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Motivation

Autonomous driving cars need to handle a wide range
of scenarios
Night-time Driving No Lane Markings

Rainy Weather
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[Learning steering bounds for parallel autonomous systems, Amini et al.]



How do they do it?




Autonomous Driving Pipeline

Separate problem into smaller sub-modules, tackle each
independently

-
Sensor Fusion Detection Localization Planning
* What'’s * Where are * Where am | * Where do | go?
happening obstacles? relative to the
around me? obstacles?

[Learning steering bounds for parallel autonomous systems, Amini et al.]



End-to-end Learning

Learn the control directly from raw sensor data

@-»

Sensor Fusion Learned Model Actuation
* What's Underlying representation of how humans « What control
happening drive signals to take?
around me?

[Learning steering bounds for parallel autonomous systems, Amini et al.]



PilotNet

Learn the steering directly from pixel values

s g
_ X
steering command

[End to end learning for self-driving cars, Bojarskiet al.]
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Problem with RGB cameras

Dynamic Range Motion blur




What are event-based cameras

Novel bio-inspired sensors that capture motion in the scene

DAVIS240 from Inivation.com

[Event-based Cameras: Challenges and Opportunities, Scaramuzza et al.]



What are event-based cameras

Novel bio-inspired sensors that capture motion in the scene

DAVIS240 from Inivation.com
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[Event-based Cameras: Challenges and Opportunities, Scaramuzza et al.]
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What are event-based cameras

Novel bio-inspired sensors that capture motion in the scene

Benefits:

. DAVIS240 from Inivation.com
* Low latency (~ 1 microsecond)
*  No motion blur

* High dynamic range (140 dB instead of 60dB)
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[Event-based Cameras: Challenges and Opportunities, Scaramuzza et al.]



What are event-based cameras

Novel bio-inspired sensors that capture motion in the scene

Benefits:

Low latency (~ 1 microsecond)

No motion blur

standard
camera
output:

DVS
output:

0000000 =

Challenges:

« Data format of events
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DAVIS240 from Inivation.com

ex = (Xi» Yior tis Pr)
High dynamic range (140 dB instead of 60dB) +« Monochromatic

* Low resolution
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[Event-based Cameras: Challenges and Opportunities, Scaramuzza et al.]



Our Goal

Use an event camera to drive a car in real time

DAVIS240 from Inivation.com
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Related Work: Frame-based models

Network Architecture

Steering
Angle

Resnet FC
Event frame (CNN)
R: positive
G: negative

[Event-based Vision meets Deep Learning on Steering Prediction for Self-driving Cars, Manqueda et al.]
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Related Work: Frame-based models

Network Architecture

Steering
Angle

—

g Resnet FC
Event frame (CNN)
R: positive
G: negative

Problems:
- passive training not tested on a real vehicle
- unable to capture the whole scene at low speed

[Event-based Vision meets Deep Learning on Steering Prediction for Self-driving Cars, Manqueda et al.]
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Our proposed model

Thoughts: Augment the event-based model with inputs from a traditional RGB camera, so that the
combined model perform at least as well as the best of the RGB-based and event-based models.
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Our proposed model

Thoughts: Augment the event-based model with inputs from a traditional RGB camera, so that the
combined model perform at least as well as the best of the RGB-based and event-based models.
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Comparison between the three models
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Experiment Vehicle Setup




Experiment Dataset

2 hours of human driving around Boston on urban roads
Supervise on curvature (1 / radius)
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Experiment Metrics

Given ground truth value a and prediction value @

1 N
(Rooted Mean SqareError) JR NI S — \ ﬁ z_:

(Explained Variance) EVA — 1 . Var(a o a)

Var(a)
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Experiment Result on dataset

Model urban RMSE urban EVA

PilotNet [15] 0.00694 0.108

Ours 0.00665 0.182

Maqueda et al. [18] 0.00624 0.275
Maqueda et al.

with ROI cropping 0.00707 0.109
Maqueda et al.

with 1-channel integration 0.00666 0.175
Maqueda et al.

with both 0.00707 0.0907

The original event-based model performs the best, but ROI-cropping and 1-channel
integration decreased its performance.

Our model, which could be seen as a mixture PilotNet and Maqueda et al. with both
ROl cropping and 1-channel integration, indeed perform better than either of them.



Experiment result on real cars

Model autonomy
PilotNet [15] 66%
Maqueda et al. [18] 0%
Ours 45%

(number of interventions) - 6 seconds

metric:  gutonomy = (1 —
y=( elapsed time [seconds]

) - 100
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Discussion

PilotNet also uses Imitation learning, so why does it work better?
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Discussion:

Challenges
- Event-based cameras provide structure of the scene and the motion of the camera
- The model turns out to predict the existing motion of the car rather than learning how to drive
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Discussion:

Challenges
- Event-based cameras provide structure of the scene and the motion of the camera
- The model turns out to predict the existing motion of the car rather than learning how to drive

Potential solutions for the future

- Use Deep Reinforcement Learning for the model to learn the correct causation
- Work on a event-based simulation platform
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Thank you! Questions?

e My mentors: Dr. Igor Gilitschenski and Alexander Amini
e Prof Daniela Rus, Distributed Robotics Lab, MIT CSAIL
e MITPRIMES

e My parents



