Lebesgue Measure Preserving Thompson’s Monoid

William Li
Mentor: Prof. Sergiy Merenkov

Delbarton School

Oct 17, 2020
MIT PRIMES Conference
Continuous $h: [0, 1] \xrightarrow{\text{onto}} [0, 1]$. λ-preserving if $\forall A \in B, \lambda(A) = \lambda(h^{-1}(A))$.

- λ: Lebesgue measure on $[0, 1]$. B: Borel sets on $[0, 1]$.

The above definition does not imply $\lambda(A) = \lambda(h(A))$. In fact, if h is λ-preserving, $\lambda(A) \leq \lambda(h(A))$ for any $A \in B$.
Continuous $h: [0, 1] \xrightarrow{\text{onto}} [0, 1]$. λ-preserving if
\[\forall A \in \mathcal{B}, \lambda(A) = \lambda(h^{-1}(A)). \]

- λ: Lebesgue measure on $[0, 1]$. \mathcal{B}: Borel sets on $[0, 1]$.

The above definition does not imply $\lambda(A) = \lambda(h(A))$. In fact, if h is λ-preserving, $\lambda(A) \leq \lambda(h(A))$ for any $A \in \mathcal{B}$.
Dynamical System

Topological dynamical system: $h^n = \underbrace{h \circ h \circ \cdots \circ h}_{n \text{ times}}$.

Figure: Logistic map $x_{n+1} = rx_n(1 - x_n)$, which is NOT λ-preserving.
Continuous function $f: [0, 1] \mapsto [0, 1]$. Piecewise affine, dyadic breakpoints, derivative $= 2^k$ with integer k.

Any $f \in \mathbb{F}$ is generated by the above two generator maps.
\(\lambda \)-Preserving Thompson’s Monoid \(\mathbb{G} \)

- \(\mathbb{F} \) maps and \(\lambda \)-preserving maps do not naturally intersect.
 - Except for the identity map, any \(\mathbb{F} \) map does not preserve \(\lambda \) and any \(\lambda \)-preserving map does not preserve orientation and thus does not belong to \(\mathbb{F} \).

- We propose \(\lambda \)-preserving Thompson’s monoid, \(\mathbb{G} \), which is similar to \(\mathbb{F} \) except that the derivatives of piecewise affine maps can be negative to preserve \(\lambda \), i.e., \(\pm 2^k \) for integer \(k \).

- Monoids are semigroups with a single associative binary operation and an identity element.
- Unlike \(\mathbb{F} \), \(\mathbb{G} \) maps are non-invertible except for trivial maps.

- Monoid \(\mathbb{G} \) has not been proposed or studied in the literature and exhibits very different algebraic and dynamical properties from \(\mathbb{F} \) or \(\lambda \)-preserving interval maps in general.
λ-Preserving Thompson’s Monoid \mathcal{G}

- \mathcal{F} maps and λ-preserving maps do not naturally intersect.
 - Except for the identity map, any \mathcal{F} map does not preserve λ and any λ-preserving map does not preserve orientation and thus does not belong to \mathcal{F}.

- We propose λ-preserving Thompson’s monoid, \mathcal{G}, which is similar to \mathcal{F} except that the derivatives of piecewise affine maps can be negative to preserve λ, i.e., $\pm 2^k$ for integer k.

- Monoids are semigroups with a single associative binary operation and an identity element.
- Unlike \mathcal{F}, \mathcal{G} maps are non-invertible except for trivial maps.

- Monoid \mathcal{G} has not been proposed or studied in the literature and exhibits very different algebraic and dynamical properties from \mathcal{F} or λ-preserving interval maps in general.
λ-Preserving Thompson’s Monoid G

- F maps and λ-preserving maps do not naturally intersect.
 - Except for the identity map, any F map does not preserve λ and any λ-preserving map does not preserve orientation and thus does not belong to F.
 - We propose λ-preserving Thompson’s monoid, G, which is similar to F except that the derivatives of piecewise affine maps can be negative to preserve λ, i.e., $\pm 2^k$ for integer k.

- Monoids are semigroups with a single associative binary operation and an identity element.
- Unlike F, G maps are non-invertible except for trivial maps.

