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Abstract

Neural networks are susceptible to adversarial examples,
which are specific inputs to a network that result in a
misclassification or an incorrect output. While most past
work has focused on methods to generate adversarial ex-
amples to fool image classification networks, recently, sim-
ilar attacks on automatic speech recognition systems have
been explored. Due to the relative novelty of these audio
adversarial examples, there exist few robust defenses for
these attacks. We present a robust defense for inaudible
or imperceptible audio adversarial examples. This ap-
proach mimics the adversarial strategy to add targeted
proportional additive Gaussian noise in order to revert
an adversarial example back to its original transcription.
Our defense performs similarly to other defenses yet is the
first randomized or probabilistic strategy. Additionally,
we demonstrate the challenges that arise when applying
defenses against adversarial examples for images to audio
adversarial examples.

1 Introduction

Automatic speech recognition (ASR) technology has been
incorporated into the lives of people around the globe.
Providing advantages in both convenience and accessibil-
ity, so-called digital assistants are present in the majority
of personal devices. Users can issue verbal commands to
their devices via the digital assistant which will parse their
speech using ASR, allowing the intended function to be
executed by the device. This has facilitated hands-free
device interaction and is used by Amazon Alexa [5], Ap-
ple Siri [6], Google Home [1], and Microsoft Cortana [2]
to do everything from answering calls and playing music
to shopping online and managing a smart home system.

These digital assistants, as well as all other ASR sys-
tems, employ machine learning to process and transcribe
the user’s speech. Common ASR implementations such
as the Lingvo ASR system [47] and DeepSpeech [23] use
a deep-learning based speech classification approach for
Speech-to-Text transcription. While this approach pro-
vides high accuracy for speech recognition, it introduces
vulnerabilities in the form of adversarial examples.

Adversarial examples are maliciously formed inputs to
a machine learning (ML) algorithm that are misclassified,

i.e. they are recognized differently by the algorithm than
by a human user, despite differing only slightly from a
correctly classified input [9, 50]. Widely studied in the
space of image recognition [7, 11, 12, 14, 18, 19, 22, 29, 34–
37, 39–41, 46], adversarial examples are considered to be
inherent to ML with all classification algorithms being
susceptible to some degree [45].

Recent attacks have shown successful generation of ad-
versarial examples targeting ASR systems [4,13,15,21,25,
27,42,48,53,54,56,57]. These attacks seek to be impercep-
tible to human listeners while simultaneously causing the
execution of malicious commands by their devices. Criti-
cally, as many people listen to audio content from music,
podcasts, and videos at home, an attack such as that of
Carlini and Wagner that embeds adversarial commands
into music or speech files has easy access to a user’s de-
vices [13]. An overt version of this was demonstrated in a
2017 episode of the television show South Park in which
viewers’ Amazon Alexa devices were triggered with com-
mands to add items to their shopping lists [26]. These
concerns are exacerbated with the rise of untrustworthy
and unverified media sharing platforms such as YouTube
or Podcasts.

While some current attacks perform poorly when played
over the air to be picked up by a device’s microphone
[13,44], this is not an inherent limitation of the technique
and should not be relied upon for security [42, 54]. Simi-
larly, the basic access control provided by speaker recog-
nition is an insufficient defense. Speaker recognition is it-
self susceptible to adversarial examples and favors usabil-
ity over robustness, recognizing a broad range of speakers
beyond just an individual user [28].

Defenses have been proposed specifically against AAEs
that seek to identify or eliminate adversarial perturba-
tions to an input [17, 43, 55]. These are typically eas-
ily surmountable by slight modifications to an attacker’s
strategy or severely limit the accuracy of the ASR system
they seek to protect. For example, mitigation methods
have used input transformations such as downsampling
(reducing the audio sampling rate). However, these de-
fenses were shown to be ineffective against adaptive at-
tacks which are specifically designed to target a partic-
ular defense [55]. Other defenses that have been tried
in practice have attempted to detect AAEs. One such
method attempted to distort a potential adversarial per-
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turbation using preprocessing techniques and then calcu-
late the error between the transcription of the distorted
sample and the original. The sample could be deemed
adversarial based on where the error fell in regards to
a precomputed threshold [52]. However, these detection
methods are heuristic in that the aforementioned value of
threshold is based on the training dataset and the adver-
sarial generation method making them hard to extend.

