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Motivation

Goal: find materials lying underground and their positions
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Approach
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)
= f (x, t),

ψ(x, 0) = 0, ψt(x, 0) = 0 on Ω,

∇ψ · n = 0 on ∂Ω

C∗(x) = argmin J(g(C), h) where J is the objective function

Convexity with respect to the velocity is beneficial
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Problems With the Squared L2 Norm

Beydoun-Tarantola, 1988

Nonconvexity of squared L2 norm and local minima

Brossier et al, 2010

Sensitivity of L2 norm to noise
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An Alternative Objective Function

Engquist-Froese, 2013 introduced the Wasserstein metric for FWI

Yang, 2019

Convexity in translations and dilations of the data
Insensitivity to noise

Engquist et al, 2020

Low-frequency bias
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What is the Wasserstein Metric?

Optimal transport introduced by Monge

Definition

The pth Wasserstein metric is defined as

Wp(f , g) =

(
inf

T∈M(µ,ν)

∫
Ω
|x − T (x)|pdµ

) 1
p

.
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What is the Wasserstein Metric?

Explicit formula when data is in one dimension

Theorem

Let g̃ and h̃ be two probability distributions defined on R, and let
G (t) =

∫ t
−∞ g̃(s) ds and H(t) =

∫ t
−∞ h̃(s) ds. Then

W 2
2 (g̃ , h̃) =

∫ 1

0
(G−1(s)− H−1(s))2 ds.
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The Constrained Optimization Problem


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)
= f (x, t),

ψ(x, 0) = 0, ψt(x, 0) = 0 on Ω,

∇ψ · n = 0 on ∂Ω

C∗(x) = argmin W 2
2 (g(C), h)

Previous results involve convexity in changes of the data

Srinath Mahankali Velocity Inversion October 17, 2020 8 / 17



The Constrained Optimization Problem


1
C(x)2

∂2ψ
∂t2 −

(
∂2ψ
∂x1

2 + ∂2ψ
∂x2

2 + · · ·+ ∂2ψ
∂xn2

)
= f (x, t),

ψ(x, 0) = 0, ψt(x, 0) = 0 on Ω,

∇ψ · n = 0 on ∂Ω

C∗(x) = argmin W 2
2 (g(C), h)

Previous results involve convexity in changes of the data

Srinath Mahankali Velocity Inversion October 17, 2020 8 / 17



The Constrained Optimization Problem


1
C(x)2

∂2ψ
∂t2 −

(
∂2ψ
∂x1

2 + ∂2ψ
∂x2

2 + · · ·+ ∂2ψ
∂xn2

)
= f (x, t),

ψ(x, 0) = 0, ψt(x, 0) = 0 on Ω,

∇ψ · n = 0 on ∂Ω

C∗(x) = argmin W 2
2 (g(C), h)

Previous results involve convexity in changes of the data

Srinath Mahankali Velocity Inversion October 17, 2020 8 / 17



Challenges and Solutions

Wave data is generally not a probability distribution

Normalize wave data k(t) by k̃(t) = k(t)+γ∫ T
0

k(t)+γ dt

Computing the W2 distance is difficult for higher dimensions

Data is only a function of time → apply one dimensional formula

No explicit solution for wave equation in general
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Velocity Models in One Dimension
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Theorem

Suppose f (t) is nonnegative and compactly supported, and let k be the
velocity parameter in these three cases. Then W 2

2 (g(k), h) is convex in k
over the interval (0, k∗].
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Ray Tracing

Velocity function of the form C(X , z) = a + bz

Distance and traveltime formulas:

X = 2p

∫ zp

0

dz√
u2(z)− p2

T = 2

∫ zp

0

u2(z)√
u2(z)− p2

dz

For source wave data f (t), the predicted wave data is approximated
by Apredf (t − Tpred)
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Velocity Model in Two Dimensions

Theorem

Assume f (t) is nonnegative and compactly supported. Then, W 2
2 (g̃ , h̃) is

jointly convex in a, b over the following region U:

U := {(a, b) ∈ R2 : a, b > 0,
bXr

2a
≥ S0, T (Xr , a, b) ≥ T (Xr , a

∗, b∗)}

for some positive constant S0.

For large Xr , the convex region contains (a∗, b∗)

Nonuniqueness of solution fixed by adding multiple receiver locations
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Velocity Model in Two Dimensions

Srinath Mahankali Velocity Inversion October 17, 2020 13 / 17



Velocity Model in Two Dimensions

Srinath Mahankali Velocity Inversion October 17, 2020 13 / 17



Velocity Model in Two Dimensions

Srinath Mahankali Velocity Inversion October 17, 2020 13 / 17



Future Work

Study models with a larger number of parameters

Possible to study convexity using frequency instead of time domain

Srinath Mahankali Velocity Inversion October 17, 2020 14 / 17



Future Work

Study models with a larger number of parameters

Possible to study convexity using frequency instead of time domain

Srinath Mahankali Velocity Inversion October 17, 2020 14 / 17



Acknowledgements

I am extremely thankful to:

My mentor, Prof. Yunan Yang

The PRIMES program

My parents and my brother

Srinath Mahankali Velocity Inversion October 17, 2020 15 / 17



Acknowledgements

I am extremely thankful to:

My mentor, Prof. Yunan Yang

The PRIMES program

My parents and my brother

Link to my paper (posted on PRIMES website):
https://arxiv.org/abs/2009.00708

Srinath Mahankali Velocity Inversion October 17, 2020 15 / 17

https://arxiv.org/abs/2009.00708


References

Wafik B. Beydoun and Albert Tarantola. First Born and Rytov
approximations: Modeling and inversion conditions in a canonical
example. The Journal of the Acoustical Society of America,
83(3):1045–1055, 1988.
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