- Monoid G has not been proposed or studied in the literature and exhibits very different *algebraic and dynamical properties* from F or λ-preserving interval maps in general.
Properties of Monoid \mathbb{G}

In this project we have studied the following properties:

- **Algebraic properties**
 - Approximation
 - Entropy
 - Decomposition, equivalence classes and finitely generated monoid

- **Dynamical properties**
 - Mixing
 - Periodic points
 - Topological conjugacy

We will next focus on Mixing, Periodic points and Entropy. Unless explicitly mentioned, all the results presented in this talk are obtained by the research project.
In this project we have studied the following properties
- Algebraic properties
 - Approximation
 - Entropy
 - Decomposition, equivalence classes and finitely generated monoid
- Dynamical properties
 - Mixing
 - Periodic points
 - Topological conjugacy

We will next focus on **Mixing**, **Periodic points** and **Entropy**.
Unless explicitly mentioned, all the results presented in this talk are obtained by the research project.
Mixing process: an example.

Repeated application of the baker’s map to points colored red and blue, initially separated. After several iterations, the red and blue points seem to be completely mixed.
Mixing — Theorems (1)

Definition (Topological Mixing (TM))

An interval map h is TM if for all nonempty open sets U, V in $[0, 1]$, $\exists N \geq 0$ such that $\forall n \geq N$, $f^n(U) \cap V \neq \emptyset$.

Definition (Locally Eventually Onto (LEO))

An interval map h is LEO if for every nonempty open set U in $[0, 1]$ there is an integer N such that $h^N(U) = [0, 1]$.

In general, LEO implies TM and the converse does not hold. However, we prove that the two are equivalent for $g \in G$:

Theorem

If $g \in G$ *is TM, then* g *is LEO.*
Mixing — Theorems (2)

Definition

$C(\lambda)$: set of continuous λ-preserving maps.

Definition

$\rho(h_1, h_2) = \sup_{x \in [0, 1]} |h_1(x) - h_2(x)|$. If $\rho(h_1, h_2) < \epsilon$, h_2 is said to be within ϵ neighborhood of h_1.

Theorem

Denote by G_{LEO} the subset of G whose elements are LEO. G_{LEO} is dense in $C(\lambda)$.

The theorem states that $\forall h \in C(\lambda)$ and $\epsilon > 0$, there exists $g \in G_{LEO}$ such that $\rho(h, g) < \epsilon$.
Definition (Preperiodic and Periodic Points)

Point x is *preperiodic* if $\exists n > m > 0$ such that $h^n(x) = h^m(x)$. If $m = 0$, then x is *periodic*.

Theorem

On any $g \in \mathbb{G}$*, if* c is dyadic, *then point* $(c, g(c))$ *is preperiodic.*
Markov Maps — Definition and Theorem

Definition (Markov Map)

A piecewise affine map is Markov if all breakpoints are preperiodic.

Theorem

Any $g \in \mathcal{G}$ *is a Markov map.*
Definition (Period of a Periodic Point)

The period of periodic point x is the least positive integer p such that $h^p(x) = x$.

Definition (Chaotic Function)

Map h is chaotic if for any $k > 0$, point x of period k exists.

- Li-Yorke theorem (1975) states that if a periodic point x of period 3 exists, then h is chaotic.

We characterize periods of periodic points of all maps in G:

- Maps in one specific subset of G always have periodic points with period 3.
- For any remaining map, \exists odd n_0 such that there exist any odd period $n \geq n_0$, period $n = 1$ and any even period n.

William Li

Lebesgue Measure Preserving Thompson’s Monoid
Definition \textit{(Period of a Periodic Point)}

The period of periodic point x is the least positive integer p such that $h^p(x) = x$.

Definition \textit{(Chaotic Function)}

Map h is chaotic if for any $k > 0$, point x of period k exists.

- Li-Yorke theorem (1975) states that if a periodic point x of period 3 exists, then h is chaotic.
- We characterize periods of periodic points of all maps in G.
- Maps in one specific subset of G always have periodic points with period 3.
- For any remaining map, there exists odd n_0 such that there exist any odd period $n \geq n_0$, period $n = 1$ and any even period n.

William Li
Lebesgue Measure Preserving Thompson’s Monoid
Examples of Periodicity of G Maps

- (Left) Periodic points of period 3 do not exist but periodic points of periods 5 and 7 exist.
- (Right) Periodic points of period 3, 5, 7 all exist.
Definition (Entropy)

\[c_\lambda(h) = \int_0^1 \log_2 |h'(x)| \, d\lambda(x) \]
Definition

\(PA(\lambda) \): set of piecewise affine \(\lambda \)-preserving maps.

