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p-PROCESSOR CUP GAME ON n CUPS

n cups filler adds p units of water emptier chooses p cups and
(with at most 1 unit per cup) removes (at most) 1 unit from each

backlog

= fill of
fullest cup

I Filler: wants high backlog
I Emptier: wants low backlog

In this talk we take the side of the filler (we want high backlog)



p-PROCESSOR CUP GAME ON n CUPS

n cups filler adds p units of water emptier chooses p cups and
(with at most 1 unit per cup) removes (at most) 1 unit from each

backlog

= fill of
fullest cup

I Filler: wants high backlog
I Emptier: wants low backlog

In this talk we take the side of the filler (we want high backlog)



p-PROCESSOR CUP GAME ON n CUPS

n cups filler adds p units of water emptier chooses p cups and
(with at most 1 unit per cup) removes (at most) 1 unit from each

backlog

= fill of
fullest cup

I Filler: wants high backlog
I Emptier: wants low backlog

In this talk we take the side of the filler (we want high backlog)



p-PROCESSOR CUP GAME ON n CUPS

n cups filler adds p units of water emptier chooses p cups and
(with at most 1 unit per cup) removes (at most) 1 unit from each

backlog

= fill of
fullest cup

I Filler: wants high backlog
I Emptier: wants low backlog

In this talk we take the side of the filler (we want high backlog)



p-PROCESSOR CUP GAME ON n CUPS

n cups filler adds p units of water emptier chooses p cups and
(with at most 1 unit per cup) removes (at most) 1 unit from each

backlog

= fill of
fullest cup

I Filler: wants high backlog
I Emptier: wants low backlog

In this talk we take the side of the filler (we want high backlog)



IMPORTANT APPLICATION: WORK SCHEDULING

n tasks new work arrives allocate p processors to tasks
(filler) (emptier)

backlog

= farthest behind
on any task

(cups)



PREVIOUS WORK 1,2,3

Adaptive filler: can see emptier’s actions

Theorem
With an adaptive filler optimal backlog is Θ(log n).

Oblivious filler: can not see emptier’s actions (“blindfolded”)

Theorem
With an oblivious filler optimal backlog is between Ω(log log n) and
O(log log n + log p) (with high probability in short games).

1[C. L. Liu. Scheduling algorithms for multiprocessors in a hard real-time environment. JPL Space Programs
Summary, 1969.]

2[William Kuszmaul. Achieving optimal backlog in the vanilla multi-processor cup game. SODA, 2020.]
3[M. Bender, M. Farach-Colton, and W. Kuszmaul. Achieving optimal backlog in multi-processor cup games. In

Proceedings of the 51st Annual ACM Symposium on Theory of Computing (STOC), 2019.]



THIS TALK

Our Question: What if p can change?

Variable-Processor Cup Game:
Each round the filler can change p

Modification seems small...



OUR RESULT

The variable-processor cup game and the
p-processor cup game are fundamentally different!



ADAPTIVE FILLER LOWER BOUND ON BACKLOG

Theorem
There is an adaptive filling strategy that achieves backlog

Ω(n1−ε)

for any constant ε > 0 in running time

2O(log2 n).



ADAPTIVE FILLER LOWER BOUND ON BACKLOG

Theorem
There is an adaptive filling strategy that achieves backlog

Ω(n)

in running time
O(n!).



UPPER BOUND ON BACKLOG

Corollary

A greedy emptier never lets backlog exceed

O(n).

This matches our lower bound!

Corollary follows from more general theorem:

Theorem
A greedy emptier maintains the invariant:

Average fill of k fullest cups ≤ 2n− k.



OBLIVIOUS FILLER LOWER BOUND ON BACKLOG

Theorem
There is an oblivious filling strategy that achieves backlog

Ω(n1−ε)

for constant ε > 0 with probability at least 1− 2− polylog(n) in
running time 2O(log2 n) against a greedy-like emptier.

∆-greedy-like emptier:

> ∆ > ∆ > ∆ > ∆



Adaptive Filler
Lower Bound
Proof Sketch



AMPLIFICATION LEMMA

Lemma
Given a strategy f for achieving backlog f (n) on n cups, we can
construct a new strategy f ’ that achieves backlog

f ′(n) ≥ (1− δ)
L∑
`=0

f (nδ`(1− δ))

for parameters L ∈ N, 0 < δ � 1/2.
If the running time of f (n) is T(n) the running time of f ′(n) satisfies

T′(n) ≤ n
L∑
`=0

nδ`T(nδ`(1− δ)).



