On Generalized Carmichael Numbers

Tae Kyu Kim
mentor: Yongyi Chen

Monta Vista High School

Oct 18, 2020
MIT PRIMES Conference
Historical Background

Theorem (Fermat, 1860)

If p is prime, then p divides $a^p - a$ for all integers a.

Example

5 is prime, so 5 divides

$0^5 - 0 = 0$, $3^5 - 3 = 240$,

$1^5 - 1 = 0$, $4^5 - 4 = 1020$,

$2^5 - 2 = 30$,

Question: Is the converse true?
Question: Is the converse true?

No! In 1910, Carmichael showed that 561 divides $a^{561} - a$ for all integers a.

Theorem (Korselt's criterion)

A positive integer n divides $a^n - a$ for all integers a if and only if n is squarefree and $p - 1$ divides $n - 1$ for all primes p dividing n.

Example (561 is a counterexample)

Prime factorization of 561: $3 \times 11 \times 17$.

Notice that $3 - 1 = 2$, $11 - 1 = 10$, $17 - 1 = 16$ divide $561 - 1 = 560$.

Tae Kyu Kim
On Generalized Carmichael Numbers
October 2020
Historical Background

Question: Is the converse true?

No! In 1910, Carmichael showed that 561 divides $a^{561} - a$ for all integers a.

Theorem (Korselt’s criterion)

A positive integer n divides $a^n - a$ for all integers a if and only if n is squarefree and $p - 1$ divides $n - 1$ for all primes p dividing n.

Example (561 is a counterexample)

Prime factorization of 561: $3 \times 11 \times 17$.

Notice that $3 - 1 = 2$, $11 - 1 = 10$, $17 - 1 = 16$ divide $561 - 1 = 560$.
Historical Background

Question: Is the converse true?

No! In 1910, Carmichael showed that 561 divides $a^{561} - a$ for all integers a.

Theorem (Korselt’s criterion)

A positive integer n divides $a^n - a$ for all integers a if and only if n is squarefree and $p - 1$ divides $n - 1$ for all primes p dividing n.

Example (561 is a counterexample)

Prime factorization of 561: $3 \times 11 \times 17$.
Notice that $3 - 1 = 2$, $11 - 1 = 10$, $17 - 1 = 16$ divide $561 - 1 = 560$.
Historical Background

Definition (Carmichael number)

The composite integers n with the property that n divides $a^n - a$ for all integers a are called the **Carmichael numbers**.

First 8 Carmichael numbers:

\{561, 1105, 1729, 2465, 2821, 6601, 8911, 10585, \ldots\}
Definition (Carmichael number)

The composite integers n with the property that n divides $a^n - a$ for all integers a are called the **Carmichael numbers**.

First 8 Carmichael numbers:

\[
\{561, 1105, 1729, 2465, 2821, 6601, 8911, 10585, \ldots \}
\]

Theorem (Alford, Granville, Pomerance)

There are infinitely many Carmichael numbers. The number of Carmichael numbers less than X is at least $X^{\frac{2}{7}}$ for sufficiently large X.

Conjecture (Erdős)

There are $X^{1-o(1)}$ Carmichael numbers less than X.
Question

For what positive integers \(n \) does \(n \) divide \(a^{n-1} - a \) for all integers \(a \)?
Motivation

Question

For what positive integers n does n divide $a^{n-1} - a$ for all integers a?

1. For every prime p dividing n, $p - 1$ must divide n.
2. n is squarefree.

$\Rightarrow \quad n \in \{1, 2, 6, 42, 1806\}$.
Our Main Problem

Question

Given an integer k, for what integers $n > \max(k, 0)$ does n divide $a^{n-k+1} - a$ for all integers a?
Our Main Problem

Question

Given an integer \(k \), for what integers \(n > \max(k, 0) \) does \(n \) divide \(a^{n-k+1} - a \) for all integers \(a \)?

Definition

\[
C_k = \{ n > \max(k, 0) : n \text{ divides } a^{n-k+1} - a \text{ for all integers } a \}
\]

\(C_1 = \) all primes and Carmichael numbers

\(C_0 = \{1, 2, 6, 42, 1806\} \)

\(C_{-1} = \) ???
Proposition (Generalized Korselt’s Criterion)

An integer \(n > \max(k, 0) \) is in \(C_k \) if and only if \(n \) is squarefree and \(p - 1 \) divides \(n - k \) for all primes \(p \) dividing \(n \).
First Steps

Proposition (Generalized Korselt’s Criterion)

An integer $n > \max(k, 0)$ is in C_k if and only if n is squarefree and $p - 1$ divides $n - k$ for all primes p dividing n.