Bobok and Troubetzkoy (2019) showed that \(\forall c \in (0, \infty) \), Markov LEO \(PA(\lambda) \) is dense in \(C(\lambda) \) with \(c_\lambda(h) = c \).

What entropy range can \(G \) achieve?
Suppose that g on $g^{-1}(Y)$ is m affine legs with absolute values of the derivatives equal to $\{2^{k_i}\}$. To minimize $c_\lambda(g)$ with $g \in \mathbb{G}$,

$$\min_{k_1, \ldots, k_m} \sum_{i=1}^{m} k_i 2^{-k_i}, \quad \text{s.t.} \quad \sum_{i=1}^{m} 2^{-k_i} = 1 \quad \Rightarrow \quad k_i^* = \begin{cases} i, & i = 1, 2, \ldots, m - 1 \\ m - 1, & i = m. \end{cases}$$

Key idea: Any set of m affine legs of $\{2^{k_i}\}$ can be replaced by another set of $\{2^{k_i^*}\}$ within ϵ neighborhood; converse is not true.
Suppose that g on $g^{-1}(\mathcal{Y})$ is m affine legs with absolute values of the derivatives equal to $\{2^{k_i}\}$. To minimize $c_\lambda(g)$ with $g \in \mathcal{G}$,
\[
\min_{k_1, \ldots, k_m} \sum_{i=1}^{m} k_i 2^{-k_i}, \quad \text{s.t.} \quad \sum_{i=1}^{m} 2^{-k_i} = 1
\Rightarrow k_i^* = \begin{cases}
 i, & i = 1, 2, \ldots, m - 1 \\
 m - 1, & i = m.
\end{cases}
\]

Key idea: Any set of m affine legs of $\{2^{k_i}\}$ can be replaced by another set of $\{2^{k_i^*}\}$ within ϵ neighborhood; converse is not true.
Entropy — Theorem

For any $c \in [2, \infty)$ and $\varepsilon > 0$, the set of Markov LEO maps in G whose entropy is within ε of c is dense in $C(\lambda)$.

- With $\{2^{k_i^*}\}$, minimum $c_\lambda(g)$ is given by
 $\sum_{i=1}^{m-1} i2^{-i} + (m - 1)2^{-(m-1)} < 2$ for any m.
- Maximum $c_\lambda(g)$ is unbounded.

Compared with $c_\lambda(h)$, the constraints on G lead to:

- $c_\lambda(g)$ can only be within ε of, but may not be exactly equal to, target c.
- Minimum $c_\lambda(g)$ is greater than minimum $c_\lambda(h)$.

William Li
Lebesgue Measure Preserving Thompson's Monoid
Entropy — Theorem

Theorem

For any \(c \in [2, \infty) \) and \(\epsilon > 0 \), the set of Markov LEO maps in \(\mathbb{G} \) whose entropy is within \(\epsilon \) of \(c \) is dense in \(C(\lambda) \).

- With \(\{2^{k_i^*}\} \), minimum \(c_\lambda(g) \) is given by
 \[
 \sum_{i=1}^{m-1} i2^{-i} + (m - 1)2^{-(m-1)} < 2 \quad \text{for any } m.
 \]
- Maximum \(c_\lambda(g) \) is unbounded.

Compared with \(c_\lambda(h) \), the constraints on \(\mathbb{G} \) lead to

- \(c_\lambda(g) \) can only be within \(\epsilon \) of, but may not be exactly equal to, target \(c \).
- Minimum \(c_\lambda(g) \) is greater than minimum \(c_\lambda(h) \).
I would like to thank my mentor, Professor Sergiy Merenkov, for his continuous and insightful guidance and advice throughout the entire research process. He introduced me to the general fields of Lebesgue measure preserving interval maps and Thompson’s groups, provided direction in my research, and informed me of the connection between my work and other results in the literature.

I would like to thank the MIT PRIMES-USA for giving me the opportunity and resources to work on this project, and in particular Dr. Tanya Khovanova for proving great advice on writing the final report and the presentation slides and Dr. Alexander Vitanov and Ms. Boya Song for their comments.