PROOF META-STRUCTURE

I A starts as the δn fullest cups, B as the (1− δ)n other cups.
I Repeatedly apply f to B and swap generated cup into A.
I Decrease p, recurse on A.

+(1− δ)f ((1− δ)n)
f ((1− δ)n)

−δf ((1− δ)n)δn

(1− δ)n

A B



AMPLIFICATION LEMMA PROOF SKETCH

A B

Instantiate A and B



AMPLIFICATION LEMMA PROOF SKETCH

A B

Filling Strategy: Place 1 fill in each cup in A, try to apply f to B.



AMPLIFICATION LEMMA PROOF SKETCH

A B

If the emptier neglects A then the average fill of A rises!
We repeat our strategy many times; if the emptier neglects A too
many times we get the desired backlog in A.



AMPLIFICATION LEMMA PROOF SKETCH

A B

If emptier doesn’t neglect A filler can apply f to B



AMPLIFICATION LEMMA PROOF SKETCH

A B

Get a cup with high fill in B, swap it into A



AMPLIFICATION LEMMA PROOF SKETCH

A B

Note: swaps increase average fill of A, decrease average fill of B.



AMPLIFICATION LEMMA PROOF SKETCH

A B

Apply f to B again



AMPLIFICATION LEMMA PROOF SKETCH

A B

Swap cup into A again



AMPLIFICATION LEMMA PROOF SKETCH

A B

Swap this cup into A.



AMPLIFICATION LEMMA PROOF SKETCH

A B

Eventually average fill of A is at least (1− δ)f (n(1− δ)).
Average fill of B is −(δ)f (n(1− δ)).



AMPLIFICATION LEMMA PROOF SKETCH

A B

Recurse on A for L levels of recursion.
Problem size shrinks by a factor of δ each time.



AMPLIFICATION LEMMA PROOF SKETCH

A B

f ′(n) ≥ (1− δ)
L∑
`=0

f (nδ`(1− δ))



ADAPTIVE FILLER LOWER BOUND

Let ε > 0 be any constant. There exists δ = Θ(1) such that by
repeated amplification we get:

Theorem
There is an adaptive filling strategy that achieves backlog Ω(n1−ε) in
running time 2O(log2 n).

Θ(log n)

f(log1/(1−δ) n)

f(log1/(1−δ) n)−1

.

.

.



EXTREMAL ADAPTIVE FILLER LOWER BOUND

By repeated amplification using δ = Θ(1/n) we get:

Theorem
There is an adaptive filling strategy that achieves backlog Ω(n) in
running time O(n!).

Θ(n)

fn/n0

fn/n0−1

fn/n0−2

.

.

.



OPEN QUESTIONS

I Can we extend the oblivious lower bound construction to
work with arbitrary emptiers?

I Are there shorter more simple constructions?



ACKNOWLEDGEMENTS

I My mentor William Kuszmaul
I MIT PRIMES
I My Parents



Question Slides



UPPER BOUND PROOF SKETCH

Induct on t. Fix k. Define sets of cups:
I A: (emptied from) ∩ (k fullest in St) ∩ (k fullest in St+1)
I B: (emptied from) ∩ (k fullest in St) ∩ (not k fullest in St+1)
I C: AC is the k fullest cups in St+1

µk(St+1) is largest if fill from BC is pushed into A

A B C

+|BC|

−|A|

A B C



NEGATIVE FILL

In lower bound proofs we allow negative fill
I Measure fill relative to average fill
I Important for recursion
I Strictly easier for the filler if cups can zero out



SINGLE-PROCESSOR LOWER BOUND

Filling strategy:
Distribute water equally amongst cups not yet emptied from.

1

n
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SINGLE-PROCESSOR LOWER BOUND

Filling strategy:
Distribute water equally amongst cups not yet emptied from.

Achieves backlog:

1
n

+
1

n− 1
+ · · ·+ 1

2
= Ω(log n).



SINGLE-PROCESSOR UPPER BOUND

A greedy emptier – an emptier that always empties from the
fullest cup – never lets backlog exceed O(log n).

Definitions

I St: state at start of round t
I It: state after the filler adds water on round t, but before

the emptier removes water
I µk(S): average fill of k fullest cups at state S.



SINGLE-PROCESSOR UPPER BOUND PROOF

Proof: Inductively prove a set of invariants:

µk(St) ≤
1

k + 1
+ . . .+

1
n
.

Let a be the cup that the emptier empties from on round t

If a is one of the k fullest cups in St+1:

µk(St+1) ≤ µk(St).

Otherwise:

µk(St+1) ≤ µk+1(It) ≤ µk+1(St) +
1

k + 1
.



