Network Based Digital Contact Tracing and Testing Strategies for the COVID-19 Pandemic

> Daniel Xu Mentor: Dr. Jesse Geneson

Tenth Annual PRIMES Conference October 17-18, 2020

Problem 1: COVID-19 Infectivity and Incubation Distributions Over Time

Problem 1:

Over 44% of infections are in the presymptomatic stage

Infectivity Distribution Source: He, X., Lau, E.H.Y., Wu, P. et al. 2020

Incubation Distribution

Source: Stephen A. Lauer, Kyra H. Grantz, Qifang Bi. et al. 2020

Bulk of infectivity is before symptom onset

Problem 2: Test Sensitivities Over Time

Problem 2: COVID-19 tests are not very accurate in early days of exposure

Test Sensitivity

Source: Kucirka LM, Lauer SA, Laeyendecker O, Boon D, Lessler J. 2020

Problem 3: Asymptomatic Cases Account for 40% of Total

Problem 3:

CDC estimates 40% of cases remain asymptomatic (Could be up to 80% for kids)

Asymptomatic Proportion

Source: https://www.cato.org/blog/misleading-arithmetic-covid-19-death-rates

Asymptomatic individuals are almost as infectious as symptomatic individuals

How Digital Contact Tracing works?

Purpose:

Prevent asymptomatic and presymptomatic infections

Contact Network

Source: https://www.bbc.com/news/technology-52246319

How Digital Contact Tracing works?

Purpose:

Prevent asymptomatic and presymptomatic infections

Contact Network

Source: https://www.bbc.com/news/technology-52246319

- ▶ Phone senses contacts pseudonymously
- ▶ Users report positive tests
- Exposed contacts are notified

SEIR Model

- Prediction (infections or deaths)
- Simulate hypothetical intervention

SEIR Model

- Prediction (infections or deaths)
- ▶ Simulate hypothetical intervention
- 1. Susceptible
- 2. Exposed
- 3. Infectious
- 4. Recovered

- ▶ Incorporate difficulties of COVID-19
 - ▶ Test sensitivity over time
 - Change in infectivity over time
 - Incubation period
 - Asymptomatic proportion
- Realistic contact network using real high school student contact data
- Incorporate higher degree contact chains into contact tracing app model

- ▶ Incorporate difficulties of COVID-19
 - ► Test sensitivity over time
 - Change in infectivity over time
 - ▶ Incubation period
 - Asymptomatic proportion
- Realistic contact network using real high school student contact data
- Incorporate higher degree contact chains into contact tracing app model

- ▶ Incorporate difficulties of COVID-19
 - ► Test sensitivity over time
 - Change in infectivity over time
 - ▶ Incubation period
 - Asymptomatic proportion
- Realistic contact network using real high school student contact data
- Incorporate higher degree contact chains into contact tracing app model

- ▶ Incorporate difficulties of COVID-19
 - ▶ Test sensitivity over time
 - Change in infectivity over time
 - ▶ Incubation period
 - Asymptomatic proportion
- Realistic contact network using real high school student contact data
- Incorporate higher degree contact chains into contact tracing app model

• Graph G where G_{ij} is contact duration between i and j (units of 20s)

▶ Infection probability:

$$1 - (1 - p)^{G_{ij}}$$

 $\blacktriangleright \ p = c \cdot ID(t)$

- t is the number of days since symptom onset (can be negative)
- \blacktriangleright ID is the relative infectivity distribution function
- \triangleright c is a constant that we will vary in our simulation.

- Graph G where G_{ij} is contact duration between i and j (units of 20s)
- ▶ Infection probability:

$$1 - (1 - p)^{G_{ij}}$$

 $\blacktriangleright \ p = c \cdot ID(t)$

- t is the number of days since symptom onset (can be negative)
- ▶ *ID* is the relative infectivity distribution function
- \triangleright c is a constant that we will vary in our simulation.

- Graph G where G_{ij} is contact duration between i and j (units of 20s)
- ▶ Infection probability:

$$1 - (1 - p)^{G_{ij}}$$

$\blacktriangleright \ p = c \cdot ID(t)$

- t is the number of days since symptom onset (can be negative)
- ▶ *ID* is the relative infectivity distribution function
- \triangleright c is a constant that we will vary in our simulation.

- Graph G where G_{ij} is contact duration between i and j (units of 20s)
- ▶ Infection probability:

$$1 - (1 - p)^{G_{ij}}$$

$$\blacktriangleright \quad p = c \cdot ID(t)$$

- t is the number of days since symptom onset (can be negative)
- \blacktriangleright ID is the relative infectivity distribution function
- \triangleright c is a constant that we will vary in our simulation.