Definition

The *Carmichael function* $\lambda(n)$ is defined as the smallest positive integer such that $a^{\lambda(n)} \equiv a \pmod{n}$ for all integers a.

For squarefree n,

$$\lambda(n) = \lcm_{p \mid n} \{p - 1\}.$$

Proposition (Alternate Korselt’s Criterion)

An integer $n > \max(k, 0)$ is in C_k if and only if n is squarefree and $\lambda(n)$ divides $n - k$.
Approach for $k > 0$

<table>
<thead>
<tr>
<th>k</th>
<th>C_k</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>${2, 3, 5, 7, 11, 13, 17, \ldots}$</td>
</tr>
<tr>
<td>2</td>
<td>${6, 10, 14, 22, 26, 30, 34, \ldots}$</td>
</tr>
<tr>
<td>3</td>
<td>${15, 21, 33, 39, 51, 57, 69, \ldots}$</td>
</tr>
<tr>
<td>5</td>
<td>${65, 85, 145, 165, 185, 205, \ldots}$</td>
</tr>
</tbody>
</table>

Table: C_k for $k = 1, 2, 3, 5$
Approach for $k > 0$

<table>
<thead>
<tr>
<th>k</th>
<th>C_k</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>${2, 3, 5, 7, 11, 13, 17, \ldots}$</td>
</tr>
<tr>
<td>2</td>
<td>${6, 10, 14, 22, 26, 30, 34, \ldots}$</td>
</tr>
<tr>
<td>3</td>
<td>${15, 21, 33, 39, 51, 57, 69, \ldots}$</td>
</tr>
<tr>
<td>5</td>
<td>${65, 85, 145, 165, 185, 205, \ldots}$</td>
</tr>
</tbody>
</table>

Table: C_k for $k = 1, 2, 3, 5$

For squarefree k, set $n = km$ where m is a squarefree integer coprime to k.
Approach for $k > 0$

<table>
<thead>
<tr>
<th>k</th>
<th>C_k</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>{2, 3, 5, 7, 11, 13, 17, \ldots}</td>
</tr>
<tr>
<td>2</td>
<td>{6, 10, 14, 22, 26, 30, 34, \ldots}</td>
</tr>
<tr>
<td>3</td>
<td>{15, 21, 33, 39, 51, 57, 69, \ldots}</td>
</tr>
<tr>
<td>5</td>
<td>{65, 85, 145, 165, 185, 205, \ldots}</td>
</tr>
</tbody>
</table>

Table: C_k for $k = 1, 2, 3, 5$

For squarefree k, set $n = km$ where m is a squarefree integer coprime to k.

\[\lambda(n) | n - k \iff \lambda(km) | k(m - 1)\]

\[\iff \begin{cases}
\lambda(k) | k(m - 1) \\
\lambda(m) | k(m - 1)
\end{cases}\]
Approach for $k > 0$

With $n = km$:

1. $\lambda(k) \mid k(m - 1)$ leads to the congruence condition $m \equiv 1 \pmod{\frac{\lambda(k)}{\gcd(\lambda(k), k)}}$.

2. $\lambda(m) \mid k(m - 1)$ is a looser variant of $\lambda(m) \mid m - 1$. In particular, all primes satisfy this condition.
Approach for \(k > 0 \)

With \(n = km \):

1. \(\lambda(k) \mid k(m - 1) \) leads to the congruence condition \(m \equiv 1 \mod \left(\frac{\lambda(k)}{\gcd(\lambda(k), k)} \right) \).

2. \(\lambda(m) \mid k(m - 1) \) is a looser variant of \(\lambda(m) \mid m - 1 \). In particular, all primes satisfy this condition.

Theorem (Dirichlet)

Let \(a, m \) be coprime integers. The number of primes \(\equiv a \pmod{m} \) less than \(X \) is approximately \(\frac{1}{\phi(m)} \cdot \frac{X}{\log(X)} \), where \(\phi \) is Euler’s Totient function. In particular, there are infinitely many primes \(\equiv a \pmod{m} \).