Recently, in the space of image recognition, a group of
defenses for adversarial examples for images coined certi-
fied defenses have been shown to be able to provide rig-
orous guarantees against these attacks [16,30,31].

We show it is difficult to modify, generalize or extend
these certified defenses for adversarial examples on images
to defenses for AAEs. This difficulty stems from the fact
that all the certified defenses that currently exist take ad-
vantage of the adversarial strategy utilized by many vision
attacks of adding uniform low magnitude adversarial per-
turbations. However, this adversarial strategy is trivially
different because an adversary can take advantage of prin-
ciples of psychoacoustics, the scientific study of human
sound perception [32], while generating AAEs. Psychoa-
coustics can help the adversary inject adversarial noise
into the specific regions of the audio that are inaudible to
humans creating imperceptible audio adversarial ex-
amples [42,44,51]. Thus, unlike the adversarial strategy
countered by certified defenses, imperceptible AAEs are
generated by adding localized high magnitude adversarial
perturbations.

We craft an effective defense specifically for impercepti-
ble AAEs by accounting for this different adversarial strat-
egy and considering the specific regions of audio targeted
by these attacks.

We utilize the psychoacoustic property of auditory
masking to inject Gaussian noise in selected regions of
the perturbed input audio having the greatest masking
thresholds and thus the highest probability of containing
high magnitude adversarial perturbation. This defense
method proves to be effective because perturbations in-
jected during the defense are added in the same manner
and in the same relative locations with respect to fre-
quency as adversarial perturbations.

Based on the nature of our defense, it is possible for an
adversary to get around it by adding adversarial pertur-
bation to audible regions of the audio. However, in doing
this, the adversary is sacrificing imperceptibility for ad-
versarial potency. Therefore, with the implementation of
our defense, any adversarial example will either have lim-
ited effectiveness or be able to be detected by a human.

Finally, we have found that this defense prevents ad-
versarial misclassifications, while maintaining correctness
on non-adversarial data and allowing the ASR system to
recover from such an attack. While our defense performs
similarly to other defense strategies, it is the first proba-
bilistic defense for imperceptible audio adversarial exam-
ples.

2 Background and Definition

2.1 Speech Recognition

In this paper we focus on speech-to-text ASR systems
which take speech as input and output a transcription of
its contents. We let f(·) denote the ASR system. Thus, in
the case of f(x) = y, the speech input to the ASR system,
x, provides a transcription y.

2.2 Adversarial Examples

An adversary can create an adversarial example, x′ by
adding an adversarial perturbation, δA, to the input, x:
x′ = x+ δA. An adversarial example is created such that
f(x′) = y′, where y′ 6= y. An adversary may try to op-
timize for a specific preset value of y′. Such adversarial
examples are referred to as targeted. To create targeted
adversarial examples, an adversary would solve the fol-
lowing optimization problem:

argmin
δA

l(f(x+ δA), y′)

for ||δA|| < ε

where ε is the maximum allowed magnitude of the ad-
versarial perturbation. Variations of this loss function
have been used in many attacks such as those by Szegedy
et al. and Carlini and Wagner [13,50].

2.3 lp norms

Many attacks and defenses have used the lp norm to
constrain the magnitude of the adversarial perturbation
[30, 44]. These norms are denoted as || · ||p and can be
formally defined as:

||x||p = (

n∑
i=1

|xi|p)1/p

where x is a vector. For example, l2 norm, or the Eu-
clidean distance norm, is commonly used in vision attacks
to spread the adversarial perturbation throughout the im-
age, rendering it imperceptible to humans.