- Graph G where G_{ij} is contact duration between i and j (units of 20s)
- ▶ Infection probability:

$$1 - (1 - p)^{G_{ij}}$$

$$\blacktriangleright \quad p = c \cdot ID(t)$$

- t is the number of days since symptom onset (can be negative)
- \blacktriangleright ID is the relative infectivity distribution function
- \triangleright c is a constant that we will vary in our simulation.

- Graph G where G_{ij} is contact duration between i and j (units of 20s)
- ▶ Infection probability:

$$1 - (1 - p)^{G_{ij}}$$

$$\blacktriangleright \ p = c \cdot ID(t)$$

- t is the number of days since symptom onset (can be negative)
- ▶ *ID* is the relative infectivity distribution function
- \triangleright c is a constant that we will vary in our simulation.

Contact: (p_1, p_2, t, d)

- \triangleright p_1, p_2 are the people involved in the contact
- \blacktriangleright t is the day of contact
- $\blacktriangleright~d$ is the duration of the contact measured in units of 20 seconds

Degree k contact: a chain of contacts c_1, \ldots, c_k where

1. $c_i = (p_i, p_{i+1}, t_i, d_i)$

- 2. p_1 reported a positive test during days t_1 to $t_1 + 7$
- 3. p_i, p_{i+1} are not in the Recovered stage during t_i
- 4. $t_i + 2 \le t_{i+1} \le t_i + 7$

$$\prod_{i=1}^{k} (1 - (1 - p)^{d_i})$$

Contact: (p_1, p_2, t, d)

- ▶ p_1, p_2 are the people involved in the contact
- \blacktriangleright t is the day of contact
- $\blacktriangleright~d$ is the duration of the contact measured in units of 20 seconds

Degree k contact: a chain of contacts c_1, \ldots, c_k where

1. $c_i = (p_i, p_{i+1}, t_i, d_i)$

- 2. p_1 reported a positive test during days t_1 to $t_1 + 7$
- 3. p_i, p_{i+1} are not in the Recovered stage during t_i
- 4. $t_i + 2 \le t_{i+1} \le t_i + 7$

$$\prod_{i=1}^{k} (1 - (1 - p)^{d_i})$$

Contact: (p_1, p_2, t, d)

- ▶ p_1, p_2 are the people involved in the contact
- \blacktriangleright t is the day of contact
- d is the duration of the contact measured in units of 20 seconds

Degree k contact: a chain of contacts c_1, \ldots, c_k where

1. $c_i = (p_i, p_{i+1}, t_i, d_i)$

- 2. p_1 reported a positive test during days t_1 to $t_1 + 7$
- 3. p_i, p_{i+1} are not in the Recovered stage during t_i
- 4. $t_i + 2 \le t_{i+1} \le t_i + 7$

$$\prod_{i=1}^{k} (1 - (1 - p)^{d_i})$$

Contact: (p_1, p_2, t, d)

- ▶ p_1, p_2 are the people involved in the contact
- \blacktriangleright t is the day of contact
- d is the duration of the contact measured in units of 20 seconds

Degree k contact: a chain of contacts c_1, \ldots, c_k where

1. $c_i = (p_i, p_{i+1}, t_i, d_i)$

- 2. p_1 reported a positive test during days t_1 to $t_1 + 7$
- 3. p_i, p_{i+1} are not in the Recovered stage during t_i
- 4. $t_i + 2 \le t_{i+1} \le t_i + 7$

$$\prod_{i=1}^{k} (1 - (1 - p)^{d_i})$$

Contact: (p_1, p_2, t, d)

- ▶ p_1, p_2 are the people involved in the contact
- \blacktriangleright t is the day of contact
- d is the duration of the contact measured in units of 20 seconds

Degree k contact: a chain of contacts c_1, \ldots, c_k where

- 1. $c_i = (p_i, p_{i+1}, t_i, d_i)$
- 2. p_1 reported a positive test during days t_1 to $t_1 + 7$
- 3. p_i, p_{i+1} are not in the Recovered stage during t_i
- 4. $t_i + 2 \le t_{i+1} \le t_i + 7$

$$\prod_{i=1}^{k} (1 - (1 - p)^{d_i})$$

Contact: (p_1, p_2, t, d)

- ▶ p_1, p_2 are the people involved in the contact
- \blacktriangleright t is the day of contact
- d is the duration of the contact measured in units of 20 seconds

Degree k contact: a chain of contacts c_1, \ldots, c_k where

1. $c_i = (p_i, p_{i+1}, t_i, d_i)$

2. p_1 reported a positive test during days t_1 to $t_1 + 7$

3. p_i, p_{i+1} are not in the Recovered stage during t_i

4. $t_i + 2 \le t_{i+1} \le t_i + 7$

$$\prod_{i=1}^{k} (1 - (1 - p)^{d_i})$$

Contact: (p_1, p_2, t, d)

