The Variable-Processor Cup Game

Alek Westover

Belmont High School

June 7, 2020
p-PROCESSOR CUP GAME ON n CUPS

Filler: wants high backlog
Emptier: wants low backlog

In this talk we take the side of the filler (we want high backlog)
p-PROCESSOR CUP GAME ON n CUPS

n cups

filler adds p units of water (with at most 1 unit per cup)
p-PROCESSOR CUP GAME ON n CUPS

n cups

filler adds p units of water (with at most 1 unit per cup)

emptier chooses p cups and removes (at most) 1 unit from each

Filler: wants high backlog

Emptier: wants low backlog

In this talk we take the side of the filler (we want high backlog)
p-PROCESSOR CUP GAME ON n CUPS

- **Filler**: wants high backlog
- **Emptier**: wants low backlog

In this talk we take the side of the filler (we want high backlog)

n cups

Filler adds p units of water
(with at most 1 unit per cup)

Emptier chooses p cups and
removes (at most) 1 unit from each

backlog
= fill of fullest cup
p-PROCESSOR CUP GAME ON n CUPS

n cups

Filler: wants high backlog

Emptier: wants low backlog

In this talk we take the side of the filler (we want high backlog)
Important Application: Work Scheduling

- New work arrives
- Allocate p processors to tasks
- Backlog = farthest behind on any task
Previous Work ¹,²,³

Adaptive filler: can see emptier’s actions

Theorem

With an adaptive filler optimal backlog is $\Theta(\log n)$.

Oblivious filler: can not see emptier’s actions ("blindfolded")

Theorem

With an oblivious filler optimal backlog is between $\Omega(\log \log n)$ and $O(\log \log n + \log p)$ (with high probability in short games).

¹[C. L. Liu. Scheduling algorithms for multiprocessors in a hard real-time environment. JPL Space Programs Summary, 1969.]

This Talk

Our Question: What if \(p \) can change?

Variable-Processor Cup Game:
Each round the filler can change \(p \)

Modification seems small...
Our Result

The variable-processor cup game and the p-processor cup game are *fundamentally different*!
Theorem

There is an adaptive filling strategy that achieves backlog

$$\Omega(n^{1-\epsilon})$$

for any constant $\epsilon > 0$ in running time

$$2^{O(\log^2 n)}.$$
Theorem

There is an adaptive filling strategy that achieves backlog $\Omega(n)$ in running time $O(n!)$.
Corollary

A greedy emptier never lets backlog exceed

\[O(n). \]

This matches our lower bound!

Corollary follows from more general theorem:

Theorem

A greedy emptier maintains the invariant:

\[\text{Average fill of } k \text{ fullest cups } \leq 2n - k. \]
There is an oblivious filling strategy that achieves backlog $\Omega(n^{1-\epsilon})$ for constant $\epsilon > 0$ with probability at least $1 - 2^{-\text{polylog}(n)}$ in running time $2^{O(\log^2 n)}$ against a greedy-like emptier.

Δ-greedy-like emptier:
Adaptive Filler
Lower Bound
Proof Sketch
Amplification Lemma

Lemma

Given a strategy f for achieving backlog $f(n)$ on n cups, we can construct a new strategy f' that achieves backlog

\[
f'(n) \geq (1 - \delta) \sum_{\ell=0}^{L} f(n\delta^\ell(1 - \delta))
\]

for parameters $L \in \mathbb{N}, 0 < \delta \ll 1/2$.

If the running time of $f(n)$ is $T(n)$ the running time of $f'(n)$ satisfies

\[
T'(n) \leq n \sum_{\ell=0}^{L} n\delta^\ell T(n\delta^\ell(1 - \delta)).
\]
Proof Meta-Structure

- A starts as the δn fullest cups, B as the $(1 - \delta)n$ other cups.
- Repeatedly apply f to B and swap generated cup into A.
- Decrease p, recurse on A.

\[(+ (1 - \delta)f((1 - \delta)n) - \delta f((1 - \delta)n)) \delta n \]
Amplification Lemma Proof Sketch

Instantiate A and B
Filling Strategy: Place 1 fill in each cup in A, try to apply f to B.
If the emptier *neglects* A then the average fill of A rises!
We repeat our strategy many times; if the emptier neglects A too many times we get the desired backlog in A.
If emptier doesn’t neglect A filler can apply f to B
Get a cup with high fill in B, swap it into A
AMPLIFICATION LEMMA PROOF SKETCH

Note: swaps increase average fill of A, decrease average fill of B.
AMPLIFICATION LEMMA PROOF SKETCH

Apply f to B again
Swap cup into A again
Amplification Lemma Proof Sketch

Swap this cup into A.
Eventually average fill of A is at least $(1 - \delta)f(n(1 - \delta))$.
Average fill of B is $-(\delta)f(n(1 - \delta))$.
Recurse on A for L levels of recursion.
Problem size shrinks by a factor of δ each time.
Amplification Lemma Proof Sketch

\[f'(n) \geq (1 - \delta) \sum_{\ell=0}^{L} f(n\delta^\ell (1 - \delta)) \]
Adaptive Filler Lower Bound

