delta \in S} L(\theta, x + \delta, y)$$

How to understand ensembles?

Value of the game (discrete):

- Player: random strategy over M models
 - Probability $\pi_1 ... \pi_M$
- Adversary: perturbation $\delta_1 \dots \delta_S$ ($S \to \infty$) with probability $q_1 \dots q_S$

$$\ell(\mathbf{q}, \pi, L) = E_{\delta \sim \mathbf{q}} E_{\theta_j \sim \pi} L(\theta_j, x + \delta, y)$$

Adversary strategy

	$ heta_1$	θ_2	θ_3
δ_1	Loss		
δ_2			
δ_3			

Key point: Adversary plays against ensemble rather than single model for each instance

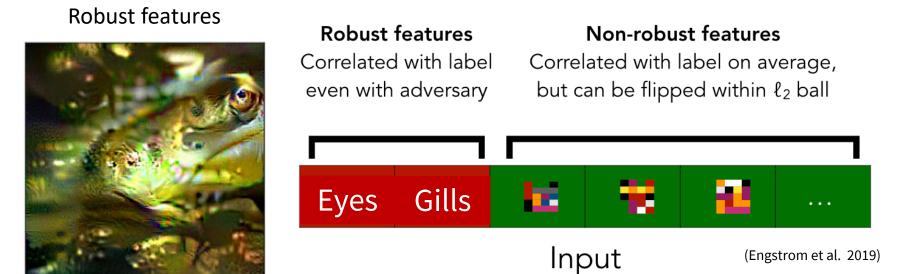
$$\begin{aligned} \min_{\pi} \max_{\mathbf{q}} \ell(\mathbf{q}, \pi, L) &\leq \max_{\delta} \frac{1}{M} \sum_{j} L(\theta_{j}, x + \delta, y) \\ \text{vs.} \\ \max_{\delta \in \mathcal{S}} L(\theta, x + \delta, y) \end{aligned}$$

robust ensemble loss ≤ single robust model loss Why? Choose **q** to focus on single model

This allows accuracy to increase per model in the ensemble for a given ϵ

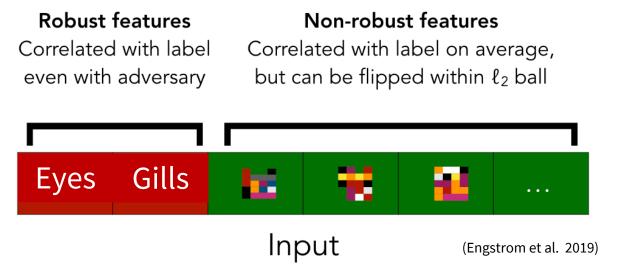
Robust and non-robust features

- Images comprised of robust and non-robust features (Ilyas et al. 2019)
- Key insight: Robust features do not have enough info about particular instances
 - Non-robust features contain remaining info



Robust and non-robust features

- Images comprised of robust and non-robust features (Ilyas et al. 2019)
 - Training at lower ϵ means less resistance to non-robust features and better natural accuracy
- Key insight 1: Lower train ϵ confers better natural accuracy at the cost of robustness
 - Objective: Combine with ensembling to maintain robustness with better natural accuracy
- Key insight 2: Robust features do not have enough info about particular instances
 - Non-robust features contain remaining info
 - Objective: Augment non-robust features with robust features without losing robustness

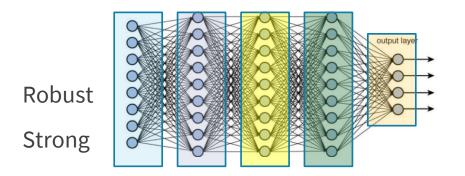


Robust + non-robust features

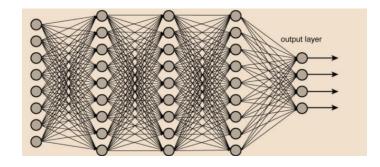
Robust ensembling: Results

Number of models (train ε = 0.5)	Natural accuracy	Adversarial accuracy (ε = 0.5)
1	88.30%	68.73%
2	88.92%	71.19%
4	89.07%	72.53%
8	89.36%	73.08%
12	89.28%	73.34%
16	89.18%	73.37%

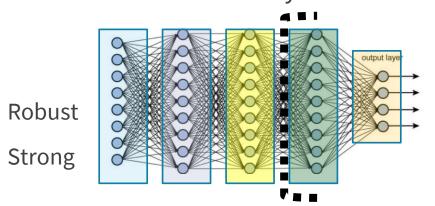
	Single non- robust model	Single robust model (train ε = 0.5)	Robust ensemble (8 models, train ε = 0.22)
Natural test	94.6%	88.3%	94.0%
Adv. Test $(\varepsilon = 0.5, k = 7)$	0.4%	68.7%	68.8%
AUC(0.5) w/4 increments	0.067	0.767	0.781