2.3.1 Frequency Masking Threshold

The field of psychoacoustics attempts to understand and
model the human perceptibility of audio. The natural au-
dibility of humans can be approximated by a global fre-
quency masking threshold. All signals that fall below the
threshold are imperceptible to humans. This threshold is
calculated by approximating the effect of maskers, or rel-
ative high magnitude signals. These maskers can ”mask
out” or render imperceptible adjacent signals if they fall
under the calculated local masking threshold attributed to
the masker. By compiling the effects of all the local mask-
ing thresholds in the frequency domain, a global masking
threshold can be calculated for each frame of the audio.
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We denote this global threshold as θx(s, ν), where s de-
notes the spectrum of a particular frame and ν denotes
the frequency.

These frequency masking thresholds have practical ap-
plications such as MP3 compression, in which every im-
perceptible signal that falls below the masking threshold
is removed [24]. However, just because humans cannot
hear the these masked out signals, does not mean that an
ASR system does not use them for classification. In fact,
studies have found that classification accuracy on MP3
compressed samples, especially for low bit-rates, was sig-
nificantly lower than on uncompressed audio [8].

2.3.2 Calculating the Masking Threshold

The frequency masking threshold θx(s, ν) can be calcu-
lated through the following equation:

θx(s, ν) = 10Quiet(ν) +

Nm∑
i=1

10T [b(ν),b(i)]

Here, Quiet(ν) refers to the universal absolute thresh-
old in quiet, i.e. the threshold that models the least inten-
sity sounds that humans can sense for every frequency ν.
Additionally, Nm refers to the number of maskers, while
T [b(ν), b(i)] refers to the precomputed masking effect of
the masker located at b(i) on the maskee located at b(ν).
b(·) refers to the Bark index that corresponds to a cer-
tain frequency. Note that the Bark scale is a method to
measure frequency that is motivated by the field of psy-
choacoustics. Please refer to the work by Lin and Abdulla
or the paper by Qin et al. for a more detailed explanation
of the masking threshold calculation [33,42].

2.4 Imperceptible Audio Adversarial Ex-
amples

An adversary can use the frequency masking threshold
during the optimization process to hide the adversar-
ial perturbation below the masking threshold so that it
is inaudible to humans. Such adversarial examples are
deemed imperceptible. These attacks can be generated
by adding another term to the minimized loss function
that accounts for the inaudibility of the adversarial per-
turbation. For example, Qin et al. use the following loss
function:

argmin
δA

lnet(f(x+ δA, y
′) + α× lθ(x, δA)

Here, lnet is a cross entropy loss function used to create
an adversarial example x′ that fools the ASR system into
making the targeted prediction y′. Additionally, lθ is a
loss function computed with hinge loss that constrains the
adversarial perturbation, δA, below the calculated mask-
ing threshold of x, θx. Note that α is an adaptive factor
that is controls the imperceptibility of the adversarial ex-
ample, i.e. for larger values of α a larger proportion of
the total loss can be attributed to lθ.

The attack is split into two iterative stages. During the
first stage, the adversarial perturbation is optimized to hit
the targeted transcription (α = 0). In the second stage,
the adversary attempts to maintain high adversarial ac-
curacy while trying to constrain the adversarial pertur-
bation below the masking threshold (α is tweaked until
convergence).

See Section 3 and the work by Qin et al. for more details
about their attack [42].

3 Related Works

Prior work has provided methods to generate audio adver-
sarial examples, strategies for detection and weak defense
for AAEs, and robust defense methods for adversarial ex-
amples on images. However, to the our knowledge, we
present the first specific robust defense for imperceptible
AAEs.

3.1 Attacks

3.1.1 Primitive and Norm Bounded Attacks

Zhang et al. presented one of the first untargeted
AAE generation algorithms, DolphinAttack. This
method added ultrsonic inaudible adversarial perturba-
tions, which had a frequency under 20 kHz. Additionally,
these attacks can be played over the air [57]. However,
they could be trivially defended against using a high-
pass filter. Carlini and Wagner were able to generate
targeted adversarial examples from any input audio (in-
cluding music) using Connectionist Temporal Classication
(CTC) loss and the l∞ norm to quantify the amount of
adversarial perturbation added. They were also able to
generate imperceptible, albeit impractical, AAEs by tar-
geting silence. However, their AAEs do not remain potent
when played over the air [13].Yakura et al. generate AAEs
that are targeted and robust when played over the air,
but cannot be trivially defended against like the Dolphi-
nAttack. However, these AAE introduce high magnitude
adversarial perturbations and are only effective for short
phrases consisting of two or three words. They use the l2
norm to quantify adversarial perturbation [54].