Let $\epsilon > 0$ be any constant. There exists $\delta = \Theta(1)$ such that by repeated amplification we get:

Theorem

There is an adaptive filling strategy that achieves backlog $\Omega(n^{1-\epsilon})$ in running time $2^{O(\log^2 n)}$.

\[f(\log_{1/(1-\delta)} n)
\]

\[f(\log_{1/(1-\delta)} n) - 1
\]

\[\vdots
\]

\[f(\log_{1/(1-\delta)} n) - 1
\]

\[\Theta(\log n) \]
By repeated amplification using $\delta = \Theta(1/n)$ we get:

Theorem

There is an adaptive filling strategy that achieves backlog $\Omega(n)$ in running time $O(n!)$.

\[\Theta(n) \]

\[\frac{f_n}{n_0} \]
\[\frac{f_n}{n_0-1} \]
\[\frac{f_n}{n_0-2} \]
\[\vdots \]
\[\frac{f_n}{n_0-k} \]
OPEN QUESTIONS

▷ Can we extend the oblivious lower bound construction to work with arbitrary emptiers?
▷ Are there shorter more simple constructions?
ACKNOWLEDGEMENTS

- My mentor William Kuszmaul
- MIT PRIMES
- My Parents
Question Slides
Upper Bound Proof Sketch

Induct on t. Fix k. Define sets of cups:

- **A**: (emptied from) $\cap (k$ fullest in $S_t) \cap (k$ fullest in S_{t+1})
- **B**: (emptied from) $\cap (k$ fullest in $S_t) \cap$ (not k fullest in S_{t+1})
- **C**: AC is the k fullest cups in S_{t+1}

$\mu_k(S_{t+1})$ is largest if fill from BC is pushed into A
NEGATIVE FILL

In lower bound proofs we allow *negative fill*

- Measure fill relative to average fill
- Important for recursion
- Strictly easier for the filler if cups can zero out
SINGLE-PROCESSOR LOWER BOUND

Filling strategy:
Distribute water equally amongst cups not yet emptied from.
SINGLE-PROCESSOR LOWER BOUND

Filling strategy:
Distribute water equally amongst cups not yet emptied from.
SINGLE-PROCESSOR LOWER BOUND

Filling strategy:
Distribute water equally amongst cups not yet emptied from.
SINGLE-PROCESSOR LOWER BOUND

Filling strategy:
Distribute water equally amongst cups not yet emptied from.
SINGLE-PROCESSOR LOWER BOUND

Filling strategy:
Distribute water equally amongst cups not yet emptied from.
SINGLE-PROCESSOR LOWER BOUND

Filling strategy:
Distribute water equally amongst cups not yet emptied from.
SINGLE-PROCESSOR LOWER BOUND

Filling strategy:
Distribute water equally amongst cups not yet emptied from.
SINGLE-PROCESSOR LOWER BOUND

Filling strategy:
Distribute water equally amongst cups not yet emptied from.
SINGLE-PROCESSOR LOWER BOUND

Filling strategy:
Distribute water equally amongst cups not yet emptied from.

\[
\frac{1}{n-3} \quad \frac{1}{n-2} \quad \frac{1}{n-1} \quad \frac{1}{n}
\]
SINGLE-PROCESSOR LOWER BOUND

Filling strategy:
Distribute water equally amongst cups not yet emptied from.

\[
\frac{1}{n} \quad \frac{1}{n-1} \quad \frac{1}{n-2} \quad \frac{1}{n-3} \quad \ldots
\]
Single-Processor Lower Bound

Filling strategy:
Distribute water equally amongst cups not yet emptied from.
SINGLE-PROCESSOR LOWER BOUND

Filling strategy:
Distribute water equally amongst cups not yet emptied from.

\[
\frac{1}{n} \quad \frac{1}{n-1} \quad \frac{1}{n-2} \quad \frac{1}{n-3} \quad \ldots \quad \frac{1}{2} \quad \frac{1}{1} \]

Single-Processor Lower Bound

Filling strategy:
Distribute water equally amongst cups not yet emptied from.
SINGLE-PROCESSOR LOWER BOUND

Filling strategy:
Distribute water equally amongst cups not yet emptied from.

Achieves backlog:

\[
\frac{1}{n} + \frac{1}{n-1} + \cdots + \frac{1}{2} = \Omega(\log n).
\]
Single-Processor Upper Bound

A *greedy emptier* – an emptier that always empties from the fullest cup – never lets backlog exceed $O(\log n)$.

