The Variable-Processor Cup Game

Alek Westover

Belmont High School

June 7, 2020

p-processor CUP GAME ON *n* CUPS

n cups

filler adds p units of water (with at most 1 unit per cup)

removes (at most) 1 unit from each

- ► Filler: wants high backlog
- Emptier: wants low backlog

In this talk we take the side of the filler (we want high backlog)

IMPORTANT APPLICATION: WORK SCHEDULING

UID root root root root root root	PID 1 2 4 6 7 8 9	~]\$ p PPID 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	s c o o o o o o o o	ef 2019 2019 2019 2019 2019 2019 2019 2019	TTY ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?	TIME 00:19:04 00:00:01 00:00:00 00:06:06 00:00:00 00:00:00 00:00:00 00:07:12 00:00:00	CMD /usr/lib/systemd/ [kthreadd] [kworker/0:0H] [ksoftirqd/0] [migration/0] [rcu_bh] [rcu_sched] [ru_sched/srpin]	1 2 3 4 Merr Swp	C C C C C C			1.32G/	14.6%] 2.6%] 8.0%] 2.0%] /8.00G] /3.00G]		Task Load Upti	ks: 39 d aver ime: 2	93, 116 rage: 1 24 days	5 t .16	thr; 1 5 1.71 18:15:1	runnin 2.04 3	9
root				2019		00:02:21	[watchdog/0]	PID	USER	PRI	NI	VIRT	RES	S	CPU%	MEM%	TIME	+	Comman	d	
root				2019		88:88:88	[kdevtmpfs]	81938	alekwes	to 24	0	5472M	1.82M	2	74	22	18.53	72	/Annli	cation	/iTerm an
root				2019		00:00:00	[netns]	200000	MLCKWC3	24	0	3-11 LM	10214	-	7.7	2.0	10.33.	14	/ Appli	Cucton	JC a loc
root				2019		00:00:05	[khungtaskd]	28074	atekwes	sto 17	0	4917M	242M		2.7	3.0	1:11.	52	/Applı	cation	s/uoogle C
root				2019		88:88:88	[writeback]	28091	alekwes	to 17	0	8640M	91016		2.0	1.1	0:10.	85	/Appli	cation	s/Google C
root				2019		88:89:88	[kintegrityd]	27212	alalawaa	+0 17		E1C1M	1204		1 0	1 7	0.20	51	/Ann1 i	a ati an	/Cnatify
root	18		0	2019		00:00:00	[bioset]	27313	arekwes	10 17	0	310TW	1220		1.8	1.(0:29.	21	Appli	cacton	s/spotity.
root	19		0	2019		80:00:00	[bioset]	28080	alekwes	sto 8	0	4474M	48288	?	0.5	0.6	0:08.	20	/Appli	cation	s/Google C
root	20		0	2019		80:00:00	[bioset]	80037	alekwes	to 24	0	4196M	2576	R	03	00	0.00	18	hton		
root	21		0	2019		88:99:98	[kblockd]	300001	-l-l-v-s	1. 17		00504	2101	2	0.5	2.0	0.10	27	/41 -		10
root	22		0	2019		80:00:00	[md]	27321	arekwes	to 17	0	88288	210M		0.1	2.6	0:12.	27	/Appli	cation.	s/Spotify.
root	23		8	2019		80:00:00	[eddc-poller]	71975	alekwes	to 24	0	6094M	143M		0.1	1.8	22:58.	96	/Appli	cation	s/Dropbox.
root	24		8	2019		80:00:00	[watchdogd]	72001	alekwes	to 17	0	4861M	55752		0 1	07	4.58	61	/Annli	cation	/Dronhox
root	30		0	2019		00.00.00	[KSWapaw]	2001	arectics	10 17	0	ACCON.	05102		0.1	0.1	4.56.	10	Appli	cuctori.	S DI OPDOX.
1000	31		0	2019		00.00:00	[ksnu]	28348	alekwes	ito 17	0	8662M	95192	?	0.1	1.1	0:05.	10	/Appli	cation	s/Google C
root	33	2	0	2019	?	00:00:00	[crypto]	Hel	p <mark>F2</mark> Set	up FBS	earci	h <mark>F4</mark> Filt	ter <mark>F5</mark> Tr	ree	F65	SortBy	/ <mark>F7</mark> Nice	-	8Nice	+ <mark>F9</mark> Kil	l <mark>F10</mark> Quit