3.1.2 Imperceptible Audio Adversarial Examples

Schönherr et al., Qin et al. and Szurley and Kolter di-
verged from the work of Carlini and Wagner and Yakura
et al., which had used the lp metric to measure and restrict
the magnitude of adversarial perturbation added.

Instead, in these approaches, the principle of psychoa-
coustic hiding was used to deliberately inject adversar-
ial perturbation under the masking threshold of human
perceptibility. AAEs generated with the approach of
Schönherr et al. attacked hybrid Deep Neural Network-
Hidden Markov Model (DNN-HMM) based ASR systems
such as Kaldi [44], while Qin et al. and Szurley and Kolter
attacked Recurrent Neural Network (RNN) based ASR
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systems such as the Lingvo ASR system and DeepSpeech.
Unlike, Schönherr et al., the AAEs generated by Qin et
al. and Szurley and Kolter can also be played over the
air [42,51].

We consider the attacks by Qin et al. and Szurley and
Kolter to be state of the art, and choose to use the former
for evaluation.

3.2 Detection and Defense Methods

3.2.1 Mitigation Methods for Audio Adversarial
Examples

Additionally, rudimentary prepossessing defense methods
have been proposed to mitigate the effect of AAEs. For
example, applying MP3 compression to AAEs to remove
all signals below the human perceptibility threshold has
been proposed as a defense method for imperceptible
AAEs [17]. However, this method results in decreased
classification accuracy on benign samples. Additionally,
Subramanian et al. showed that MP3 compression is less
effective than additive white noise in defending against au-
dio adversarial examples [49]. Furthermore, some attacks
have been able to generate adversarial examples that are
robust to MP3 compression by accounting for the com-
pression during the optimization process [13]. Addition-
ally, Yang et al. also explored the effect of simple in-
put transformations such as quantization (rounding the
amplitude of sampled audio to the nearest integer multi-
ple of a predefined constant) and downsampling (reducing
the audio sampling rate) They found that these meth-
ods were successful in preventing adversarial misclassifi-
cations. However, these defenses were only able to re-
cover the benign transcription for 63.8% of AAEs, and
they moderately impacted the classification accuracy of
benign samples. Also, these these transformations were
not able to defend against adaptive attacks and were not
tested on imperceptible AAEs [55].

3.2.2 Detection Methods for Audio Adversarial
Examples

Methods to detect adversarial examples have also been
extensively studied. Yang et al. took advantage of the
property of temporal dependence (correlations between
successive waveform segments) of audio to detect AAEs
by only transcribing a portion of the audio and comparing
the transcription to a transcription of the whole audio us-
ing word error rate (WER) [55]. Rajaratnam et al. detect
AAE by calculating a flooding score defined as the amount
of random noise that needs to be added to change the clas-
sification of particular audio input. If a flooding score falls
below a predetermined threshold, the input is determined
to be an AAE [43]. Tamura et al. use various processing
techniques in an attempt to remove the adversarial per-
turbation. They then compare the transcription of the
original input and the scrubbed input and deem the in-
put adversarial if the character error rate (CER) between

the two above a predetermined threshold. Although these
methods are fairly successful in detecting adversarial ex-
amples, they do not allow an ASR system to recover from
an AAE. Additionally, a study by Carlini et al. on the
strength of defense and detection methods against adap-
tive attacks showed that the method proposed by Yang et
al. [55] required only a slightly higher magnitude adver-
sarial perturbation to be overcome than the preprocessing
defenses mentioned above [12]. Unfortunately, Carlini et
al. did not evaluate the detection methods devised by Ra-
jaratnam et al. or Tamura et al. but similar results can
be expected because they all use a threshold optimized
through experimental data. Also, the empirical basis of
these thresholds means that it cannot be broadly applied
to all ASR systems and AAE generation algorithms.