Definitions

- S_t: state at start of round t
- I_t: state after the filler adds water on round t, but before the emptier removes water
- $\mu_k(S)$: average fill of k fullest cups at state S.
Single-Processor Upper Bound Proof

Proof: Inductively prove a set of invariants:

\[\mu_k(S_t) \leq \frac{1}{k+1} + \ldots + \frac{1}{n}. \]

Let \(a \) be the cup that the emptier empties from on round \(t \)

If \(a \) is one of the \(k \) fullest cups in \(S_{t+1} \):

\[\mu_k(S_{t+1}) \leq \mu_k(S_t). \]

Otherwise:

\[\mu_k(S_{t+1}) \leq \mu_{k+1}(I_t) \leq \mu_{k+1}(S_t) + \frac{1}{k+1}. \]
PREVIOUS WORK ON CUP GAMES

- The Single-Processor cup game \((p = 1)\) has been tightly analyzed with *oblivious* and *adaptive* fillers (i.e. fillers that can’t and can observe the emptier’s actions).
- The Multi-Processor cup game \((p > 1)\) is substantially more difficult. With an adaptive filler:
 - Kuszmaul established upper bound of \(O(\log n)\).
 - We established a matching lower bound of \(\Omega(\log n)\).
- The multi-processor cup game with an oblivious filler has not yet been tightly analyzed.
- Variants where valid moves depend on a graph have been studied.
- Variants with resource augmentation have been studied.
- Variants with semi-clairvoyance have been studied.

Previous Work — $p = 1$

Single-processor cup game

Adaptive filler:
- $\Omega(\log n)$ lower bound
- $O(\log n)$ upper bound

Oblivious filler (can’t see emptier’s actions):
- $\Omega(\log \log n)$ lower bound
- $O(\log \log n)$ upper bound (with good probability in short games)

Previous Work — Restricted Versions

Cup flushing game (emptier can completely empty cups):\(^6\)
- \(\Omega(\log \log n)\) lower bound
- \(O(\log \log n)\) upper bound

Bamboo Garden Trimming (filler always adds same amount):\(^7\)
- 2 lower bound
- 2 upper bound

Cups are nodes in a graph, moves restricted based on graph structure. \(D\) is the diameter of the graph.
- \(\Omega(D)\) lower bound
- \(O(D)\) upper bound

Oblivious Filler
Lower Bound
Oblivious Filler Lower Bound

Definition

Oblivious Filler: Can’t observe the emptier’s actions

- Classically emptier does better in the randomized setting.
- But not in the variable-processor cup game!
- We get the same lower bound as with an adaptive filler in quasi-polynomial length games!
Oblivious Filler Lower Bound

Definition

Δ-greedy-like emptier:
Let x, y be cups. If $\text{fill}(x) > \text{fill}(y) + \Delta$ then a Δ-greedy-like emptier empties from y only if it also empties from x.

Oblivious filler can achieve backlog $\Omega(n^{1-\epsilon})$ for $\epsilon > 0$ constant in running time $2^{\text{polylog}(n)}$ against a Δ-greedy-like emptier ($\Delta \leq O(1)$) with probability at least $1 - 2^{-\text{polylog}(n)}$.
Flattening

Definition

A cup configuration is R-flat if all cups have fills in $[-R, R]$.

Proposition

Oblivious filler can get a $2(2 + \Delta)$-flat configuration from an R-flat configuration against a Δ-greedy-like emptier in running time $O(R)$.
Oblivious Filler: Constant Fill

Getting constant fill in a known cup is hard now. Strategy:

- Play many single-processor cup games on $\Theta(1)$ cups blindly. Each succeeds with constant probability.
- By a Chernoff Bound with probability $1 - 2^{-\Omega(n)}$ at least a constant fraction nc of these succeed.
- Set $p = nc$.
- Fill nc known cups; because emptier is greedy-like it must focus on the nc cups with high fill before these cups.
- Recurse on the nc known cups with high fill.
Oblivious Amplification Lemma

Almost identical to the Adaptive Amplification Lemma!

Lemma

Given a strategy f for achieving backlog $f(n)$ on n cups, we can construct a new strategy that achieves backlog

$$f'(n) \geq \phi \cdot (1 - \delta) \sum_{\ell=0}^{L} f((1 - \delta)\delta^\ell n)$$

for parameters $L \in \mathbb{N}, 0 < \delta \ll 1/2$ and constant $\phi \in (0, 1)$ of our choice against a greedy-like emptier.

(Note: Lemma is actually more complicated than this.)
Oblivious Filler Lower Bound

Theorem

There is an oblivious filling strategy that achieves backlog

$$\Omega(n^{1-\epsilon})$$

for constant $\epsilon > 0$ with probability at least $1 - 2^{-\text{polylog}(n)}$ in running time $2^{O(\log^2 n)}$ against a greedy-like emptier.

Achieve this probability by a union bound on $2^{\text{polylog}(n)}$ events.

Proof notes:
- Similar to adaptive filler proof
- Need larger base case for union bound to work; this doesn’t harm backlog though