(cups)

new work arrives (filler)

allocate p processors to tasks (emptier)

PREVIOUS WORK ^{1,2,3}

Adaptive filler: can see emptier's actions

Theorem

With an adaptive filler optimal backlog is $\Theta(\log n)$ *.*

Oblivious filler: can not see emptier's actions ("blindfolded")

Theorem

With an oblivious filler optimal backlog is between $\Omega(\log \log n)$ and $O(\log \log n + \log p)$ (with high probability in short games).

¹[C. L. Liu. Scheduling algorithms for multiprocessors in a hard real-time environment. JPL Space Programs Summary, 1969.]

²[William Kuszmaul. Achieving optimal backlog in the vanilla multi-processor cup game. SODA, 2020.]

³[M. Bender, M. Farach-Colton, and W. Kuszmaul. Achieving optimal backlog in multi-processor cup games. In Proceedings of the 51st Annual ACM Symposium on Theory of Computing (STOC), 2019.]

THIS TALK

Our Question: What if *p* can change?

Variable-Processor Cup Game: Each round the filler can change *p*

Modification seems small...

OUR RESULT

The variable-processor cup game and the *p*-processor cup game are *fundamentally different*!

Adaptive Filler Lower Bound on Backlog

Theorem

There is an adaptive filling strategy that achieves backlog

 $\Omega(n^{1-\epsilon})$

for any constant $\epsilon > 0$ in running time

 $2^{O(\log^2 n)}.$

Adaptive Filler Lower Bound on Backlog

Theorem

There is an adaptive filling strategy that achieves backlog

 $\Omega(n)$

in running time

O(n!).

UPPER BOUND ON BACKLOG

Corollary

A greedy emptier never lets backlog exceed

O(n).

This matches our lower bound!

Corollary follows from more general theorem:

Theorem

A greedy emptier maintains the invariant:

Average fill of k fullest cups $\leq 2n - k$.

OBLIVIOUS FILLER LOWER BOUND ON BACKLOG

Theorem

There is an oblivious filling strategy that achieves backlog

$$\Omega(n^{1-\epsilon})$$

for constant $\epsilon > 0$ with probability at least $1 - 2^{-\operatorname{polylog}(n)}$ in running time $2^{O(\log^2 n)}$ against a greedy-like emptier.

Δ -greedy-like emptier:

Adaptive Filler Lower Bound Proof Sketch

AMPLIFICATION LEMMA

Lemma

Given a strategy f for achieving backlog f(n) on n cups, we can construct a new strategy f' that achieves backlog

$$f'(n) \ge (1-\delta) \sum_{\ell=0}^{L} f(n\delta^{\ell}(1-\delta))$$

for parameters $L \in \mathbb{N}$, $0 < \delta \ll 1/2$. If the running time of f(n) is T(n) the running time of f'(n) satisfies

$$T'(n) \le n \sum_{\ell=0}^{L} n \delta^{\ell} T(n \delta^{\ell} (1-\delta)).$$

PROOF META-STRUCTURE

- A starts as the δn fullest cups, B as the $(1 \delta)n$ other cups.
- ► Repeatedly apply *f* to *B* and swap generated cup into *A*.
- ► Decrease *p*, recurse on *A*.

Instantiate A and B

Filling Strategy: Place 1 fill in each cup in *A*, try to apply *f* to *B*.

If the emptier *neglects A* then the average fill of *A* rises! We repeat our strategy many times; if the emptier neglects *A* too many times we get the desired backlog in *A*.

If emptier doesn't neglect A filler can apply f to B

Get a cup with high fill in *B*, swap it into *A*

Note: swaps increase average fill of *A*, decrease average fill of *B*.

Apply *f* to *B* again

Swap cup into A again

Swap this cup into *A*.

Eventually average fill of *A* is at least $(1 - \delta)f(n(1 - \delta))$. Average fill of *B* is $-(\delta)f(n(1 - \delta))$.