3.2.3 Defense Methods for Vision Attacks

However, defenses for image adversarial examples have
been demonstrated to be effective. Certified defenses,
which are grounded in information theory, ensure the ro-
bustness of the defense for up to a certain threshold of ad-
versarial perturbation added to the original input image.
For example, PixelDP inserts a noise layer, which con-
tains neurons whose values are randomly sampled from
Gaussian or Laplacian distributions, into the classifica-
tion network during both training and testing. This work
quantifies adversarial perturbation through the l1 and l2
norms [30]. Cohen et al. add onto the work of Lecuyer et
al. by developing tighter robustness certificates for the l2
norm case [16]. While these defenses are promising meth-
ods to mitigate adversarial examples generated on images,
their use of lp norms cannot adapt well to imperceptible
AAE, which are based in psychoacoustics [42].

4 Outline of Defense

In this section we present our method to defend against
imperceptible AAEs. The basic premise of this defense is
to add a defensive perturbation (δD) to raw inputs before
they are fed into the ASR system. However, unlike the
certified defenses for images [16,30,31], the defensive per-
turbation added at each frequency band is proportional
to the value of the masking threshold for each frequency.
This defensive strategy is effective because it allocates de-
fensive perturbation dynamically based on relative magni-
tudes of adversarial perturbation at each frequency. The
full defense generation process is outlined in Algorithm 1
and depicted in Figure 1.

4.1 Prepossessing the Raw Input

In order to calculate the masking threshold, we must
transform the data to the frequency domain. To do this,
we use the same approach as Qin et al. by applying a
short time Fourier transform (STFT) to the input audio
originally in the time domain (Figure 1.a) with a window
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Figure 1: Overview of the defense process: Stage (a)
consists of the raw speech in the time-domain. In Stage
(b), this raw audio is transformed into the frequency do-
main using a Short-time Fourier transform (STFT). Dur-
ing Stage (c), this transformed audio is used to calculate
the frequency masking threshold (green curve). In Stage
(d), the defensive perturbation (red curve) is calculated
from the frequency masking threshold. The outputs of
Stage (b) and (d) are summed and serve as the input to
the ASR system in Stage (e). Finally, this input is fed
through the trained ASR system (neural network) to ren-
der a final transcription.

size of 2048 samples and a hop size (the number of samples
by which the Hann window is shifted) of 512 samples [42].
This produces a spectra of s frames, where s depends on
the duration of the input audio, each in the frequency do-
main (Figure 1.b). Because we are using a window size of
2048 for the STFT, the frame size is 1025.

4.2 Calculating the Masking Threshold

We calculate the global masking threshold of each au-
dio waveform using the same method as Qin et al. This
method is presented in the background section. The re-
sult is the array θx(s, ν) which contains the global mask-
ing thresholds at each frequency ν of the spectrum of each
frame s (Figure 1.c). For specifics on how to calculate the
masking threshold please refer to the attack paper by Qin
et al. [42].

4.3 Calculating the Defensive Perturba-
tion

As previously mentioned, the defensive perturbation,
δD(s, ν), for a particular audio sample is based on the au-
dio masking threshold of that sample (Figure 1.d). To do
this, for each frequency value of each frame of the original
audio after a STFT, we sample from a Gaussian distri-
bution with the standard deviation being a multiple of
the threshold amplitude value for that bin and frequency
value, θx(s, ν):

δD(s, ν) = max(0, N(µ, σ))

We use the max function here to ensure that the ampli-
tude is positive. The values of µ and σ control the magni-
tude of the defensive perturbation. Because the amount

of noise added at a specific frequency is dependent on the
masking threshold value at that frequency, µ and σ are
functions of the masking threshold θx(ν).

