Towards Practical Ambiguity Sets

Benjamin Chen, mentored by Kyle Hogan
October 2020
Introduction

Our Project

Creating Ambiguity Sets

Picking a Budget
Introduction
Suppose we have two Reddit users: Alice and Eve.
Suppose we have two Reddit users: Alice and Eve. Suppose Eve wants to figure out Alice’s username.
Suppose we have two Reddit users: Alice and Eve.

Suppose Eve wants to figure out Alice’s username.

Suppose Eve can monitor Alice’s traffic to Reddit’s servers, but can’t see the content of any transmissions.
Suppose we have two Reddit users: Alice and Eve. Suppose Eve wants to figure out Alice’s username. Suppose Eve can monitor Alice’s traffic to Reddit’s servers, but can’t see the content of any transmissions. This seems okay, right? After all, Eve gets almost no info about what Alice is actually doing.
Suppose we have two Reddit users: Alice and Eve.

Suppose Eve wants to figure out Alice’s username.

Suppose Eve can monitor Alice’s traffic to Reddit’s servers, but can’t see the content of any transmissions.

This seems okay, right? After all, Eve gets almost no info about what Alice is actually doing.

However, remember Eve uses Reddit too…
r/AskReddit • Posted by u/btw_i_use_arch 9 hours ago 6 6 2 2

Is cereal a soup?

Log in or sign up to leave a comment

View discussions in 3 other communities

PhysicsIsPhun 4.8k points • 4 hours ago
Yes!

EpicGamer6612 1.6k points • 4 hours ago
No.

PhysicsIsPhun 402 points • 50 minutes ago
Yes.

EpicGamer6612 272 points • 47 minutes ago
No. Why would you say that?

PhysicsIsPhun 125 points • 44 minutes ago
Because it's the truth.
r/AskReddit - Posted by u/btw_i_use_arch 9 hours ago 6 2 2

Is cereal a soup?

Log in or sign up to leave a comment

View discussions in 3 other communities

PhysicsIsPhun 4.8k points · 4 hours ago

Yes!

EpicGamer6612 1.6k points · 4 hours ago

No.

PhysicsIsPhun 402 points · 50 minutes ago

Yes.

EpicGamer6612 272 points · 47 minutes ago

No. Why would you say that?

PhysicsIsPhun 125 points · 44 minutes ago

Because it's the truth.
Alice and Eve

Is cereal a soup?

Log in or sign up to leave a comment

View discussions in 3 other communities

Alice’s traffic
240 min ago
0 min ago
Alice and Eve

Is cereal a soup?

Log in or sign up to leave a comment

PhyscisIsPhun 4.8k points · 4 hours ago 🎉
Yes!

EpicGamer6612 1.6k points · 4 hours ago
No.

PhysicsIsPhun 402 points · <1 hour ago
Yes.

EpicGamer6612 272 points · <1 hour ago
No. Why would you say that?

PhysicsIsPhun 125 points · <1 hour ago
Because it's the truth.

Alice’s traffic

240 min ago

0 min ago

0 min ago
Alice and Eve

Alice’s fake messages are called **dummy messages**.
What if there’s another user, Bob, who also uses Reddit and posts in the same forum—but Bob posts much more frequently than Alice?
What if there’s another user, Bob, who also uses Reddit and posts in the same forum—but Bob posts much more frequently than Alice?

- Alice can up her dummy traffic to make her look like Bob (lots of overhead)
What if there’s another user, Bob, who also uses Reddit and posts in the same forum—but Bob posts much more frequently than Alice?

- Alice can up her dummy traffic to make her look like Bob (lots of overhead)
- Alice can give up on looking like Bob and just post enough dummies to look like PhysicsIsPhun.
What if there’s another user, Bob, who also uses Reddit and posts in the same forum—but Bob posts much more frequently than Alice?

- Alice can up her dummy traffic to make her look like Bob (lots of overhead)
- Alice can give up on looking like Bob and just post enough dummies to look like PhysicsIsPhun.