AMPLIFICATION LEMMA PROOF SKETCH

Recurse on *A* for *L* levels of recursion. Problem size shrinks by a factor of δ each time.

AMPLIFICATION LEMMA PROOF SKETCH

Adaptive Filler Lower Bound

Let $\epsilon > 0$ be any constant. There exists $\delta = \Theta(1)$ such that by repeated amplification we get:

Theorem

There is an adaptive filling strategy that achieves backlog $\Omega(n^{1-\epsilon})$ *in running time* $2^{O(\log^2 n)}$.

EXTREMAL ADAPTIVE FILLER LOWER BOUND

By repeated amplification using $\delta = \Theta(1/n)$ we get:

Theorem

There is an adaptive filling strategy that achieves backlog $\Omega(n)$ *in running time* O(n!).

OPEN QUESTIONS

- Can we extend the oblivious lower bound construction to work with arbitrary emptiers?
- Are there shorter more simple constructions?

ACKNOWLEDGEMENTS

- ► My mentor William Kuszmaul
- ► MIT PRIMES
- ► My Parents

Question Slides

UPPER BOUND PROOF SKETCH

Induct on *t*. Fix *k*. Define sets of cups:

- *A*: (emptied from) \cap (*k* fullest in *S*_{*t*}) \cap (*k* fullest in *S*_{*t*+1})
- ▶ *B*: (emptied from) \cap (*k* fullest in *S*_{*t*}) \cap (**not** *k* fullest in *S*_{*t*+1})
- *C*: *AC* is the *k* fullest cups in S_{t+1}

 $\mu_k(S_{t+1})$ is largest if fill from *BC* is pushed into *A*

NEGATIVE FILL

In lower bound proofs we allow *negative fill*

- Measure fill relative to average fill
- ► Important for recursion
- Strictly easier for the filler if cups can zero out

Filling strategy:

Filling strategy:

Filling strategy:

Filling strategy:

Filling strategy:

Filling strategy:

Filling strategy:

Filling strategy:

Filling strategy:

Filling strategy:

Filling strategy:

Filling strategy:

Filling strategy:

Filling strategy: Distribute water equally amongst cups not yet emptied from.

Achieves backlog:

$$\frac{1}{n} + \frac{1}{n-1} + \dots + \frac{1}{2} = \Omega(\log n).$$

SINGLE-PROCESSOR UPPER BOUND

A *greedy emptier* – an emptier that always empties from the fullest cup – never lets backlog exceed $O(\log n)$.

Definitions

- S_t : state at start of round t
- *I_t*: state after the filler adds water on round *t*, but before the emptier removes water
- $\mu_k(S)$: average fill of *k* fullest cups at state *S*.

SINGLE-PROCESSOR UPPER BOUND PROOF

Proof: Inductively prove a set of invariants:

$$\mu_k(S_t) \le \frac{1}{k+1} + \ldots + \frac{1}{n}.$$

Let *a* be the cup that the emptier empties from on round *t*

If *a* is one of the *k* fullest cups in S_{t+1} :

 $\mu_k(S_{t+1}) \le \mu_k(S_t).$

Otherwise:

$$\mu_k(S_{t+1}) \le \mu_{k+1}(I_t) \le \mu_{k+1}(S_t) + \frac{1}{k+1}.$$

PREVIOUS WORK ON CUP GAMES

- ► The Single-Processor cup game (*p* = 1) has been tightly analyzed with *oblivious* and *adaptive* fillers (i.e. fillers that can't and can observe the emptier's actions).
- ► The Multi-Processor cup game (*p* > 1) is substantially more difficult. With an adaptive filler:
 - ► Kuszmaul established upper bound of $O(\log n)$.⁴
 - We established a matching lower bound of $\Omega(\log n)$.
- The multi-processor cup game with an oblivious filler has not yet been tightly analyzed.
- Variants where valid moves depend on a graph have been studied.
- ► Variants with resource augmentation have been studied.
- ► Variants with semi-clairvoyance have been studied.

⁴William Kuszmaul. Achieving optimal backlog in the vanilla multi-processor cup game. SIAM, 2020.

