Real world application of event-based end to end autonomous driving

Yuxuan Chen Mentors: Dr. Igor Gilitschenski, Alexander Amini

Motivation

Autonomous driving cars need to handle a wide range of scenarios

Night-time Driving

No Lane Markings

Rainy Weather

How do they do it?

Autonomous Driving Pipeline

Separate problem into smaller sub-modules, tackle each independently

Sensor Fusion • What's happening around me?

- Detection
 Where are
 obstacles?
- Uncertain Localization
 Where am I relative to the obstacles?
- Planning • Where do I go?

End-to-end Learning

Learn the control directly from raw sensor data

Sensor Fusion • What's happening around me? Learned Model Underlying representation of how humans drive

Actuation • What control signals to take?

Learn the steering directly from pixel values

Problem with RGB cameras

Dynamic Range

Motion blur

Latency

Novel bio-inspired sensors that capture motion in the scene

Novel bio-inspired sensors that capture motion in the scene

Novel bio-inspired sensors that capture motion in the scene

Benefits:

- Low latency (~ 1 microsecond)
- No motion blur
- High dynamic range (140 dB instead of 60dB)

Novel bio-inspired sensors that capture motion in the scene

Benefits:

- Low latency (~ 1 microsecond)
- No motion blur
- High dynamic range (140 dB instead of 60dB)

Challenges:

• Data format of events

 $e_k = (x_k, y_k, t_k, p_k)$

- Monochromatic
- Low resolution

Our Goal

Use an event camera to drive a car in real time

Related Work: Frame-based models

Related Work: Frame-based models

Problems:

- passive training not tested on a real vehicle
- unable to capture the whole scene at low speed

[Event-based Vision meets Deep Learning on Steering Prediction for Self-driving Cars, Manqueda et al.]

Our proposed model

Thoughts: Augment the event-based model with inputs from a traditional RGB camera, so that the combined model perform at least as well as the best of the RGB-based and event-based models.

Our proposed model

Thoughts: Augment the event-based model with inputs from a traditional RGB camera, so that the combined model perform at least as well as the best of the RGB-based and event-based models.

 $90 \times 240 \times 1$

Comparison between the three models

Experiment Vehicle Setup

Experiment Dataset

2 hours of human driving around Boston on urban roads Supervise on curvature (1 / radius)

Experiment Metrics

Given ground truth value α and prediction value $\hat{\alpha}$

(Rooted Mean Sqare Error)
$$RMSE = \sqrt{rac{1}{N}\sum_{j=1}^{N}{(\hat{a}_j - a_j)^2}}$$

(Explained Variance) $EVA = 1 - rac{Var(\hat{a} - a)}{Var(a)}$

Experiment Result on dataset

Model	urban RMSE	urban EVA
PilotNet [15]	0.00694	0.108
Ours	0.00665	0.182
Maqueda et al. [18]	0.00624	0.275
Maqueda et al.		
with ROI cropping	0.00707	0.109
Maqueda et al.		
with 1-channel integration	0.00666	0.175
Maqueda et al.		
with both	0.00707	0.0907

The original event-based model performs the best, but ROI-cropping and 1-channel integration decreased its performance.

Our model, which could be seen as a mixture PilotNet and Maqueda et al. with both ROI cropping and 1-channel integration, indeed perform better than either of them.

Experiment result on real cars

Model	autonomy 66%	
PilotNet [15]		
Maqueda et al. [18]	0%	
Ours	45%	

metric:
$$autonomy = (1 - \frac{(number \ of \ interventions) \cdot 6 \ seconds}{elapsed \ time \ [seconds]}) \cdot 100$$

Discussion

PilotNet also uses Imitation learning, so why does it work better?

Discussion:

Challenges

- Event-based cameras provide structure of the scene and the motion of the camera
- The model turns out to predict the existing motion of the car rather than learning how to drive

Discussion:

Challenges

- Event-based cameras provide structure of the scene and the motion of the camera
- The model turns out to predict the existing motion of the car rather than learning how to drive

Potential solutions for the future

- Use Deep Reinforcement Learning for the model to learn the correct causation
- Work on a event-based simulation platform

Thank you! Questions?

- My mentors: Dr. Igor Gilitschenski and Alexander Amini
- Prof Daniela Rus, Distributed Robotics Lab, MIT CSAIL
- MIT PRIMES
- My parents