- ▶ p_1, p_2 are the people involved in the contact
- \blacktriangleright t is the day of contact
- d is the duration of the contact measured in units of 20 seconds

Degree k contact: a chain of contacts c_1, \ldots, c_k where

1.
$$c_i = (p_i, p_{i+1}, t_i, d_i)$$

- 2. p_1 reported a positive test during days t_1 to $t_1 + 7$
- 3. p_i, p_{i+1} are not in the Recovered stage during t_i

4. $t_i + 2 \le t_{i+1} \le t_i + 7$

$$\prod_{i=1}^{k} (1 - (1 - p)^{d_i})$$

Contact: (p_1, p_2, t, d)

- ▶ p_1, p_2 are the people involved in the contact
- \blacktriangleright t is the day of contact
- d is the duration of the contact measured in units of 20 seconds

Degree k contact: a chain of contacts c_1, \ldots, c_k where

1.
$$c_i = (p_i, p_{i+1}, t_i, d_i)$$

- 2. p_1 reported a positive test during days t_1 to $t_1 + 7$
- 3. p_i, p_{i+1} are not in the Recovered stage during t_i

4. $t_i + 2 \le t_{i+1} \le t_i + 7$

$$\prod_{i=1}^{k} (1 - (1 - p)^{d_i})$$

Contact: (p_1, p_2, t, d)

- ▶ p_1, p_2 are the people involved in the contact
- \blacktriangleright t is the day of contact
- d is the duration of the contact measured in units of 20 seconds

Degree k contact: a chain of contacts c_1, \ldots, c_k where

1.
$$c_i = (p_i, p_{i+1}, t_i, d_i)$$

- 2. p_1 reported a positive test during days t_1 to $t_1 + 7$
- 3. p_i, p_{i+1} are not in the Recovered stage during t_i
- 4. $t_i + 2 \le t_{i+1} \le t_i + 7$

$$\prod_{i=1}^{k} (1 - (1 - p)^{d_i})$$

Contact: (p_1, p_2, t, d)

- \blacktriangleright p_1, p_2 are the people involved in the contact
- \blacktriangleright t is the day of contact
- d is the duration of the contact measured in units of 20 seconds

Degree k contact: a chain of contacts c_1, \ldots, c_k where

1.
$$c_i = (p_i, p_{i+1}, t_i, d_i)$$

- 2. p_1 reported a positive test during days t_1 to $t_1 + 7$
- 3. p_i, p_{i+1} are not in the Recovered stage during t_i
- 4. $t_i + 2 \le t_{i+1} \le t_i + 7$

$$\prod_{i=1}^{k} (1 - (1 - p)^{d_i})$$

Data Source: Contact Network Generation

RFID sensors on students over 7 days

Contact Network

Source: Fournet J, Barrat A. 2014

Generate more days(MUNGE-like heuristic):

- ▶ Pick 2 random days
- G_{ij} determined by "coin flip"

Performance Metrics: Measuring How Well a Configuration Works

Outbreak Size: Total number of infections Tests:

Total amount of tests used

Quarantine:

Total number of days spent in quarantine across all individuals

Performance Metrics: Measuring How Well a Configuration Works

Outbreak Size: Total number of infections Tests:

Total amount of tests used

Quarantine:

Total number of days spent in quarantine across all individuals

Performance Metrics: Measuring How Well a Configuration Works

Outbreak Size: Total number of infections Tests:

Total amount of tests used

Quarantine:

Total number of days spent in quarantine across all individuals

Everyday symptomatic individuals have a 33% chance to get tested

- Quarantine direct contacts
- ▶ Followup testing up to degree 3 contacts
- ▶ One person starts as infected
- ▶ Simulation runs for 80 days
- Each person is seed infection 10 times for a total of 1800 simulations

- Everyday symptomatic individuals have a 33% chance to get tested
- Quarantine direct contacts
- ▶ Followup testing up to degree 3 contacts
- ▶ One person starts as infected
- ▶ Simulation runs for 80 days
- Each person is seed infection 10 times for a total of 1800 simulations

- Everyday symptomatic individuals have a 33% chance to get tested
- Quarantine direct contacts
- ▶ Followup testing up to degree 3 contacts
- ▶ One person starts as infected
- ▶ Simulation runs for 80 days
- Each person is seed infection 10 times for a total of 1800 simulations