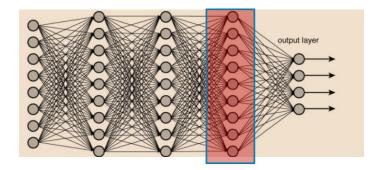
Robust Weak



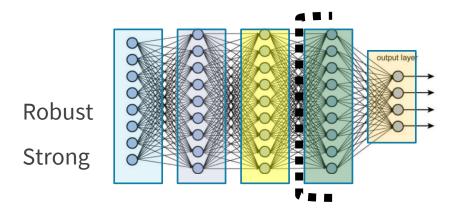
Extract Last Layers

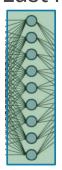


Robust Weak

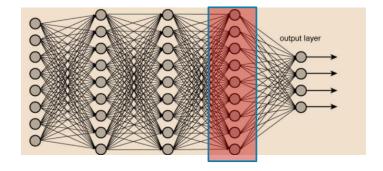


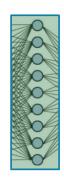
Replicate Last Robust Layer



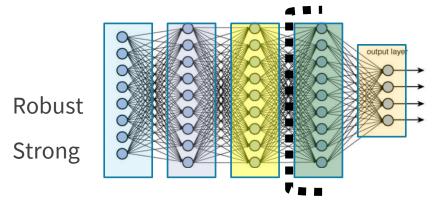


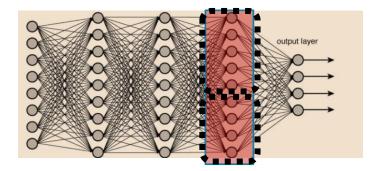
Robust Weak

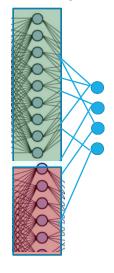


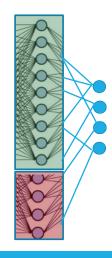


Replicate Last Robust Layer + Attach Natural Last Layer + Train Last Composite Layer Independently

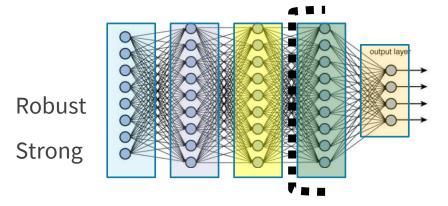




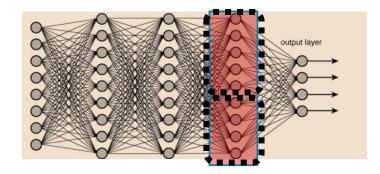


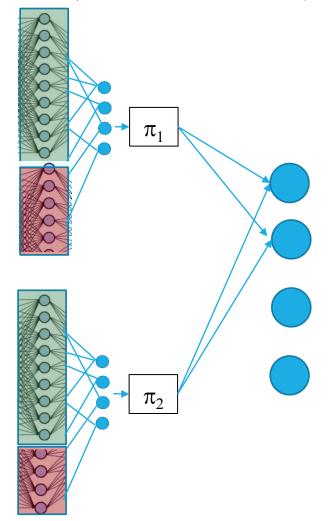


Replicate Last Robust Layer + Attach Natural Last Layer + Train Last Composite Layer Independently



Robust Weak





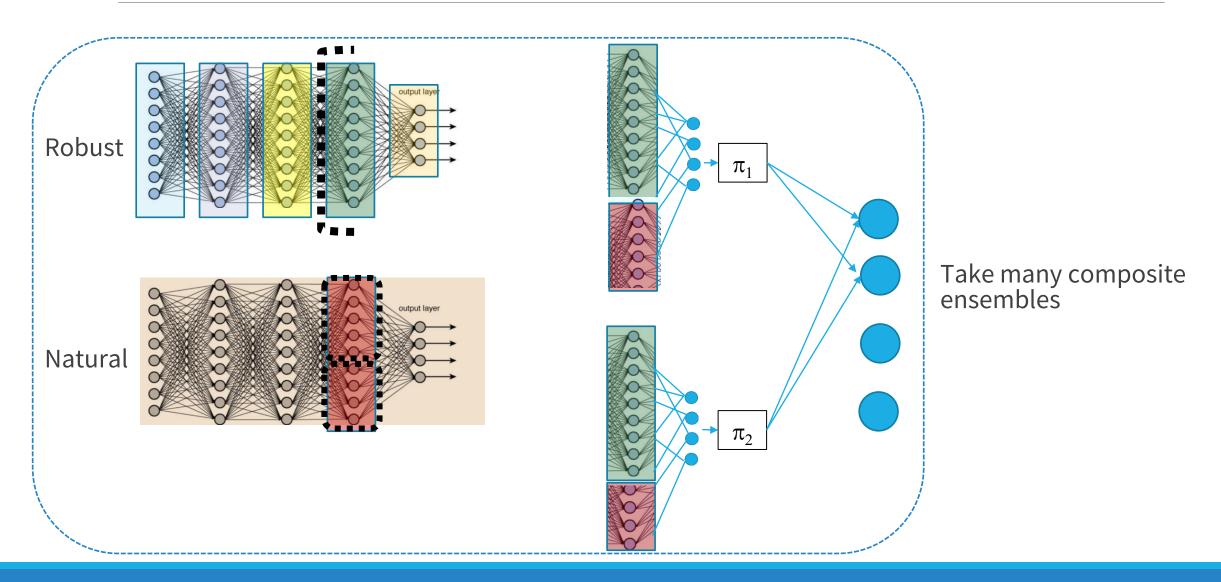
Composite prediction = ensemble weighted average

Composite acc. ≥ single robust model acc.