Previous Work — p = 1

Single-processor cup game Adaptive filler:

- $\Omega(\log n)$ lower bound
- $O(\log n)$ upper bound

Oblivious filler (can't see emptier's actions): ⁵

- $\Omega(\log \log n)$ lower bound
- O(log log n) upper bound (with good probability in short games)

⁵[M. Bender, M. Farach-Colton, and W. Kuszmaul. Achieving optimal backlog in multi-processor cup games. In Proceedings of the 51st Annual ACM Symposium on Theory of Computing (STOC), 2019.]

PREVIOUS WORK — RESTRICTED VERSIONS

Cup flushing game (emptier can completely empty cups):⁶

- $\Omega(\log \log n)$ lower bound
- $O(\log \log n)$ upper bound

Bamboo Garden Trimming (filler always adds same amount):⁷

- ► 2 lower bound
- 2 upper bound

Cups are nodes in a graph, moves restricted based on graph structure. *D* is the diameter of the graph.

- $\Omega(D)$ lower bound
- O(D) upper bound

⁶[P. F. Dietz and R. Raman. Persistence, amortization and randomization. In Proceedings of the Second An- nual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 78–88, 1991.]

⁷[Bilò, Davide, Luciano Gualà, Stefano Leucci, Guido Proietti, and Giacomo Scornavacca. "Cutting Bamboo Down to Size." arXiv preprint arXiv:2005.00168 (2020).]

Oblivious Filler Lower Bound

Oblivious Filler Lower Bound

Definition

Oblivious Filler: Can't observe the emptier's actions

- Classically emptier does better in the randomized setting.
- But not in the variable-processor cup game!
- We get the same lower bound as with an adaptive filler in quasi-polynomial length games!

Oblivious Filler Lower Bound

Definition

 Δ -*greedy-like* emptier: Let *x*, *y* be cups. If fill(*x*) > fill(*y*) + Δ then a Δ -greedy-like emptier empties from *y* only *if* it also empties from *x*.

Oblivious filler can achieve backlog $\Omega(n^{1-\epsilon})$ for $\epsilon > 0$ constant in running time $2^{\operatorname{polylog}(n)}$ against a Δ -greedy-like emptier $(\Delta \leq O(1))$ with probability at least $1 - 2^{-\operatorname{polylog}(n)}$.

FLATTENING

Definition

A cup configuration is *R*-flat if all cups have fills in [-R, R].

Proposition

Oblivious filler can get a $2(2 + \Delta)$ *-flat configuration from an R-flat configuration against a* Δ *-greedy-like emptier in running time* O(R)*.*

OBLIVIOUS FILLER: CONSTANT FILL

Getting constant fill in a *known* cup is hard now. Strategy:

- Play many single-processor cup games on Θ(1) cups blindly. Each succeeds with constant probability.
- ► By a Chernoff Bound with probability $1 2^{-\Omega(n)}$ at least a constant fraction *nc* of these succeed.
- Set p = nc.
- ► Fill *nc* known cups; because emptier is greedy-like it must focus on the *nc* cups with high fill before these cups.
- Recurse on the *nc* known cups with high fill.

OBLIVIOUS AMPLIFICATION LEMMA

Almost identical to the Adaptive Amplification Lemma!

Lemma

Given a strategy f for achieving backlog f(n) on n cups, we can construct a new strategy that achieves backlog

$$f'(n) \ge \phi \cdot (1-\delta) \sum_{\ell=0}^{L} f((1-\delta)\delta^{\ell} n)$$

for parameters $L \in \mathbb{N}$, $0 < \delta \ll 1/2$ and constant $\phi \in (0, 1)$ of our choice against a greedy-like emptier.

(Note: Lemma is actually more complicated than this.)

Oblivious Filler Lower Bound

Theorem

There is an oblivious filling strategy that achieves backlog

$$\Omega(n^{1-\epsilon})$$

for constant $\epsilon > 0$ with probability at least $1 - 2^{-\operatorname{polylog}(n)}$ in running time $2^{O(\log^2 n)}$ against a greedy-like emptier.

Achieve this probability by a union bound on $2^{\text{polylog}(n)}$ events.

Proof notes:

- Similar to adaptive filler proof
- need larger base case for union bound to work; this doesn't harm backlog though