Relay Protocol For Approximate Byzantine Consensus

Matthew Ding PRIMES CS/Bio Fall Conference 18 October 2020

What is Distributed Computing?

- Information and resources are distributed across a network of different machines
- We want to collectively solve a problem through communication and collaboration

The Byzantine Generals Problem

- Paper published by Lamport, Shostak, and Pease in 1982
- Group of generals camped outside of a city
- The goal is for each general to decide on the same course of action: either "attack" or "retreat"

The Byzantine Generals Problem (continued)

- There exist secret "byzantine generals", who may act arbitrarily and whose goal is to prevent "honest generals" from achieving their goals
- Coined the term "byzantine fault": a machine that can arbitrarily deviate from an agreed upon protocol in opposition to other users
 - Very strict assumption, but sometimes necessary in real life

A More Mathematical Representation

- Byzantine consensus problems are usually represented as graphs
- In a directed graph:
 - Nodes represent machines (generals)
 - An edge from node i to node j represents a communication link from i to j

Approximate Byzantine Consensus

- Introduced by Dolev et al.
- Each node holds a real number value as their current state
- Nodes achieve approximate consensus on their states with one another rather than exact consensus
- Motivation: Exact consensus is impossible in certain scenarios

What to Solve For

- We may achieve arbitrary exactness by continuing the protocol for an infinite number of rounds
- Aim to satisfy two conditions:
 - Convergence: Every node's state approaches the same value as the number of iterations approaches infinity
 - Validity: This convergence point is within the range of the initial states

Existing Algorithm

- Developed by Vaidya et al. in 2012
- During each iteration, each node transmits their current state to all neighbors
- Each node performs a trimmed-mean step to determine our new state for the next iteration
- Proven that each node achieves consensus on the same value over time

Trimmed-Mean Step

- Given a list of at least 2f+1 values:
 - 1. Sort the list
 - 2. Eliminate the greatest and least f values
 - 3. Output the arithmetic mean of the remaining values
- Vaidya's algorithm: at least 2f + 1 neighbors, where f is the number of Byzantine nodes
- This is a robust aggregation step for up to f byzantine nodes

Trimmed Mean Step Example

Our Contributions

- Signatures
 - Incredibly important in byzantine consensus, but new to approximate consensus algorithms
 - Reliable proof of who created a message

Our Contributions (Part 2)

- Relays
 - Using signatures, we can now reliably relay messages across a graph
 - Even if a message has been relayed across multiple nodes, we can reliably detect the node of origin

Our Contributions (Part 3)

- With relays and signatures, nodes don't need to be adjacent to communicate with each other
 - All honest nodes in a graph may send and receive messages to every other honest node
- Allows us to assume much less strict network connectivity assumptions
 - Vaidya 2012: Necessary (but insufficient) assumption that each node has 2f+1 neighbors
 - Our protocol: Only assumes bidirectional connectivity

Our Algorithm: Relay-ABC

- Define D to represent the longest distance between any two honest nodes
 - Within D iterations, any message sent from one honest node will have reached every other honest node
- Every node stores most recent state values of every other node
- Every node relays state values of every node to all neighbors
- Each state value in a message is tagged with iteration number and signature
- Trimmed-mean is used with state values of all nodes instead of just neighbors

A Worst-Case Scenario

- Honest nodes far outnumber byzantine nodes, but they are not very strongly connected among themselves
 - Every honest node has strictly more byzantine neighbors than honest neighbors
- Only with relays can nodes in this graph achieve consensus

Vaidya's Proof of Convergence

- Vaidya (2012) introduced a proof of convergence using transition matrices
- Given n honest nodes, uses a $n \ge 1$ state vector to represent their states at a given iteration
- Uses n x n transition matrices to model the transition between iterations (different every round)

Transition Matrix Example

v[0]

v[1]

($\frac{1}{2}$	$\frac{1}{2}$	0	0)	$\begin{pmatrix} 1 \end{pmatrix}$		(1.5)
	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$	0	2		2
	0	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$	3	=	3
	0	0	$\frac{1}{2}$	$\frac{1}{2}$	$\begin{pmatrix} 4 \end{pmatrix}$		(3.5)

M[0]

M[0] = Transition Matrix

v[0] = state vector of iteration 0
(initial states)

v[1] = state vector of iteration 1

Transition Matrix Example (Part 2)

Transition Matrix Example (Part 3)

	M[0]*M[1]**M[7]					v[0]		v[8]		
1	$(\frac{1}{2})$	$\frac{1}{2}$	0	0 \	8	$\begin{pmatrix} 1 \end{pmatrix}$		(2.38845)	M[0], M[1] = Transition Matrices	
	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$	0		2	\sim	2.44897	v[0] = state vector of iteration 0 (initial states)	
	0	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$		3	22	2.55102	v[8] = state vector of iteration 8	
l	0	0	$\frac{1}{2}$	$\frac{1}{2}$ /		$\left(\begin{array}{c} 4 \end{array} \right)$		2.61154		

Our Relay Proof of Convergence

- We model our state vector as a *nD* x 1 matrix, which contains the states of all *n* honest nodes across *D* iterations
- The transition matrix is expanded to $nD \ge nD$
- We show this expanded version models our algorithm and achieves convergence

Expanded Transition Matrix Example

M[0], M[1]... = Transition Matrices

v[0] = state vector of iteration 0
(initial states)

v[3] = state vector of iteration 3

Future Work

- Quantifying convergence rates
- Byzantine machine learning

Acknowledgements

- MIT PRIMES
- My mentor: Hanshen Xiao
- My parents

Thank you!