After trying various distributions, we found that the
best results are achieved by setting µ = 3× σ as:

µ := 3k × θx(s, f)

σ := k × θx(s, f)

where k denotes the proportionality. We choose this rela-
tionship between µ and σ as an example because, due to
the empirical rule of statistics, there is a less than 0.5%
probability that the sample from the Gaussian distribu-
tion is less than 0. Thus, this relationship allows us to
avoid consistently adding a 0 defensive perturbation due
to the use of the max function. This allows us to estab-
lish a baseline as we can gauge the full effect of accuracy
due to Gaussian noise. For example, for k = 1

6 the region
under the masking threshold is flooded with our defensive
perturbation, which is the same region where the adver-
sarial perturbation is most likely to be added.

4.4 Apply Defensive Perturbation

We can apply the defensive perturbation δD(s, ν) to the
original audio after STFT to form the defensively per-
turbed audio (Figure 1.e): xD(s, f):

xD(s, f) = x(s, f) + δD(s, f)

Finally note that we only modify the amplitudes of the
input, thus, the phase of xD is the same as that of x.

Algorithm 1 Application of Defense

Input: audio waveform in the frequency domain:
x(s, ν), calculated masking threshold of the audio wave-
form: θx(s, ν), set of bins: Sb, set of frequencies in each
bin: Sν , proportionality factor: k
Notation: bin: b, frequency: ν, defensive pertur-
bation: δD(s, ν), mean: µ(s, ν), standard deviation:
σ(s, ν), defensively perturbed audio: xD(s, ν)
for b in Sb do
for ν in Sν do
σ(s, ν)← k × θx(s, ν)
µ(s, ν)← 3k × θx(s, ν)
δD(s, ν)← N(µ(s, ν), σ(s, ν))
xD(s, ν) = x(s, ν) + δD(ν)

end for
end for

5 Experimental Evaluation

Here we will present the results of experiments that mea-
sure the effectiveness of our defense in terms on adver-
sarial effectiveness, benign accuracy, and recovery against
imperceptible AAEs.
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5.1 Evaluation Dataset and Attack

5.1.1 LibriSpeech Dataset

For experimentation, we use the LibriSpeech dataset,
which is a freely available and downloadable corpus of
1000 hours of human speech sampled at a rate of 16
kHz [38].

5.1.2 Iterative Imperceptible Adversarial Exam-
ple Generation Algorithm

We evaluate our defense on the state-of-the-art adversarial
examples generated by Qin et al. that are built to be
imperceptible [42]. This is a two stage iterative attack.
The first stage focuses on fooling the ASR system into
making the targeted prediction, while the second stage
focuses on decreasing the perceptibly of the adversarial
examples. This attack is build using Lingvo, which is
a framework used to build sequenced-based Tensorflow
models [47]. Please refer to Section 2 and 3 for the specific
of the attack.

5.2 Evaluation Metrics

5.2.1 Word Error Rate

We employ the word error rate metric (WER) to eval-
uate our defense and compare its efficacy to other de-
fense strategies. This metric calculates a percentage er-
ror between the ground truth, intended transcription, and
the hypothesis, actual transcription returned by the ASR
system. The word error rate is calculated as: WER =
S+D+I

N , where S, D, and I are the number of substitu-
tions, deletions, and insertions between the intended and
actual transcription, and N is the number of words in the
intended transcription. Generally, the higher the WER
the greater the difference between the intended and ac-
tual audio transcription. However, for our results, three
specific cases are important:

• WER = 0% In this case the number of substitu-
tions, insertions and deletions is 0, indicating that
the intended transcription perfectly matches the ac-
tual transcription.

• WER = 100% This case occurs when the ASR
system does not return a transcription, and thus,
S +D + I = N

• WER > 100% Here, the WER exceeds 100% when
the intended transcription is vastly different, and usu-
ally shorter, than the actual transcription.

5.2.2 Measurements of Interest

When evaluating our defense, we measure the following:

• Adversarial-Adversarial WER: This is the WER be-
tween the adversarially targeted transcription and
the actual transcription of the adversarial examples

returned by the ASR system. We desire high values
for this measurement as this would indicate that the
adversary is unsuccessful as they are not able to hit
their targeted transcription.