Theorem (Makowski, 1962)

For any squarefree \(k > 0 \), there are infinitely many elements in \(C_k \).
Conjectures for $k < 0$

For $k > 0$: $C_k = \text{noise} + k \cdot \left\{ \text{primes } \equiv 1 \pmod{\frac{\lambda(k)}{\gcd(\lambda(k),k)}} \right\}$.

For $k < 0$: $C_k = \text{noise}.$

(noise = generalized Carmichael numbers)
Conjectures for $k < 0$

For $k > 0$: $C_k = \text{noise} + k \cdot \left\{ \text{primes} \equiv 1 \mod \left(\frac{\lambda(k)}{\gcd(\lambda(k), k)} \right) \right\}$.

For $k < 0$: $C_k = \text{noise}$.

(noise = generalized Carmichael numbers)

Conjecture (Chen, Kim)

Let $k > 0$. Then

$$\lim_{X \to \infty} \frac{|C_{-k} \cap (0, X]|}{|C_k \cap (0, X]| - \frac{\gcd(\lambda(k), k)}{\lambda(k)} \pi \left(\frac{X}{k} \right)} = 1$$

where $\pi(X)$ denotes the number of primes $\leq X$.
General patterns

1. n is usually a multiple of k
2. n and k usually share factors
General patterns

1. n is usually a multiple of k
2. n and k usually share factors

Example

For $k = -11$ and large n:
$C_{-11} = \{\ldots, 283309, 306229, 319189, 337249, 352429, 382789, \ldots\}$
General patterns

1. n is usually a multiple of k
2. n and k usually share factors

Example

For $k = -11$ and large n:
$C_{-11} = \{ \ldots, 283309, 306229, 319189, 337249, 352429, 382789, \ldots \}$

Heuristic (Chen, Kim)

For large $n \in C_k$ and small integers m, $n - k$ will often be divisible by m. The proportion of n with such property increases with the value of n and decreases with the value of m.

Idea: for large n, m often divides $\lambda(n)$.
Simple cases (Short products)

Proposition (Halbeisen, Hungerbühler)

If $k \neq 1$, then C_k contains finitely many primes.

Proposition (Halbeisen, Hungerbühler)

Unless $k > 0$ and k is prime, there are finitely many pairs of primes p, q such that $pq \in C_k$.

Proposition (Chen, Kim)

For any integers k and $l > k$, there are finitely many pairs of primes p, q such that $lpq \in C_k$.

Corollary (Chen, Kim)

For any $k < 0$, there are finitely many triples of primes p, q, r such that $pqr \in C_k$ and $p - 1$ divides $q - 1$ and $r - 1$.
Alternate Problems

1. Given integers a, k, for what integers $n > \max(k, 0)$ does n divide $a^{n-k+1} - a$? When does $a^{n-k} - 1$?

We extend the work of Kiss and Phong [KP87] on $k > 0$ to all integers k:

Theorem (Chen, Kim)

*If $a \geq 2$ and k are integers with $(k, a) \neq (0, 2)$, there are infinitely many positive integers n such that $a^{n-k} \equiv 1 \pmod{n}$. If $(k, a) = (0, 2)$, then there are no integers $n > 1$ such that $a^{n-k} \equiv 1 \pmod{n}$.***
Alternate Problems

2. Given an integer \(k \), for what \(n \) does \(\lambda(n) \) divide \(n - k \)?

The exponents in the prime factorization of \(n \) are bounded by \(k \):

Proposition (Chen, Kim)

If \(\lambda(n) \) divides \(n - k \) and \(n = \prod_{i=1}^{r} p_i^{e_i} \), then \(\prod_{i=1}^{r} p_i^{e_i-1} \) divides \(k \).
Summary

1 Historical background
 • Fermat’s little theorem, Carmichael numbers
 • Korselt’s criterion

2 Our research
 • Generalization of Korselt’s criterion
 • Patterns in data → theorems, conjectures, heuristics
 • Simpler cases with 2, 3 prime factors
 • Alternative problems
Special thanks to Stefan Wehmeier for suggesting the project and providing advice on the best direction for research. I would also like to thank Yongyi Chen for his immense support in mentoring this project. Finally, I would like to thank the MIT PRIMES program for the research opportunity.
References