PREVIOUS WORK ON CUP GAMES

I The Single-Processor cup game (p = 1) has been tightly
analyzed with oblivious and adaptive fillers (i.e. fillers
that can’t and can observe the emptier’s actions).

I The Multi-Processor cup game (p > 1) is substantially
more difficult. With an adaptive filler:
I Kuszmaul established upper bound of O(log n).4
I We established a matching lower bound of Ω(log n).

I The multi-processor cup game with an oblivious filler has
not yet been tightly analyzed.

I Variants where valid moves depend on a graph have been
studied.

I Variants with resource augmentation have been studied.
I Variants with semi-clairvoyance have been studied.

4William Kuszmaul. Achieving optimal backlog in the vanilla multi-processor cup game. SIAM, 2020.



PREVIOUS WORK — p = 1
Single-processor cup game
Adaptive filler:
I Ω(log n) lower bound
I O(log n) upper bound

Oblivious filler (can’t see emptier’s actions): 5

I Ω(log log n) lower bound
I O(log log n) upper bound (with good probability in short

games)

5[M. Bender, M. Farach-Colton, and W. Kuszmaul. Achieving optimal backlog in multi-processor cup games. In
Proceedings of the 51st Annual ACM Symposium on Theory of Computing (STOC), 2019.]



PREVIOUS WORK — RESTRICTED VERSIONS

Cup flushing game (emptier can completely empty cups):6

I Ω(log log n) lower bound
I O(log log n) upper bound

Bamboo Garden Trimming (filler always adds same amount):7

I 2 lower bound
I 2 upper bound

Cups are nodes in a graph, moves restricted based on graph
structure. D is the diameter of the graph.
I Ω(D) lower bound
I O(D) upper bound

6[P. F. Dietz and R. Raman. Persistence, amortization and randomization. In Proceedings of the Second An- nual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 78–88, 1991.]

7[Bilò, Davide, Luciano Gualà, Stefano Leucci, Guido Proietti, and Giacomo Scornavacca. ”Cutting Bamboo
Down to Size.” arXiv preprint arXiv:2005.00168 (2020).]



Oblivious Filler
Lower Bound



OBLIVIOUS FILLER LOWER BOUND

Definition
Oblivious Filler: Can’t observe the emptier’s actions

I Classically emptier does better in the randomized setting.
I But not in the variable-processor cup game!
I We get the same lower bound as with an adaptive filler in

quasi-polynomial length games!



OBLIVIOUS FILLER LOWER BOUND

Definition
∆-greedy-like emptier:
Let x, y be cups. If fill(x) > fill(y) + ∆ then a ∆-greedy-like
emptier empties from y only if it also empties from x.

Oblivious filler can achieve backlog Ω(n1−ε) for ε > 0 constant
in running time 2polylog(n) against a ∆-greedy-like emptier
(∆ ≤ O(1)) with probability at least 1− 2− polylog(n).



FLATTENING

Definition
A cup configuration is R-flat if all cups have fills in [−R,R].

Proposition

Oblivious filler can get a 2(2 + ∆)-flat configuration from an R-flat
configuration against a ∆-greedy-like emptier in running time O(R).



OBLIVIOUS FILLER: CONSTANT FILL

Getting constant fill in a known cup is hard now. Strategy:
I Play many single-processor cup games on Θ(1) cups

blindly. Each succeeds with constant probability.
I By a Chernoff Bound with probability 1− 2−Ω(n) at least a

constant fraction nc of these succeed.
I Set p = nc.
I Fill nc known cups; because emptier is greedy-like it must

focus on the nc cups with high fill before these cups.
I Recurse on the nc known cups with high fill.



OBLIVIOUS AMPLIFICATION LEMMA

Almost identical to the Adaptive Amplification Lemma!

Lemma
Given a strategy f for achieving backlog f (n) on n cups, we can
construct a new strategy that achieves backlog

f ′(n) ≥ φ · (1− δ)
L∑
`=0

f ((1− δ)δ`n)

for parameters L ∈ N, 0 < δ � 1/2 and constant φ ∈ (0, 1) of our
choice against a greedy-like emptier.

(Note: Lemma is actually more complicated than this.)



OBLIVIOUS FILLER LOWER BOUND

Theorem
There is an oblivious filling strategy that achieves backlog

Ω(n1−ε)

for constant ε > 0 with probability at least 1− 2− polylog(n) in
running time 2O(log2 n) against a greedy-like emptier.

Achieve this probability by a union bound on 2polylog(n) events.

Proof notes:
I Similar to adaptive filler proof
I need larger base case for union bound to work; this doesn’t

harm backlog though