• Benign-Benign WER: Because we cannot discrimi-
nate between adversarial and benign samples as in-
puts, we must apply our defense to all inputs. Thus,
we need to preserve high accuracy on benign samples
even after our defense is applied. This metric mea-
sures the WER between the intended benign tran-
scription and the actual transcription of a benign
sample returned by the ASR system. The lower the
WER, the higher the benign accuracy.

• Adversarial-Benign WER: Finally, we wish to under-
stand how well our defense reverts the actual tran-
scriptions of adversarial examples back to the original
transcription before the adversarial perturbation was
added. To do this, we calculate the WER between
the actual transcription of adversarial examples re-
turned by the ASR system to their corresponding
benign transcriptions. Lower values of this WER
indicate a greater reversion to the original transcrip-
tion.

5.3 Finding an Optimal k

In this section, we use the values of the mean and stan-
dard deviation of the Gaussian distribution from which
the defensive perturbation is sampled of 3k × T (b, ν) and
k × T (b, ν) respectively. Because larger values of k indi-
cate that our defense adds more random noise added to
the input and vice versa, we can experiment with different
values of k to find the optimal magnitude of the defensive
perturbation. The results are shown in Figure 2.

For very low values of k (log(k) ≈ 9), note that
the adversary is highly successful, as the Adversarial-
Adversarial WER is close to zero, indicating that the
adversarially targeted transcription meets the actual tran-
scription of the adversarial example. From the figure, it is
also clear that there are three distinct regions. The first
is in the range −9 < log(k) < −6, where the Adversarial-
Adversarial WER begins to increase. In the second region
(−6 < log(k) < −3), the Adversarial-Adversarial WER
and the Adversarial-Benign WER plateau at 100%. Re-
call that when WER = 100% the ASR system renders no
transcription. Thus, in this region, the adversary’s per-
turbation is interacting with our defensive perturbation
to fool the ASR system into not detecting any intelligible
speech. Finally, the third region (−2 < log(k) < 0) is
optimal region because in this region we achieve a high
Adversarial-Adversarial WER, and low Benign-Benign
and Adversarial-Benign WER. Note that when log(k) >
0 the Benign-Benign WER and Adversarial-Adversarial
WER begin to increase. We have found that this increase
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Defense Adversarial-Adversarial (WER) Benign-Benign (WER) Adversarial-Benign (WER)
MP3 132.44% 6.41% 14.58%

Quan-256 134.59% 4.86% 9.96%
Ours (k = −1.50) 135.30% 3.09% 19.42%

Table 1: WER comparisons between defense strategies

Figure 2: Optimizing k: The effect of manipulat-
ing k is clear from this graph. The optimal region
for k, which increases the Adversarial-Adversarial WER
and decreases both the Benign-Benign WER and the
Adversarial-Benign WER, is −2 < log(k) < 0

is due to the presence of too much noise from the defen-
sive perturbation in the system such that the accuracy of
the ASR system steadily decreases.

5.4 Comparison to Existing Defenses

We compare the results of our defense to those of MP3
compression and quantization, the most successful defen-
sive method used by Yang et al. Through the process of
quantization, all values of the sampled audio are rounded
to the nearest multiple of some constant q. To be con-
sistent with Yang et al. we set q = 256, and denote this
defense as Quan-256 [55]. The results are shown in Table
1.

By these results, it is clear that our defense is com-
parable to those of Quan-256 and MP3 compression.
For example, our defense maintains benign accuracy
(low Benign-Benign WER) and disrupts the transcription
of the adversarial example (high Adversarial-Adversarial
WER) more so than the Quan-256 and the MP3 compres-
sion defense. However, it performs worse than the other
defenses in the reversion of transcriptions of adversarial
examples back to the original transcriptions as shown by
the higher Adversarial-Benign WER.

