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Autonomous driving cars need to handle a wide range 
of scenarios

 No Lane Markings Rainy WeatherNight-time Driving

[Learning steering bounds for parallel autonomous systems, Amini et al.]

Motivation
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How do they do it?
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Sensor Fusion
• What’s 
happening 

around me?

Detection
• Where are 
obstacles?

Localization
• Where am I 
relative to the 

obstacles?

Planning
• Where do I go?

Separate problem into smaller sub-modules, tackle each 
independently 

[Learning steering bounds for parallel autonomous systems, Amini et al.]

Autonomous Driving Pipeline
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Actuation
• What control 
signals to take?

Sensor Fusion
• What’s 
happening 

around me?

Learn the control directly from raw sensor data
 

Learned Model
Underlying representation of how humans 

drive

Deep Neural Network

[Learning steering bounds for parallel autonomous systems, Amini et al.]

End-to-end Learning

5



PilotNet
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[End to end learning for self-driving cars, Bojarskiet al.]

Learn the steering directly from pixel values
 



Problem with RGB cameras
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[Event-based Cameras: Challenges and Opportunities, Scaramuzza et al.]

What are event-based cameras
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DAVIS240 from Inivation.com

Novel bio-inspired sensors that capture motion in the scene
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[Event-based Cameras: Challenges and Opportunities, Scaramuzza et al.]

What are event-based cameras

10

DAVIS240 from Inivation.com
Benefits:
• Low latency (~ 1 microsecond)
• No motion blur
• High dynamic range (140 dB instead of 60dB)

Novel bio-inspired sensors that capture motion in the scene



[Event-based Cameras: Challenges and Opportunities, Scaramuzza et al.]

What are event-based cameras
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DAVIS240 from Inivation.com
Benefits:
• Low latency (~ 1 microsecond)
• No motion blur
• High dynamic range (140 dB instead of 60dB)

Challenges:
• Data format of events

• Monochromatic
• Low resolution

Novel bio-inspired sensors that capture motion in the scene



Use an event camera to drive a car in real time

Deep Neural Network

Our Goal
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DAVIS240 from Inivation.com



[Event-based Vision meets Deep Learning on Steering Prediction for Self-driving Cars, Manqueda et al.]

Related Work: Frame-based models
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Event frame
R: positive
G: negative

Resnet
(CNN)

FC



[Event-based Vision meets Deep Learning on Steering Prediction for Self-driving Cars, Manqueda et al.]

Related Work: Frame-based models

14

Event frame
R: positive
G: negative

Resnet
(CNN)

FC

Problems:
- passive training not tested on a real vehicle
- unable to capture the whole scene at low speed



Our proposed model
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Thoughts: Augment the event-based model with inputs from a traditional RGB camera, so that the 

combined model perform at least as well as the best of the RGB-based and event-based models.



Our proposed model

Thoughts: Augment the event-based model with inputs from a traditional RGB camera, so that the 

combined model perform at least as well as the best of the RGB-based and event-based models.
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Comparison between the three models
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Experiment Vehicle Setup
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Experiment Dataset

2 hours of human driving around Boston on urban roads
Supervise on curvature (1 / radius)

19



Experiment Metrics
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(Rooted Mean Sqare Error)

(Explained Variance)



Experiment Result on dataset
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The original event-based model performs the best, but ROI-cropping and 1-channel 
integration decreased its performance.

Our model, which could be seen as a mixture PilotNet and Maqueda et al. with both 
ROI cropping and 1-channel integration, indeed perform better than either of them.



Experiment result on real cars
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metric:



Discussion

PilotNet also uses Imitation learning, so why does it work better?
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Discussion: 

Challenges
- Event-based cameras provide structure of the scene and the motion of the camera

- The model turns out to predict the existing motion of the car rather than learning how to drive
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Discussion: 

Challenges
- Event-based cameras provide structure of the scene and the motion of the camera

- The model turns out to predict the existing motion of the car rather than learning how to drive

Potential solutions for the future
- Use Deep Reinforcement Learning for the model to learn the correct causation

- Work on a event-based simulation platform
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● My mentors: Dr. Igor Gilitschenski and Alexander Amini 

● Prof Daniela Rus, Distributed Robotics Lab, MIT CSAIL

● MIT PRIMES

● My parents

Thank you! Questions?
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