Visualizing and Enhancing Environment-Aware Pedestrian Trajectory Prediction for Autonomous Driving

By: Michael Gerovitch
(Mentor Dr. Igor Gilitschenski)
Content

➢ Motivation
➢ Related work
➢ Problem
➢ My approach
 ○ Data loader
 ○ Network architecture
 ○ Results + Enhancements
Motivation

➢ Autonomous driving is growing!

➢ Concerns
 ○ Pedestrian safety
 ○ Efficient/safe driving
Related Work: Multimodal Future Prediction

[Overcoming Limitations of Mixture Density Networks: A Sampling and Fitting Framework for Multimodal Future Prediction; Osama Makansi, Eddy Ing, Ozgun Cicek and Thomas Brox; University of Freiburg; 2019]
Related Work (cont.): DESIRE
Related Work (cont.): Social LSTM

(Social LSTM: Human Trajectory Prediction in Crowded Spaces; Alexandre Alahi, Kratarth Goel, Vignesh Ramanathan, Alexandre Robicquet, Li Fei-Fei, Silvio Savarese; Stanford University)
Related Work (cont.): SoPhie GAN

[SoPhie: An Attentive GAN for Predicting Paths Compliant to Social and Physical Constraints; Amir Sadeghian and Vineet Kosaraju and Ali Sadeghian and Noriaki Hirose and S. Hamid Rezatofighi and Silvio Savarese; 2018]
Related Work (cont.): Social GAN

[Social GAN: Socially Acceptable Trajectories with Generative Adversarial Networks; Agrim Gupta, Justin Johnson, Li Fei-Fei, Silvio Savarese, Alexandre Alahi; 29 Mar 2018]
Problem

➢ Complex architectures
 ○ CNN/RNN

➢ Location-awareness
 ○ Location bias map

➢ Versatility
 ○ Multiple agents
Trajectory Inference Library (TraIL)

- Multiple approaches
- Same datasets
- DESIRE, SoPhie, Behavior CNN
Our Datasets (2 environments)

[Collected from ETH main building, Zurich, by Stefano Pellegrini and Andreas Ess in 2009]

[Collected from hotel in Bahnhofstr, Zurich, by Stefano Pellegrini and Andreas Ess in 2009]
Visualizing Dataset
Data Loader

Walking paths

Pedestrian i

Displacement vector i

Pedestrian j

Displacement vector j

Displacement volume

[Pedestrian Behavior Understanding and Prediction with Deep Neural Networks; Shuai Yi, Hongsheng Li, Xiaogang Wang; 2016]
Architecture

[Pedestrian Behavior Understanding and Prediction with Deep Neural Networks; Shuai Yi, Hongsheng Li, Xiaogang Wang; 2016]
Enhancing Training

❖ Data: training, validation, evaluation

❖ Loss function

\[L = \frac{1}{N} \frac{1}{M} \sum_{n=1}^{N} \sum_{m=1}^{M} (d_{n}[2m]^2 - \hat{d}_{n}[2m]^2) + (d_{n}[2m+1]^2 - \hat{d}_{n}[2m+1]^2) \]

❖ Split training
Visuals (in progress)
Status/Future Work

➢ Location bias map improvements
 ○ Train on multiple locations

➢ Train on multiple agents
 ○ Pedestrians, cars, cyclists, scooters

➢ Multimodal approach; Comparing to other methods
Special thanks to...

- My mentor: Dr. Igor Gilitschenski

- Dr. Slava Gerovitch

- MIT PRIMES + CSAIL
Thank you for listening! Questions?