However, it is important to note that the quantization
and MP3 compression defenses are deterministic processes
and are thus easily able to be thwarted if the adversary
has knowledge of the defense. An attack in such a case
is called an adaptive adversarial example. For example,
Yang et al. state that ”all the adversarial audios can be
resistant against quantization transformations and it only
increased a small magnitude of adversarial perturbation,

which can be ignored by human ear” [55]. Similarly, as
mentioned, Carlini and Wagner, on which the Qin et al.
attack used in this paper is based, developed an attack
which was robust against MP3 compression by optimizing
a modified loss function that accounts for the compression
[13]. On the other hand, our defense is probabilistic, as
we randomly sample from Gaussian distributions at each
frequency value. Although this has not yet been tested
experimentally, such a method is theorized to be more
robust against adaptive attacks due to the results of the
similar randomized certified defenses in the image domain
[16,30,44] . See Section 7 for more information about how
such attacks could be generated.

6 Discussion

Most previous defenses for adversarial examples, espe-
cially certified defenses, fail to represent the adversar-
ial strategy in its full complexity. These defenses, use
lp norms to quantify the adversarial perturbation added,
which heavily and unrealistically restricts the adversarial
strategy. Thus, while the security guarantees presented by
certified defenses that use lp norms seem promising, the
associated adversarial restrictions render such strategies
ineffective and impractical.

The imperceptible audio adversarial examples that we
study in this paper further prove that lp will become ob-
solete as adversarial examples become more robust and
imperceptible. However, using qualities of human percep-
tion during adversarial example generation is not limited
to the audio domain. For example, in the future, an ad-
versary might use the findings of the field of visual per-
ception by using psychovisual factors such as luminance,
lightness, and contrast to choose their adversarial pertur-
bation [10]. In fact, work has been done to identify human
perceptibility thresholds of images [3,20]. These adversar-
ial examples would easily fool current defenses that use
the lp norm. Although such attacks do not yet exist for
images, based on the rapid growth of the body of work
under the umbrella of adversarial machine learning, these
adversarial examples are inevitable.

Therefore, when creating a defense for these more ro-
bust adversarial examples, we need to be cognizant of the
corresponding fields of psychological perception and the
associated complex adversarial strategies. It is imperative
that, defense strategies use latent qualities of the input
data e.g. masking thresholds, as these are employed by
smarter adversaries during the adversarial optimization
process. In this work we make the first strides by demon-
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strating how such a defense can be created by using the
knowledge of the location of adversarial perturbations to
directly target and mitigate its effect. In the future, we
hope that similar defense strategies will follow in the fields
of vision, natural language, etc.

7 Future Work

There are a few future directions for this project. First, in
this current work, we choose to set the mean of the distri-
bution from which we sample our defensive as three time
the standard deviation. Parameter tuning, in which we
optimize the values of this mean and standard deviation,
could be used to achieve better results.

Additionally, we can generate adaptive adversarial ex-
amples in the future. Such adversarial examples will be
created with knowledge of the k of our defense during
generation process. To do this, the adversary uses Expec-
tation over Transformation introduced by Athalye et al.,
where the expectation of the loss function is optimized
over the set of potential transformations (t ∼ T ) [7]. In
our case, T is equivalent to the Gaussian distribution from
which we sample our defensive perturbation. Our defense
is successful against these adaptive attacks attacks if they
fail when our defense is applied or require a more audible
perturbation to force the adversarially targeted predic-
tion.

8 Conclusion

In this paper, we present a defense specifically designed
to counter imperceptible adversarial examples. This de-
fense strategy applies additive noise sampled from Gaus-
sian distributions proportional to the masking threshold
at each frequency value to the input to an automatic
speech recognition system. This defense achieves simi-
lar accuracy to existing defenses, while also providing a
probabilistic strategy that is difficult to counter even if
the adversary has knowledge of the defense. Also, unlike
previous defenses, this work chooses a realistic and robust
adversarial strategy. Finally, this paper ushers in a new
defensive strategy of mimicking the adversarial approach
in a defense.
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N., Laskov, P., Giacinto, G., and Roli, F. Evasion attacks
against machine learning at test time. Lecture Notes in Com-
puter Science (2013), 387–402.

[10] Bouman, C. A. The visual perception of images.
https://engineering.purdue.edu/~bouman/ece637/notes/

pdf/Vision.pdf, January 2020.
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