We would say EpicGamer6612 (Alice) and PhysicsIsPhun are in an ambiguity set, since Eve can’t determine which of the two Alice is.
More Realistic Examples

“Eve” could be...
More Realistic Examples

“Eve” could be...

- Internet providers
More Realistic Examples

“Eve” could be...

- Internet providers
- Oppressive governments
“Eve” could be...

- Internet providers
- Oppressive governments
- Employers
“Eve” could be…

- Internet providers
- Oppressive governments
- Employers

Basically any adversary who can see the users’ activity, but not the contents of incoming or outgoing traffic (hidden with encryption).
The main questions we investigate are:

• How do we group people to look the same in a good way (and what does “good” entail)?
• How do we pick the budget for a group of people?
• Is such a system practical in real life?
The main questions we investigate are:

- How do we group people to look the same in a good way (and what does “good” entail)?
Questions

The main questions we investigate are:

- How do we group people to look the same in a good way (and what does “good” entail)?
- How do we pick the budget for a group of people?
The main questions we investigate are:

- How do we group people to look the same in a good way (and what does “good” entail)?
- How do we pick the budget for a group of people?
- Is such a system practical in real life?
Our Project
Ambiguity Sets

We make a compromise between performance and privacy:

- Users are placed into ambiguity sets of size at least k, for some integer k.
- Each user in the set looks identical to every other user in the set from the adversary's point of view.
- We try to create sets to find a balance between performance and privacy.
Ambiguity Sets

We make a compromise between performance and privacy:

- Users are placed into ambiguity sets of size at least k, for some integer k.

We make a compromise between performance and privacy:

- Users are placed into ambiguity sets of size at least \(k \), for some integer \(k \).
- Each user in the set looks identical to every other user in the set from the adversary’s point of view.
Ambiguity Sets

We make a compromise between performance and privacy:

- Users are placed into ambiguity sets of size at least k, for some integer k.
- Each user in the set looks identical to every other user in the set from the adversary’s point of view.
- We try to create sets to find a balance between performance and privacy.
Alice and Carl
Alice and Carl
A set with just Alice
The Perfect Ambiguity Sets

- Minimizes unnecessary traffic

Achieving both of these at the same time is hard.
The Perfect Ambiguity Sets

- Minimizes unnecessary traffic
- Maintains good privacy
The Perfect Ambiguity Sets

- Minimizes unnecessary traffic
- Maintains good privacy

Achieving both of these at the same time is hard.
Creating Ambiguity Sets
K-Means

K-means attempts to minimize the inertia of each cluster.
K-Means

K-means attempts to minimize the **inertia** of each cluster.
Each dot here represents 1 clustering setup (with a different random seed)
Cluster Sizes

(On a dataset of 100 users)
Picking a Budget
Once the ambiguity sets are created, we define a budget (how much traffic people should send) based on the mean activity over users in the set.
Once the ambiguity sets are created, we define a budget (how much traffic people should send) based on the mean activity over users in the set.

- If a user sends under the budget, they send dummy messages until the budget is reached.
Once the ambiguity sets are created, we define a budget (how much traffic people should send) based on the mean activity over users in the set.

- If a user sends under the budget, they send dummy messages until the budget is reached.
- If a user sends over the budget, their messages are postponed to a later round.
Once the ambiguity sets are created, we define a budget (how much traffic people should send) based on the mean activity over users in the set.

- If a user sends under the budget, they send dummy messages until the budget is reached.
- If a user sends over the budget, their messages are postponed to a later round.

In general, we care more about reducing postponed messages over reducing dummy messages.
The Solution

budget = mean \cdot (1 + \text{addition to budget})
Future Research

- Testing this on bigger datasets
Future Research

- Testing this on bigger datasets
- Looking more closely at the people who make up the sets here
Acknowledgements

- Kyle Hogan
- Dr. Gerovitch & Prof. Devadas
- PRIMES Program & MIT

Thanks for listening!