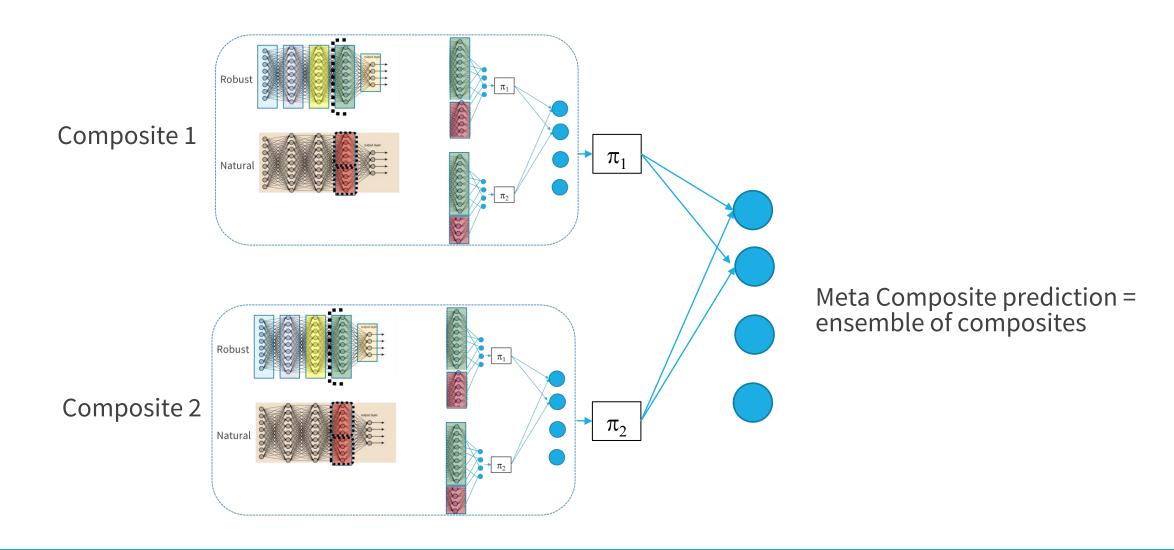
Composite ensembling: Results

	Single non- robust model	Single robust model (train ε = 0.5)	Robust ensemble (8 models, train ε = 0.22)	1-composite (train ε = 0.4, 0.05 trained at ε = 0.4)
Natural test	94.6%	88.3%	94.0%	91.4%
Adv. Test $(\varepsilon = 0.5, k = 7)$	0.4%	68.7%	68.8%	68.0%
AUC(0.5) w/4 increments	0.067	0.767	0.781	0.769

Meta-composite ensembling



Meta-composite ensembling



Meta-composite ensembling

• Combine *M* independently trained composite models

	Single non- robust model	Single robust model (train ε = 0.5)	Robust ensemble (8 models, train ε = 0.22)	1-composite (train ε = 0.4, 0.05 trained at ε = 0.4)	2x 1-composite Weighted average
Natural test	94.6%	88.3%	94.0%	91.4%	91.6%
Adv. Test (ε = 0.5, k = 7)	0.4%	68.7%	68.8%	68.0%	70.0%
AUC(0.5) w/4 increments	0.067	0.767	0.781	0.769	0.783

Key insights and Conclusions

- AUC metric to evaluate robustness of models
 - Allows us to assess robustness at multiple attack strengths
- Robust ensembling outperforms single models
 - Choosing models randomly forces adversary to use average strategy
 - Different models may mispredict the same way, but require different perturbations
 - Allows us to decrease train ε , therefore increasing natural accuracy at a given level of robustness
- Proposed composite and meta-composite models
 - Re-incorporate non-robust features
 - Improves on AUC metric compared to single models while using less models than robust ensembling

Future work

- Validation with other adversarial attacks such as Carlini-Wagner (Carlini and Wagner 2017)
- Use meta-composite framework to improve natural accuracy outside adversarial context

Acknowledgements

- Prof. Aleksander Mądry
- Logan Engstrom, Andrew Ilyas, and the rest of Madry Lab
- Dr. Slava Gerovitch and Prof. Srini Devadas, for supporting the PRIMES program and this research
- Prof. Nicolas Papernot and workshop organizers