- Everyday symptomatic individuals have a 33% chance to get tested
- Quarantine direct contacts
- ▶ Followup testing up to degree 3 contacts
- ▶ One person starts as infected
- ▶ Simulation runs for 80 days
- Each person is seed infection 10 times for a total of 1800 simulations

- Everyday symptomatic individuals have a 33% chance to get tested
- Quarantine direct contacts
- ▶ Followup testing up to degree 3 contacts
- ▶ One person starts as infected
- ▶ Simulation runs for 80 days
- Each person is seed infection 10 times for a total of 1800 simulations

- Everyday symptomatic individuals have a 33% chance to get tested
- Quarantine direct contacts
- ▶ Followup testing up to degree 3 contacts
- ▶ One person starts as infected
- ▶ Simulation runs for 80 days
- Each person is seed infection 10 times for a total of 1800 simulations

Simulation Results 1: Test Only vs With Tracing

Quarantine Direct Contacts, No Followup Testing

Scenario		Outbrook Sizo	Quarantino	Toat
App Proportion	Asymptotic	Outbreak Size	Quarantine	rest
0%	20%	32.6178	0	27.1983
70%	20%	20.8094	74.8006	17.2706
95%	20%	14.5506	94.3311	12.1217
0%	40%	38.3811	0	23.7956
70%	40%	27.4078	83.8822	17.1056
95%	40%	20.7094	111.053	12.7422
0%	60%	45.465	0	18.5733
70%	60%	35.3583	78.4317	14.5117
95%	60%	29.5439	118.217	12.0506

40% Asymptotic: App reduces infections up to 46%

Simulation Results 2: Testing Strategy

Quarantine Direct Contacts, Testing 2nd,3rd degree contacts every 3 days

Scenario		Outbrook Sizo	Quarantino	Teat
App Proportion	Asymptotic	Outbreak Size	Quarantine	rest
0%	20%	34.0678	0	28.4478
70%	20%	20.5928	58.1444	71.8978
95%	20%	13.1806	63.3756	100.497
0%	40%	38.0956	0	23.5056
70%	40%	25.5811	57.8872	72.089
95%	40%	17.608	70.0633	107.149
0%	60%	44.7022	0	18.3
70%	60%	32.4928	54.1961	66.5139
95%	60%	25.005	72.1194	107.991

40% Asymptotic: App reduces infections by 53%

Explanation of Why Previous Conclusion is True: Tracing with Hypothetical 70%, Followup Test degree 2,3 contacts

Scenario		Outbrook Sizo	Quarantino	Tost
App Proportion	Asymptotic	Outbreak Size	Quarantine	TG20
0%	20%	33.9039	0	28.1376
70%	20%	15.9594	34.4244	45.5867
95%	20%	9.5561	34.2633	62.505
0%	40%	39.205	0	24.3522
70%	40%	22.1178	39.5294	49.2111
95%	40%	12.3272	36.7378	63.9978
0%	60%	45.428	0	18.6872
70%	60%	28.565	38.1172	45.0906
95%	60%	18.6328	42.7967	67.372

40% Asymptotic: App reduces infections by 68%

Conclusion

- \blacktriangleright Digital Contact Tracing can reduce infections by 46%
- Testing degree 2 and 3 contacts cannot be relied on as a method for identifying individuals to test

Future work

- ▶ Delayed testing of degree 2 and 3 contacts
- ▶ Simulations on larger networks
- ▶ Testing individuals every few days

Key References

- He, X., Lau, E.H.Y., Wu, P. et al. Temporal dynamics in viral shedding and transmissibility of COVID-19. Nat Med 26, 672-675 (2020). https://doi.org/10.1038/s41591-020-0869-5
- Kucirka LM, Lauer SA, Laeyendecker O, Boon D, Lessler J. Variation in false-negative rate of reverse transcriptase polymerase chain reaction-based SARS-CoV-2 tests by time since exposure. Ann Intern Med. Published online May 13, 2020. doi:10.7326/M20-1495
- Fournet J, Barrat A (2014) Contact Patterns among High School Students. PLoS ONE 9(9): e107878.https://doi.org/10.1371/journal.pone.0107878
- Stephen A. Lauer, Kyra H. Grantz, Qifang Bi, Forrest K. Jones, Qulu Zheng, Hannah R. Meredith, Andrew S. Azman, Nicholas G. Reich, and Justin Lessler. The Incubation Period of Coronavirus Disease 2019 (COVID-19) From Publicly Reported Confirmed Cases: Estimation and Application. Annals of Internal Medicine 2020 172:9, 577-582

Acknowledgments

- My mentor Dr. Jesse Geneson for investing so much of his time and energy into advising me for this project
- ▶ PRIMES-USA for giving me this research opportunity
- ▶ Parents who give so much support